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The Problem:

Investigate the relationship between shape skeletons, proximity graphs, and
principal curves.

So what is a shape skeleton?



What are Proximity Graphs? (Redux)

* A proximity graph is a simply a graph in which two vertices are connected
by an edge if and only if the vertices satisfy particular geometric
requirements.

* “Proximity” here means spatial distance.

* Many of these graphs can be formulated with respect to many metrics, but
the Euclidean metric is used most frequently.



Why Proximity Graphs?

* Proximity graphs have been suggested as a convenient and relatively
efficient way of generating a “primal sketch” of the shape of a point set—all
of the graphs below can be created in O(n log n) time.
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The RNG

* Let A(p,g) be the intersection of the circle about p with a radius of dist(p,q)
and the circle about g with a radius of dist(g,p). This is called a lune.

* The relative neighborhood graph, RNG (V') of a set of points V, is the graph
that has an edge (p,q) if and only if the intersection of A(p,qg) and V'is
empty.

* You can think of the RNG as a graph which connects each point to its
nearest neighbors in “each direction.”




Principal Curves

* Principle curves are smooth curves that pass through the “middle” of a set of
points (or a distribution)—"continuous curves of a given length which
minimize the expected squared distance between the curve and points of the
space randomly chosen according to a given distribution.” [Kegl, et al., 2000]

* Non-linear generalization of principal components.

green = data; red = generator curve;
gray = HS principal curve; blue = KKLZ principal curve



Selected Prior Work

* Hastie, Stuetzle, 1989.
* O(n)
* Tibshirani, 1992.
* Kegl, Krzyzak, Linder, Zeger, 2000. (k-segments)
* O(n')
« O(;r’”) with standard assumptions
* adding more than one vertex at a time O(r””) O(nk log k)
* setting k constant O(nk)
* Singh, Cherkassy, Papanikolopoulos, 2000. (Self-Organizing Map)
* Verbeek, Vlassis, Krose, 2002 (Local principal components).

* O(kn’)



My Approach

e Similar to Dr. Singh's approach, I use a proximity graph to initialize the
topology of the skeleton. However, I conducted most of my experiments
using relative neighborhood graphs instead of minimum spanning trees.

 Similar to the original HS principal curve algorithm, I performed a
perpendicular linear regression and projection on the n nearest points along
the graph to update the position of points on the graph.

* Using an RNG to create the initial primal sketch has two main advantages:

* It allows the final skeleton to have a much more complicated topological
structure than just a curve, including loops, self-intersections, and
branches.

* The RNG of a planar point set can be found in O(n log n) time, so we
can get a rough approximation of the shape very quickly.

...and here it is! Or rather, here they are (2 versions).



Problems!

e This algorithm may not converge! In fact, it some cases it definitely doesn't.
* There are several parameters that must be hand-tuned.
* For version 1 and 2:
* The number of nearest points along the RNG to consider when
doing the local smoothing.

* The number of iterations must be specified explicitly, since I haven't
developed convergence criteria (and convergence may not even
happen).

* The smoothing function must also be specified. (I have deviated
slightly from HS here, using a function the gives point near the
current point more weight, and points farther away less weight.)

* In addition, version 2, takes another parameter: the number of steps to
be taken along the previous RNG when constructing new “local” RNGs.
* Supposing the algorithm does converge, the resulting graph may need to be
trimmed to get rid of edges that are “too long” relative to the rest.



Provisional Complexity

Version 1 (per iteration), for a fixed number m of points along the graph to be

used in the local smoothing step.

Initialize the RNG of the point set O(n log n)
Then, for each iteration:
1. Find the RNG of the current graph O(n log n)
2. For each point O(nm’)

1. Find the m nearest points along the graph. Assuming that the worst
possible case is a triangular grid of points, and traversing the graph

using a BFS strategy O(m’)
(This is very much a back-of-the envelope estimate—I haven't

worked out the proof in detail; it could be better or worse.)
2. Regression/projection O(m)
3. Iterate again



Provisional Complexity

So the algorithm has a provisional complexity of O(n(m’+log n)). This gives O(n
log n) for fixed m, but this is cold comfort, since m will need to grow as n does in
order for the curve to maintain a reasonable level of smoothness.

Also, this does no one any good until some type of convergence can be

guaranteed.
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