- 1. Plot the graphs given by the following parametric expressions. Sketch the graph yourself first and check it then with the computer.
 - (a) $x(t) = \cos t$, $y(t) = \sin t$, $0 \le t \le \pi/2$ (b) $x(t) = \cos t$, $y(t) = \sin t$, $0 \le t \le 3\pi/2$ (c) $x(t) = t \cos t$, $y(t) = t \sin t$, $0 \le t \le 2\pi$ (d) $x(t) = (2\pi - t) \cos t$, $y(t) = (2\pi - t) \sin t$, $0 \le t \le 2\pi$ (e) $x(t) = 2 \cos t$, $y(t) = 3 \sin t$, $0 \le t \le 2\pi$ (f) $x(t) = \cos 2t$, $y(t) = \sin 3t$, $0 \le t \le 2\pi$
 - (g) $x(t) = \cos 3t, \ y(t) = \sin 5t, \ 0 \le t \le 2\pi$
 - (h) $x(t) = t^2$, $y(t) = t^3$, $-10 \le t \le 10$
- 2. Find the parametric equations describing the following graphs. Check your answer with the computer.
 - (a) The circle given by $x^2 + (y-5)^2 = 36$, starting at (6,5).
 - (b) The ellipse given by $\frac{x^2}{49} + \frac{y^2}{64} = 1$, starting at (0, 8). (c) The hyperbola given by $\frac{x^2}{49} - \frac{y^2}{64} = 1$, starting at (0, 8).

3. For each of the three graphs in 2., find the slope of the tangent at the following points.

(a)
$$x^{2} + (y - 5)^{2} = 36$$

Tangent at $(0, 11)$:
Tangent at $(-\sqrt{35}, 6)$:
(b) $\frac{x^{2}}{49} + \frac{y^{2}}{64} = 1$
Tangent at $\left(5, \frac{16\sqrt{6}}{7}\right)$:
Tangent at $(7, 0)$:
(c) $\frac{x^{2}}{49} - \frac{y^{2}}{64} = 1$
Tangent at $\left(-5, \frac{8\sqrt{74}}{7}\right)$:
Tangent at $(-7, 0)$: