Proximity Graphs and Principal Curves for Shape Skeletonization

Brendan Colloran

Math/CS 870
May 3, 2007

The Problem:

Investigate the relationship between shape skeletons, proximity graphs, and principal curves.

So what is a shape skeleton?

What are Proximity Graphs? (Redux)

- A proximity graph is a simply a graph in which two vertices are connected by an edge if and only if the vertices satisfy particular geometric requirements.
- "Proximity" here means spatial distance.
- Many of these graphs can be formulated with respect to many metrics, but the Euclidean metric is used most frequently.

Why Proximity Graphs?

- Proximity graphs have been suggested as a convenient and relatively efficient way of generating a "primal sketch" of the shape of a point set-all of the graphs below can be created in $O(n \log n)$ time.

The RNG

- Let $\Lambda(p, q)$ be the intersection of the circle about p with a radius of $\operatorname{dist}(p, q)$ and the circle about q with a radius of $\operatorname{dist}(q, p)$. This is called a lune.
- The relative neighborhood graph, $R N G(V)$ of a set of points V, is the graph that has an edge (p, q) if and only if the intersection of $\Lambda(p, q)$ and V is empty.
- You can think of the $R N G$ as a graph which connects each point to its nearest neighbors in "each direction."

Principal Curves

- Principle curves are smooth curves that pass through the "middle" of a set of points (or a distribution)—"continuous curves of a given length which minimize the expected squared distance between the curve and points of the space randomly chosen according to a given distribution." [Kegl, et al., 2000]
- Non-linear generalization of principal components.

green = data; red = generator curve;
gray $=$ HS principal curve; blue $=$ KKLZ principal curve

Selected Prior Work

- Hastie, Stuetzle, 1989.
- $O\left(n^{2}\right)$
- Tibshirani, 1992.
- Kegl, Krzyzak, Linder, Zeger, 2000. (k-segments)
- $O\left(n^{2}\right)$
- $O\left(n^{5 / 3}\right)$ with standard assumptions
- adding more than one vertex at a time $O\left(n^{5 / 3}\right) O(n k \log k)$
- setting k constant $O(n k)$
- Singh, Cherkassy, Papanikolopoulos, 2000. (Self-Organizing Map)
- Verbeek, Vlassis, Kröse, 2002 (Local principal components).
- $O\left(k n^{2}\right)$

My Approach

- Similar to Dr. Singh's approach, I use a proximity graph to initialize the topology of the skeleton. However, I conducted most of my experiments using relative neighborhood graphs instead of minimum spanning trees.
- Similar to the original HS principal curve algorithm, I performed a perpendicular linear regression and projection on the n nearest points along the graph to update the position of points on the graph.
- Using an RNG to create the initial primal sketch has two main advantages:
- It allows the final skeleton to have a much more complicated topological structure than just a curve, including loops, self-intersections, and branches.
- The RNG of a planar point set can be found in $O(n \log n)$ time, so we can get a rough approximation of the shape very quickly.
...and here it is! Or rather, here they are (2 versions).

Problems!

- This algorithm may not converge! In fact, it some cases it definitely doesn't.
- There are several parameters that must be hand-tuned.
- For version 1 and 2 :
- The number of nearest points along the RNG to consider when doing the local smoothing.
- The number of iterations must be specified explicitly, since I haven't developed convergence criteria (and convergence may not even happen).
- The smoothing function must also be specified. (I have deviated slightly from HS here, using a function the gives point near the current point more weight, and points farther away less weight.)
- In addition, version 2, takes another parameter: the number of steps to be taken along the previous RNG when constructing new "local" RNGs.
- Supposing the algorithm does converge, the resulting graph may need to be trimmed to get rid of edges that are "too long" relative to the rest.

Provisional Complexity

Version 1 (per iteration), for a fixed number m of points along the graph to be used in the local smoothing step.

Initialize the RNG of the point set $O(n \log n)$
Then, for each iteration:

1. Find the RNG of the current graph $O(n \log n)$
2. For each point $O\left(\mathrm{~nm}^{2}\right)$
3. Find the m nearest points along the graph. Assuming that the worst possible case is a triangular grid of points, and traversing the graph using a BFS strategy $O\left(m^{2}\right)$ (This is very much a back-of-the envelope estimate-I haven't worked out the proof in detail; it could be better or worse.)
4. Regression/projection
$O(m)$
5. Iterate again

Provisional Complexity

So the algorithm has a provisional complexity of $O\left(n\left(m^{2}+\log n\right)\right)$. This gives $O(n$ $\log n$) for fixed m, but this is cold comfort, since m will need to grow as n does in order for the curve to maintain a reasonable level of smoothness.

Also, this does no one any good until some type of convergence can be guaranteed.

References

- Hastie, T., Stuetzle, W., 1989. Principal curves. J. Am. Stat. Assoc. 84 (406), 502-516.
- Jaromczyk, J.W.,Toussaint, G.T., 1992. "Relative Neighborhood Graphs And Their Relatives". P-IEEE 80, 1502-1517.
- Kegl, B., Krzyzak, A., Linder, T., Zeger, K., 2000. "Learning and design of principal curves". IEEE Trans. Pattern Anal. Machine Intell. 22 (3), 281-297.
- Singh, R., Wade, M. C., Papanikolopoulos, N. P., 1998. "Letter-Level Shape Description by Skeletonization in Faded Documents", Proc. Fourth IEEE Workshop on Applications of Computer Vision, 121-126.
- Singh, R., Cherkassky, V., Papanikolopoulos, N. P., 2000. "Self-organizing maps for the skeletonization of sparse shapes," IEEE Transactions on Neural Networks, vol. 11, no. 1, 241-248.
- Tibshirani, R., 1992. "Principal curves revisited". Stat. Comput. 2, 183-190.
- Verbeek, J.J., Vlassis, N., Krose, , 2002, "A k-Segments Algorithm for Finding Principal Curves". Pattern Recognition Letters 23, 1009-1017.

