
Triangulations of Polygons

Background: We have seen in class that we can triangulate convex polytopes of any dimension into simplices. However, we it is also possible to triangulate non-convex polygons into triangles as well. Although we know that these triangulations exist, it is often necessary to find a triangulation of a given polygon. One possible algorithm involves starting at the leftmost vertex and building the triangles one by one. This particular algorithm has a running time of O(n^2). However, there is a better algorithm which will run in O(n log(n)). This lecture will discuss the algorithm in detail.

Necessary Definitions

Data Structures:

Stack - A stack is a LIFO (Last In First Out) data structure. Elements are added and removed one at a time, and the element removed is the one that was most recently added, thus the last element in is the first one out. The elements can be added and retrieved in O(1) time.

Priority Queue - A modified Queue data structure where each added element has an assigned priority, and the element removed is the element with the highest priority. The elements can be added in O(logn) time and retrieved in O(1) time.

Binary Search Tree - A binary tree where the elements are ordered, and an in order transversal of the tree lists the elements in their correct order. Elements can be added and retrieved in O(logn) time.

Terminology:

Simple Polygon - A polygon (not necessarily convex) enclosed by a single chain of edges (i.e. no “holes”).

Diagonal - An edge added to a polygon, connecting two vertices through the interior, that does not intersect any of the edges.

Triangulation - A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals.

Monotone Polygon - A polygon P is called monotone with respect to a line L if the intersection of every line perpendicular to L with P is continuous. P is said to be Y-monotone when L is the Y axis. This essentially means that when we walk from the “top” of P to the “bottom” along the edges, we only walk downward, and never upward. A polygon is called strictly monotone if none of its edges are perpendicular to L.

Belowness of Vertices - A vertex p is said to be below q if py < qy or py = qy and px > qx.

Aboveness of Vertices - A vertex p is said to be above q if py > qy or py = qy and px < qx.

Turn Vertex - A vertex in a walk where the direction changes from up to down, or visa versa.

Start Vertex - A vertex in which both of its neighboring vertices lie below it and the angle of its edges on the interior of the polygon is less than 180 degrees.

End Vertex - A vertex in which both of its neighboring vertices lie above it and the angle of its edges on the interior of the polygon is less than 180 degrees.

Merge Vertex - A end vertex where the interior angle of the edges is greater than 180 degrees.

Split Vertex - A start vertex where the interior angle of the edges is greater than 180 degrees.

Regular Vertex - A vertex in which one of its edges faces upward and the other faces downward.

General discussion of the algorithm

We begin by restricting ourselves to the case of a simple polygon P. The algorithm has two main parts. First, we split P into Y-monotone pieces. This can be done in O(n log(n)) time. Then, we triangulate each of these Y-monotone pieces one by one, and each of of these triangulations runs in O(n) time. Thus the overall running time is O(n log(n)).

To split the polygon into Y-monotone pieces, we first notice that a polygon is Y-monotone if it has no split vertices or merge vertices. This is proved as Lemma 3.4 in the book. Thus, we just need to add a diagonal to each split and merge vertex in P such that in sub-polygons that are generated, these vertices lose that property. To do this, we need to connect each merge vertex to a vertex below it, and each split vertex to something above it. To split P, we will use the a plane-sweep method. This means we will move an imaginary horizontal line downward over the plane, and handle the vertices as we encounter them. If two vertices have an equal y-value, we will handle the leftmost one first. Number the vertices v1, ... , vn in a counterclockwise enumeration, and define e1, ... en-1 by ei = the edge between vi and vi+1, and en by the edge between vn and v1. As we do our traversal, we will keep track of two things. First, we will keep track of helper(ei) of each edge we encounter, which we define to be the lowest vertex above the sweep line such that the horizontal segment connecting itself to ei is contained in P. This will help us know which vertex to connect We will also keep track of a binary search tree T of the edges, where our order will be left-to-rightness in the plane. As we move down the plane, stopping at each vertex vi, we will keep track of the helper of each edge by looking at the edge just to left of vi. The actual algorithm is given below, and a detailed example will be worked out in class.

Finally, we will give an algorithm to triangulate a Y-monotone polygon P, which will run in O(n). We restrict out algorithm to strictly monotone polygons. Again, we will handle the vertices in order of decreasing y-coordinate, and if two vertices have the same y-coordinate, we will handle the left one first. However, since we have a monotone polygon, we don’t need a priority queue, since we can just merge the left and right edge paths into a single list in the desired order. Number the vertices v1, ... , vn in this order. When we encounter a vertex vi, we will draw as many diagonals from vi to previously encountered edges as possible. The edges that have been previously encountered and may still need more diagonals are kept in a stack, with the most recently encountered elements on top. The algorithm is given below, and again a more detailed example will be worked out in class.

Actual Algorithms

Algorithm MakeMonotone(P)

Input: A simple polygon P stored in a doubly-connected edge list D

Output: A partitioning of P into monotone subpolygons, stored in D

Construct a priority queue Q of the vertices of P using their Y-coordinates as priority

Initialize an empty binary search tree T

while Q is not empty

 do Remove the vertex vi with the highest priority from Q

if
vi is a start vertex

then
Insert ei in T

helper(ei) <- vi

elseif
vi is an end vertex

then
if
helper(ei-1) is a merge vertex

then
Insert the diagonal connecting vi to helper(ei-1) to D

Delete ei-1 from T

elseif
vi is a split vertex

then
Search T to find the edge ej directly to the left of vi

Insert the diagonal connecting vi to helper(ej) to D

helper(ej) <- vi

Insert ei in T

helper(ei) <- vi

elseif
vi is a merge vertex

then
if
helper(ei-1) is a merge vertex

then
Insert the diagonal connecting vi to helper(ei-1) to D

Delete ei-1 from T

Search T for the edge ej directly to the left of vi

if
helper(ej) is a merge vertex

then
Insert the diagonal connecting vi to helper(ej) in D

helper(ej) <- vi

elseif
vi is a regular vertex

then
if
The interior of P lies to the right of vi

then
if
helper(ei-1) is a merge vertex

then
Insert the diagonal connecting vi to helper(ei-1) to D

Delete ei-1 from T

Insert ei in T

helper(ei) <- vi

else
Search in T to find the edge ej directly to the left of vi

if
helper(ej) is a merge vertex

then
Insert a diagonal connecting vi to helper(ej) in D

helper(ej) <- vi

Algorithm TriangulateMonotonePolygon(P)

Input: A strictly Y-montone polygon P stored in a doubly-connected edge list D

Output: A triangulation of P stored in the doubly-connected edge list D

Merge the vertices of the left and right chains of P into one sequence u1, ... , un

Initialize an empty stack S, and push u1 and u2 onto it

for
j <- 3 to n - 1

 do
if
uj and the vertex on top of S are on different chains

then
Pop all the vertices from S

Insert into D a diagonal from uj to each popped vertex, except the last one

Push uj-1 and uj onto S

else
Pop one vertex from S

Pop the other vertices from S as long as the diagonals from uj to them are

inside P. Insert these diagonals into D

Push the last vertex that has been popped back onto S

Push uj onto S

