MATH 227 (Calculus II)

Computer Lab

Parametric Curves

1. Plot the graphs given by the following parametric expressions. Sketch the graph yourself first and check it then with the computer.
(a) $x(t)=\cos t, y(t)=\sin t, 0 \leq t \leq \pi / 2$
(b) $x(t)=\cos t, y(t)=\sin t, 0 \leq t \leq 3 \pi / 2$
(c) $x(t)=t \cos t, y(t)=t \sin t, 0 \leq t \leq 2 \pi$
(d) $x(t)=(2 \pi-t) \cos t, y(t)=(2 \pi-t) \sin t, 0 \leq t \leq 2 \pi$
(e) $x(t)=2 \cos t, y(t)=3 \sin t, 0 \leq t \leq 2 \pi$
(f) $x(t)=\cos 2 t, y(t)=\sin 3 t, 0 \leq t \leq 2 \pi$
(g) $x(t)=\cos 3 t, y(t)=\sin 5 t, 0 \leq t \leq 2 \pi$
(h) $x(t)=t^{2}, y(t)=t^{3},-10 \leq t \leq 10$
2. Find the parametric equations describing the following graphs. Check your answer with the computer.
(a) The circle given by $x^{2}+(y-5)^{2}=36$, starting at $(6,5)$.
(b) The ellipse given by $\frac{x^{2}}{49}+\frac{y^{2}}{64}=1$, starting at $(0,8)$.
(c) The hyperbola given by $\frac{x^{2}}{49}-\frac{y^{2}}{64}=1$, starting at $(0,8)$.
3. For each of the three graphs in 2., find the slope of the tangent at the following points.
(a) $x^{2}+(y-5)^{2}=36$

Tangent at $(0,11)$:
Tangent at $(-\sqrt{35}, 6)$:
(b) $\frac{x^{2}}{49}+\frac{y^{2}}{64}=1$

Tangent at $\left(5, \frac{16 \sqrt{6}}{7}\right)$:
Tangent at $(7,0)$:
(c) $\frac{x^{2}}{49}-\frac{y^{2}}{64}=1$

Tangent at $\left(-5, \frac{8 \sqrt{74}}{7}\right)$:
Tangent at $(-7,0)$:

