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Motivation

Voronoi diagrams are used to partition a metric space by proximity to a discrete set of objects. 
Some example of problems for which Voronoi diagrams are useful include:

● Post office problem
● Trade influence of cities
● Local resource use for plants ("potential area available to a tree")
● Territory of central place foragers (and other types of animal territoriality)
● Modeling grain growth in metals 
● Regional gravitational influence of astronomical objects

For many more examples, see http://www.ics.uci.edu/~eppstein/gina/scot.drysdale.html

Definition

Given a set of points (or “sites”) P := {p1, p2,...,pn}, the Voronoi diagram of P  is a subdivision of the 
plane into n cells (one for each element of P ) such that a point q is in cell i if and only if q is closer 
to pi than it is to any other element of P.  

Notation

The Voronoi diagram of a point set P will be denoted 'Vor(P )';  abusing this terminology, we will 
also use 'Vor(P )' to denote the vertices and edges of this planar subdivision.

We denote the Voronoi cell of site pi  by 'V(pi)'.

Glossary

Site A point pi in the set P := {p1, p2,...,pn}.

Voronoi cell of  pi The portion of the plane that is closer to site pi than any other site.

The beach line: For a given position of the sweep line L , each site pi  above L defines a parabola 
Πi  with focus pi  and directrix L .  The beach line is the function 

f (x) = min{Πi (x)}
for all i  such that pi  is above L .

Breakpoints: The points at which consecutive parabolic arcs on the beach line meet.



Site events: The event that occurs when the sweep line encounters a new site.

Circle events: The event that occurs when the sweep line reaches the lowest point on the 
circle through the sites defining three consecutive points on the beach line.

False alarm: A potential circle event that is deleted from the event queue before it can take 
place.

Theorems, Observations, Lemmas

Observation 7.1    Let Bis(pi,pj) denote the perpendicular bisector of the line segment connecting 
pi and pj, and let h(pi,pj) denote the half-plane containing pi that is defined by 
Bis(pi,pj). Then V(pi) is the intersection of the half-spaces h(pi,pj) with i ≠ j.

Observation 7.1.a Each cell V(pi) has at most n - 1 vertices and edges.

Theorem 7.2    Let P be a set of points in the plane. If all the points are collinear, then Vor(P ) 
consists of n - 1 parallel lines. Otherwise,  Vor(P ) is connected, and its edges are 
segments or half-lines. 

Theorem 7.3    For n ≥ 3, Vor(P ) has has at most 2n - 5 vertices and 3n - 6 edges.

Theorem 7.4    For a set of points P, define the largest empty circle about q with respect to P , 
denoted CP (q ), as the largest circle with center q that does not contain any 
other points in P. Then:

i. A point q is a vertex of Vor(P ) if and only if CP (q ) has three or more 
sites on its boundary.

ii. The bisector between sites pi and pj defines an edge of Vor(P ) if and 
only if there is a point q on the bisector such that the boundary of CP  

(q ) contains pi and pj ,but no other site in P. 

Lemma 7.6    New arcs can appear on the beach line only by way of site events.

Lemma 7.7    Existing arcs can disappear from the beach line only by way of circle events.

Lemma 7.8    Every Voronoi vertex is detected by way of a circle event.

Lemma 7.9    Fortune's algorithm runs in O(n log n) time and uses O(n) storage.



Data Structures

● The Voronoi diagram is stored in a doubly-connected edge list D  (see Ch. 2). (Note that 
because a Voronoi diagram has half-lines as well as full lines, we must add a bounding box 
to complete the doubly connected edge list.)

● Events are stored in a priority queue Q, where an event's priority is its y-coordinate.

● The beach line is stored in a balanced binary search tree T, in which the leaves correspond 
to arcs on the beach line and internal nodes correspond to breakpoints. Breakpoints are 
stored as ordered tuples (pi,pj), where pi represents arc to the left of the breakpoint and pj 

represents the arc to the right of the breakpoint. This allows us to calculate the x-coordinate 
of the breakpoints at each site event, and hence to find the arc of the beach line that is 
above a new site.
We also store pointers in T  to our other data structures. Each leaf (representing an arc) has 
a pointer to the circle event in Q  that will cause the arc to disappear (this is set to nil if no 
such event has been detected), and each internal node (pi,pj) has a pointer to a half edge in 
the doubly connected edge list that is traced by the breakpoint (pi,pj).



The Algorithm

VoronoiDiagram(P )
Input A set P  of point sites in the plane.
Output A doubly connected edge list D  representing Vor(P ) inside a bounding box

1. Initialize Q  with all site events, and initialize T and D  (both empty).
2. while  Q  is  not empty
3.  do  Remove the highest priority event from Q
4.  if   the event is a site event occurring at pi 
5.  then  HandleSiteEvent(pi)
6.  else   HandleCircleEvent(a), where a is the leaf of T  representing the 

arc that will disappear
7. The internal nodes still in T  correspond to half-infinite edges. Compute a bounding box 

that contains all the sites of P  and all the vertices of Vor(P ), and attach the half-infinite 
edges to the bounding box.

8. Complete the doubly-connected edge list by adding cell records and pointers to 
corresponding edges of Vor(P )

HandleSiteEvent(pi)
1. If T  is empty, insert pi into T  and return; otherwise, proceed with steps 2-5.
2. Search T  for the arc α vertically above pi.  If this arc has a corresponding circle event in Q, 

that circle event is a false alarm and must be deleted.
3. Replace the leaf of T  representing α with a subtree having three leaves: the middle leaf 

stores the new site pi, and the two other leaves store the site pj that was originally stored 
with α. Store the tuples (pj,pi) and (pi,pj) representing the new breakpoints at the two new 
internal node. Perform balancing operations on T.

4. Create new half-edge records in D  for the edge separating V(pi) and V(pj).
5. Check the triple of consecutive arcs with pi as the left arc to see if the breakpoints converge; 

if they do, insert a circle event in Q and add pointers between the nodes in T  and Q. Do the 
same for the triple with the new arc on the right.

HandleCircleEvent(a)
1. Delete the leaf a that represents the arc α disappearing from T. Update the tuples at internal 

nodes representing breakpoints. Rebalance T. Delete all circle events involving α from Q 
(these can be found using the pointers from the predecessor and successor of a in T).

2. Add the center of the circle causing the event to D  as a vertex. Create two half-edge 
records in D  corresponding to the new breakpoint, and set the appropriate pointers. Attach 
the three relevant half-edges, including the new one, to the new vertex.

3. Check the new triple of consecutive arcs that has the former left neighbor of α as it middle 
arc to see if its breakpoints converge; if they do, insert a circle event in Q and add pointers 
between the nodes in T  and Q. Do the same for the triple with the former right neighbor of 
α as it middle arc.


