

## Motivation

Voronoi diagrams are used to partition a metric space by proximity to a discrete set of objects.

Some example of problems for which Voronoi diagrams are useful include:

- Post office problem
- Trade influence of cities
- Local resource use for plants ("potential area available to a tree")
- Territory of central place foragers (and other types of animal territoriality)
- Modeling grain growth in metals
- Regional gravitational influence of astronomical objects

For many more examples, see <http://www.ics.uci.edu/~eppstein/gina/scot.drysdale.html>

## Definition

Given a set of points (or “sites”)  $P := \{p_1, p_2, \dots, p_n\}$ , the Voronoi diagram of  $P$  is a subdivision of the plane into  $n$  cells (one for each element of  $P$ ) such that a point  $q$  is in cell  $i$  if and only if  $q$  is closer to  $p_i$  than it is to any other element of  $P$ .

## Notation

The Voronoi diagram of a point set  $P$  will be denoted ' $\text{Vor}(P)$ '; abusing this terminology, we will also use ' $\text{Vor}(P)$ ' to denote the vertices and edges of this planar subdivision.

We denote the Voronoi cell of site  $p_i$  by ' $V(p_i)$ '.

## Glossary

*Site* A point  $p_i$  in the set  $P := \{p_1, p_2, \dots, p_n\}$ .

*Voronoi cell of  $p_i$*  The portion of the plane that is closer to site  $p_i$  than any other site.

*The beach line:* For a given position of the sweep line  $L$ , each site  $p_i$  above  $L$  defines a parabola  $\Pi_i$  with focus  $p_i$  and directrix  $L$ . The *beach line* is the function

$$f(x) = \min\{\Pi_i(x)\}$$

for all  $i$  such that  $p_i$  is above  $L$ .

*Breakpoints:* The points at which consecutive parabolic arcs on the beach line meet.

|                       |                                                                                                                                                         |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Site events:</i>   | The event that occurs when the sweep line encounters a new site.                                                                                        |
| <i>Circle events:</i> | The event that occurs when the sweep line reaches the lowest point on the circle through the sites defining three consecutive points on the beach line. |
| <i>False alarm:</i>   | A potential circle event that is deleted from the event queue before it can take place.                                                                 |

### Theorems, Observations, Lemmas

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Observation 7.1</i>   | Let $\text{Bis}(p_i, p_j)$ denote the perpendicular bisector of the line segment connecting $p_i$ and $p_j$ , and let $h(p_i, p_j)$ denote the half-plane containing $p_i$ that is defined by $\text{Bis}(p_i, p_j)$ . Then $V(p_i)$ is the intersection of the half-spaces $h(p_i, p_j)$ with $i \neq j$ .                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <i>Observation 7.1.a</i> | Each cell $V(p_i)$ has at most $n - 1$ vertices and edges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>Theorem 7.2</i>       | Let $P$ be a set of points in the plane. If all the points are collinear, then $\text{Vor}(P)$ consists of $n - 1$ parallel lines. Otherwise, $\text{Vor}(P)$ is connected, and its edges are segments or half-lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <i>Theorem 7.3</i>       | For $n \geq 3$ , $\text{Vor}(P)$ has at most $2n - 5$ vertices and $3n - 6$ edges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>Theorem 7.4</i>       | For a set of points $P$ , define the largest empty circle about $q$ with respect to $P$ , denoted $C_P(q)$ , as the largest circle with center $q$ that does not contain any other points in $P$ . Then: <ol style="list-style-type: none"> <li>A point <math>q</math> is a vertex of <math>\text{Vor}(P)</math> if and only if <math>C_P(q)</math> has three or more sites on its boundary.</li> <li>The bisector between sites <math>p_i</math> and <math>p_j</math> defines an edge of <math>\text{Vor}(P)</math> if and only if there is a point <math>q</math> on the bisector such that the boundary of <math>C_P(q)</math> contains <math>p_i</math> and <math>p_j</math>, but no other site in <math>P</math>.</li> </ol> |
| <i>Lemma 7.6</i>         | New arcs can appear on the beach line only by way of site events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <i>Lemma 7.7</i>         | Existing arcs can disappear from the beach line only by way of circle events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <i>Lemma 7.8</i>         | Every Voronoi vertex is detected by way of a circle event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>Lemma 7.9</i>         | Fortune's algorithm runs in $O(n \log n)$ time and uses $O(n)$ storage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## Data Structures

- The Voronoi diagram is stored in a doubly-connected edge list  $D$  (see Ch. 2). (Note that because a Voronoi diagram has half-lines as well as full lines, we must add a bounding box to complete the doubly connected edge list.)
- Events are stored in a priority queue  $Q$  where an event's priority is its  $y$ -coordinate.
- The beach line is stored in a balanced binary search tree  $T$ , in which the leaves correspond to arcs on the beach line and internal nodes correspond to breakpoints. Breakpoints are stored as ordered tuples  $(p_i, p_j)$ , where  $p_i$  represents arc to the left of the breakpoint and  $p_j$  represents the arc to the right of the breakpoint. This allows us to calculate the  $x$ -coordinate of the breakpoints at each site event, and hence to find the arc of the beach line that is above a new site.

We also store pointers in  $T$  to our other data structures. Each leaf (representing an arc) has a pointer to the circle event in  $Q$  that will cause the arc to disappear (this is set to nil if no such event has been detected), and each internal node  $(p_i, p_j)$  has a pointer to a half edge in the doubly connected edge list that is traced by the breakpoint  $(p_i, p_j)$ .

## The Algorithm

`VoronoiDiagram( $P$ )`

*Input*      A set  $P$  of point sites in the plane.

*Output*      A doubly connected edge list  $D$  representing  $\text{Vor}(P)$  inside a bounding box

1. Initialize  $Q$  with all site events, and initialize  $T$  and  $D$  (both empty).
2. **while**  $Q$  is not empty
3.     **do** Remove the highest priority event from  $Q$
4.         **if** the event is a site event occurring at  $p_i$
5.             **then** HandleSiteEvent( $p_i$ )
6.             **else** HandleCircleEvent( $a$ ), where  $a$  is the leaf of  $T$  representing the arc that will disappear
7. The internal nodes still in  $T$  correspond to half-infinite edges. Compute a bounding box that contains all the sites of  $P$  and all the vertices of  $\text{Vor}(P)$ , and attach the half-infinite edges to the bounding box.
8. Complete the doubly-connected edge list by adding cell records and pointers to corresponding edges of  $\text{Vor}(P)$

`HandleSiteEvent( $p_i$ )`

1. If  $T$  is empty, insert  $p_i$  into  $T$  and return; otherwise, proceed with steps 2-5.
2. Search  $T$  for the arc  $\alpha$  vertically above  $p_i$ . If this arc has a corresponding circle event in  $Q$ , that circle event is a false alarm and must be deleted.
3. Replace the leaf of  $T$  representing  $\alpha$  with a subtree having three leaves: the middle leaf stores the new site  $p_i$ , and the two other leaves store the site  $p_j$  that was originally stored with  $\alpha$ . Store the tuples  $(p_j, p_i)$  and  $(p_i, p_j)$  representing the new breakpoints at the two new internal node. Perform balancing operations on  $T$ .
4. Create new half-edge records in  $D$  for the edge separating  $V(p_i)$  and  $V(p_j)$ .
5. Check the triple of consecutive arcs with  $p_i$  as the left arc to see if the breakpoints converge; if they do, insert a circle event in  $Q$  and add pointers between the nodes in  $T$  and  $Q$ . Do the same for the triple with the new arc on the right.

`HandleCircleEvent( $a$ )`

1. Delete the leaf  $a$  that represents the arc  $\alpha$  disappearing from  $T$ . Update the tuples at internal nodes representing breakpoints. Rebalance  $T$ . Delete all circle events involving  $\alpha$  from  $Q$  (these can be found using the pointers from the predecessor and successor of  $a$  in  $T$ ).
2. Add the center of the circle causing the event to  $D$  as a vertex. Create two half-edge records in  $D$  corresponding to the new breakpoint, and set the appropriate pointers. Attach the three relevant half-edges, including the new one, to the new vertex.
3. Check the new triple of consecutive arcs that has the former left neighbor of  $\alpha$  as its middle arc to see if its breakpoints converge; if they do, insert a circle event in  $Q$  and add pointers between the nodes in  $T$  and  $Q$ . Do the same for the triple with the former right neighbor of  $\alpha$  as its middle arc.