Proximity Graphs

- A proximity graph is a simply a graph in which two vertices are connected by an edge if and only if the vertices satisfy particular geometric requirements.
- "Proximity" here means spatial distance.
- Many of these graphs can be formulated with respect to many metrics, but the Euclidean metric is used most frequently.

Relative Neighborhood Graphs

- Let $\Lambda(p, q)$ be the intersection of the circle about p with a radius of $\operatorname{dist}(p, q)$ and the circle about q with a radius of $\operatorname{dist}(q, p)$. This is called a lune.
- The relative neighborhood graph $R N G(V)$ of a set of points V, is the graph that has an edge (p, q) if and only if the intersection of $\Lambda(p, q)$ and V is empty.

Gabriel Graphs

- Let $C(p, q)$ be the circle centered on the point halfway between p and q, and with a radius of half the distance between p and q.
- The Gabriel graph of a set of points $V, R N G(V)$, is the graph that has an edge (p, q) if and only if the intersection of $C(p, q)$ and V is empty.

$\boldsymbol{\beta}$-Skeletons

- For β greater than or equal to $1, U_{p, q}$ is defined as:

$$
U_{p, q}(\beta)=B\left(\left(1-\frac{\beta}{2}\right) p+\frac{\beta}{2} q, \frac{\beta}{2} \delta(p, q)\right) \cap B\left(\left(1-\frac{\beta}{2}\right) q+\frac{\beta}{2} p, \frac{\beta}{2} \delta(p, q)\right)
$$

- The β-skeleton $G_{\beta}(V)$ is the graph that has an edge between p and q if and only if the intersection of $U_{p, q}$ and V is empty.
- $R N G(V)=G_{2}(V)$.
- $G G(V)=G_{1}(V)$.
- $G_{m}(V)$ is a subset of $G_{n}(V)$ for $m>n$.

A Nice Relationship

- If we also consider the Euclidean minimum spanning tree (which is a tree that minimizes the total edge length connecting all points) and the Delauney triangulation (which maximizes the minimum angle over all triangulations of a set of points), we get the following relationship:

$$
E M S T \subseteq R N G \subseteq G G \subseteq D T
$$

Sphere of Influence Graph

- For each point p in V, let r_{p} be the distance from p to the nearest other point in V, and let C_{p} be the the circle of radius r_{p} about p.
- The sphere of influence graph is the graph that has an edge (p, q) if and only if the circles C_{p} and C_{q} intersect in at least 2 places

Principal Curves

- Priciple curves are smooth curves that pass through the "middle" of a set of points (or a distribution)-"continuous curves of a given length which minimize the expected squared distance between the curve and points of the space randomly chosen according to a given distribution." [Kegl, et al, 2000]

green = data; red = generator curve;
gray $=$ Hastie/Steutzle principal curve; blue = principal curve approximation

Application: Shape Skeletons

- These graphs, and the principal curve suggest several ways of finding the "shape" or the "middle" of an object.

What's Next?

- Implement algorithms to produce the RNG, GG, DT, etc., for a set of coplanar points.
- Implement the principal curve algorithm.
- Explore the connections between proximity graphs and the principal curve.

