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Chapter 1

Introduction

In 1899, Georg Pick discovered a useful relation between the area, interior lattice

points, and boundary lattice points of an integral polygon.

Theorem 1.1. (Pick’s Theorem)[5] Let P be an integral polygon with i interior

lattice points and b boundary lattice points. Then the area a of P is given by

a = i+
b

2
− 1. (1.1)

One can translate this to the language of Ehrhart theory:

Theorem 1.2. (Pick’s Theorem (rewritten)) Let P be an integral polygon. Let

LP (t) be the number of lattice points in the tth dilate of P . Then

LP (t) = at2 +
b

2
t+ 1, (1.2)

1
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where a ≥ b
2
− 1.

Pick’s Theorem classifies all possible integral polygons by their area, interior, and

boundary lattice-point counts—all possible Ehrhart polynomials of integral polygons

are given by (1.2), with the constraint a ≥ b
2
− 1. Presently, there is no statement

analogous to Theorem 1.2 for rational polygons or for higher dimensional polytopes;

the Ehrhart (quasi)-polynomials of these objects are not classified in any way.

Here, we focus on a subset of that problem: rational polygons with denominator

two. Rather than examining each constituent of the Ehrhart quasi-polynomials of

these polygons, we focus on the odd constituents—dilating any half-integral polygon

by a multiple of two results in an integral polygon, which are classified by Pick’s

Theorem. We use interior and boundary lattice points in our classification of half-

integral polygons. This results in Theorem 3.7 and Theorem 3.8 for half-integral

polygons without interior lattice points, and Theorem 3.14 and Theorem 3.12 for

half-integral polygons with interior lattice points. For half-integral polygons without

interior lattice points, there is a one-to-one correspondence between half-integral

polygons we can construct with Theorem 3.8 and half-integral polygons that satisfy

Theorem 3.7. This is not the case for half-integral polygons with interior lattice

points. Conjecture 3.1 states that Theorem 3.14 is lacking, and the bound it presents

regarding area and boundary lattice points is not a tight bound. We end the thesis

with justification for Conjecture 3.1, and give several possible approaches to proving

it.



Chapter 2

Background

2.1 Some preliminaries

Definition 2.1. A subset P of Rn is convex if for each x, y ∈ P , we have

{λx+ (1− λ)y : 0 ≤ λ ≤ 1} ⊆ P.

Definition 2.2. A convex polytope is the set

P =

{
λ1v1 + · · ·+ λkvk : λj ≥ 0,

k∑
j=1

λj = 1,

}
(2.1)

for some v1, . . . , vk ∈ Rn.

In other words, a polytope is the convex hull of a finite number of points in Rn,

3
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and we denote P in (2.1) as conv(v1, . . . , vk).

A closed polygonal chain is a non-intersecting path in R2 consisting of a fi-

nite number of line segments. Any closed polygonal chain separates R2 into two

subspaces—one with finite area, and one with infinite area.

Definition 2.3. Let B be a polygonal chain. Let B′ be the subspace defined by B

with finite area. Then

P = B ∪B′

is a polygon.

This alternate definition of a dimension-two polytope is desirable as it does not

require convexity.

Definition 2.4. Let a1, . . . , an, c ∈ R, with at one non-zero. Then

H = {v1, . . . , vn ∈ Rn : a1v1 + · · ·+ anvn = c}

is a hyperplane in Rn.

A hyperplane divides Rn into two halves. For a convex polytope P ∈ Rn, we say

v ∈ P is a vertex of P if for some hyperplane H containing v, P\v is contained in

exactly one of the half-spaces determined by H and P\v ∩H = ∅. If P has vertices

with integer (rational) coordinates, we say P is an integral (rational) polytope. If

a polytope P contains at least n linearly independent vectors, P is n-dimensional

and we say P is a n-polytope.
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Triangles and tetrahedra are examples of simplices. An n-dimensional simplex

is a n-polytope with n+ 1 vertices.

We define the interior P ◦ of P (as defined in 2.1) to be

{
λ1v1 + · · ·+ λkvk : λj > 0,

k∑
j=1

λj = 1

}
.

We say the boundary of P is P\P ◦.

We call Zn ⊂ Rn the integer lattice. The set P ∩ Zn refers to the integer lattice

points (or simply lattice points) contained in the polytope P . When we refer to

interior lattice points of P , we mean the set P ◦ ∩ Zn; likewise, the set ∂P ∩ Zn

contains the boundary lattice points of P . With this in mind, we define the discrete

volume of P to be the number of elements in P ∩ Zn.

We define the tth dilate of P to be the set

{tx : x ∈ P} .

Call this set tP . For any P ⊂ Rd, we can count lattice points in tP . We denote

this lattice-point count of a polytope P by LP (t). With these ideas introduced, we

begin our story.
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2.2 Ehrhart Theory

In the early 1960s, the French math teacher Eugene Ehrhart noticed that the

lattice-point counts of certain polygons, together with their dilates, formed patterns.

Ehrhart hoped to describe LP (t) for generic polytopes. To explain his success, we

first require a definition:

Definition 2.5. A function g(t) = cn(t)tn + cn−1(t)t
n−1 + · · · + c1(t)t + c0(t) is a

quasi-polynomial if each cj(t) is a periodic function with integral period. The period

of g is given by

p = lcm ({period(ck(t))}nk=0) .

One can think of a quasi-polynomial as a set of polynomials. Each polynomial

in a quasi-polynomial is called a constituent. Since the coefficient of each tj depends

only on the value of t mod p,

g(t) =



cn(0)tn + · · ·+ c1(0)t+ c0(0) if t ≡ 0 mod p,

cn(1)tn + · · ·+ c1(1)t+ c0(1) if t ≡ 1 mod p,

...
...

cn(p− 1)tn + · · ·+ c1(p− 1)t+ c0(p− 1) if t ≡ (p− 1) mod p

Theorem 2.1. (Ehrhart’s Theorem)[2] Let P be a convex, rational, n-polytope in

Rn. Then LP (t) is a quasi-polynomial, where each constituent has degree n. If P is

a convex, integral polytope, LP (t) is a polynomial of degree n.
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We call LP (t) the Ehrhart quasi-polynomial of P . If two polytopes have the same

Ehrhart quasi-polynomial, we say they are Ehrhart equivalent. We can construct an

infinite series using LP (t):

EhrP (z) = 1 +
∑
t≥1

LP (t)zt.

This is the Ehrhart series of P .

Theorem 2.1 tells us—at least in the integral case—that LP (t) is among a well

understood class of functions. Even when our polytope is rational, LP (t) can be

thought of as a set of polynomials. Also convenient is that there is a relationship

(discovered by Ehrhart) between LP (t) (which is concerned with the discrete volume

of dilates of P ) and the traditional measure of volume.

Theorem 2.2. [2] Let P be a rational n-polytope in Rn, with corresponding Ehrhart

quasi-polynomial LP (t) = cn(t)tn + · · ·+ c1(t)t+ c0(t). Then vol(P ) = cn(t).

This theorem tells us that cn(t) is a constant, rather than a periodic function.

In general, determining the meaning behind, or possible values of, coefficients of

a polytope’s Ehrhart quasi-polynomial is a non-trivial task, but an attractive one.

Since we are concerned with enumerating lattice points contained in polytopes, our

view of polytopes is highly combinatorial. As such, one might hope the coefficients

of LP (t) measure some attribute of P . While each coefficient (or coefficient function)

of LP (t) may not count an attribute of P , we are able to characterize these coefficient
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functions by the possible values they may attain. The following theorem describes

bounds on the coefficient functions of an Ehrhart quasi-polynomial of a polytope by

placing a bound on the coefficients in its Ehrhart series. As with Theorem 2.1, a

definition is required first.

Definition 2.6. Let P be a rational polytope with vertex set {v1, . . . , vk}. Define

the denominator of a vertex vj to be the least common multiple of the denominator

of each of its coordinates. Define the denominator d of P to be the least common

multiple of the denominator of each vertex.

Theorem 2.3. (Stanley’s nonnegativity theorem)[7] Let P be a rational n-polytope

denominator d. Then

EhrP (z) = 1 +
∑
t≥1

LP (t)zt =
f(z)

(1− zd)n+1
,

where f is a polynomial with nonnegative integer coefficients.

Since LP (t) determines EhrP (t), Theorem 2.3 helps describe the values attained

by the coefficients of LP (t). One might hope the coefficients of LP (t) are likewise

nonnegative; unfortunately, this is incorrect. A quick counterexample comes with

the triangle T defined by conv((1
2
, 1
2
), (1, 1

2
), (1

2
, 1)). This triangle has Ehrhart quasi-

polynomial

LT (t) =


1
8
t2 − 1

8
if t is odd

1
8
t2 + 3

4
t+ 1 if t is even

(2.2)
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Figure 2.1: A polygon whose Ehrhart quasi-polynomial is given by 2.2

Ehrhart tells us we can also determine one additional cofficient of LP (t).

Proposition 2.4. [2] Let P be a rational polytope. Then LP (0) = 1.

Thus if our polytope has an Ehrhart quasi-polynomial with period p, then the

constant term of LP (pt) is 1. For integral polytopes, the constant term of the

Ehrhart polynomial is identically 1. For an integral polytope, two coefficients of the

Ehrhart polynomial are now known.

Proposition 2.4 illustrates that even though LP (t) is constructed to only be

meaningful for positive integers, evaluating at 0 may provide additional information

about our polytope. Theorem 2.5 extends this idea by evaluating the function at

negative integers:

Theorem 2.5. (Ehrhart–Macdonald reciprocity theorem)[1] Let P be a rational n-

polytope. Then

LP (−t) = (−1)nLP ◦(t).
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The word “reciprocity” above refers to evaluations of LP (t) at additive inverses

of t. With Theorem 2.5 in mind, we can determine the Ehrhart quasi-polynomial of

the boundary of P .

Corollary 2.6. Let P be a rational n-polytope. Then

L∂P (t) = LP (t) + (−1)n−1LP (−t).

Note that if P is an integral polygon with LP (t) = at2 + b
2
t+ 1, then

L∂P (t) = LP (t)− LP (−t) = bt.

For an integral polygon P , the linear coefficient of LP (t) is equal to half the bound-

ary lattice-point count of the polygon. Corollary 2.6 is a simple example of the

inclusion/exclusion principle.

Theorem 2.7. (Inclusion/exclusion principle) If A1, . . . , An are finite sets, then

∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣ =
n∑

i=1

|Ai| −
∑

i,j : 1≤i<j≤n

|Ai ∩ Aj|

+
∑

i,j,k : 1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| − · · · + (−1)n−1 |A1 ∩ · · · ∩ An|

This principle is essential to enumerative combinatorics. We have seen already

that it allows us to determine the boundary lattice-point count of a polytope P from
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LP (t). It also allows us to determine the lattice-point count of a rational polytope

by dividing the polytope into smaller rational polytopes. This second idea will be

expanded upon in Chapter 3.

Previously, we hoped to assign meaning or values to the coefficients of LP (t)

for a general polytope P . If P is an integral polygon, LP (t) is well understood.

The quadratic term of LP (t) is the area of P (Theorem 2.2), the linear term counts

half the boundary lattice points of P (Corollary 2.6), and the constant term is

1 (Proposition 2.4). Unfortunately, this victory does not immediately extend to

rational polygons or higher-dimensional polytopes P .

There has been much work recently examining periods of Ehrhart quasi-polynomials.

Before we end this section and leave rational n-polytopes behind, we will briefly

mention some of these results. Recall the denominator d of a polytope is the least

common multiple of the denominators of the vertices. Further, if LP (t) has period

q, then q|d[2].

By Definition 2.5, each coefficient function of a quasi-polynomial is periodic. For

some polytope P , let pj be the period of cj(t). The sequence of integers (pn, . . . , p0)

is called the period squence of P .

Theorem 2.8. [4] Given positive integers s and t, there exists a polygon P with

period sequence (1, s, t).

For polygons in R2, we see any period sequence is possible within the restric-

tion on c2(t) provided by Theorem 2.2. As a final thought, consider the following
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example, provided by Stanley:

Example 2.1. [7] Let P be the pyramid with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0),

and
(
1
2
, 0, 1

2

)
. Then LP (t) =

(
n+3
3

)
Here we have an example of a rational polytope with denominator two whose

Ehrhart quasi-polynomial is a polynomial. In those instances where the period

of the quasi-polynomial of a polytope is less than the denominator of a polytope,

we have period collapse. This phenomenon is mentioned here because later, as we

classify polygons with denominator two, it is important to realize that their Ehrhart

quasi-polynomials may be polynomials.

2.3 Pick and Scott

In the previous section, we began with theorems about general polytopes and dis-

covered more information is available if we restrict ourselves to integral polygons.

Specifically, for integral polygons, we can say much about the coefficients of Ehrhart

polynomials, especially in regard to their interior and boundary lattice-point counts.

Recall that Pick’s Theorem classifies integral polygons by their area and interior and

boundary lattice-point counts. Note that unlike some statements regarding poly-

topes, Pick’s Theorem does not require our polygons be convex; the relationship

between area, interior lattice-points and boundary lattice points holds for all inte-

gral polygon. Pick’s Theorem is useful when working with integral polygons: given
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two of (a, i, b), the third can be determined by (1.2). Thus, not all triples (a, i, b)

are possible.

If Ehrhart theory had been developed first, Pick’s Theorem would have been no

surprise. For some integral polygon P , consider LP (t) = at2 + b
2

+ 1. Recall that

a and b are the respective area and boundary lattice-point counts of P . Thus the

number of lattice points in P is

LP (1) = a+
b

2
+ 1 = i+ b.

Some algebra yields Pick’s Theorem; thus, it arises as a special case in Ehrhart

theory. Pick’s Theorem generalizes to higher dimensions, though more information

about the polytope is required. Rather than knowing the interior and boundary

lattice-point counts, as is sufficient in two dimensions, determining the volume of

an integral n-polytope P requires knowing n different lattice-point counts of dilates

of P . This is a result of Theorem 2.2 and linear algebra.

While Pick’s Theorem places constraints on polygons once two of (a, i, b) are

fixed, it does not give any bounds on possible values for i and b. A priori i and b

can vary wildly and independently. It turns out, this intuition is true but with a

simple restriction. Since all vertices are integral, and since there are no two-sided

polygons, we must have at least three boundary lattice points. With this, we also

see that any polygon must have area at least 1
2

(in fact, Pick’s Theorem tells us the

area of any integral polygon is some multiple of 1
2
). For general polygons, the above
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observations and Pick’s theorem show that i and b do vary with little limitations—

for any value of i, we can find some polygon P with b boundary lattice points, where

b ≥ 3. We can see how to construct such a polygon in Figure 2.2.

Figure 2.2: One can create an integral polygon with arbitrary interior and boundary
lattice-point counts.

Recall that when we originally defined polytopes, we were concerned with convex

subsets of Rn. Requiring convexity does place constraints on the possible interior

and boundary lattice point combinations of polygons. In 1976, P.R. Scott found

these bounds for integral polygons.

Theorem 2.9. (Scott’s Inequality)[6] Let P be a convex integral polygon, with i

interior and b boundary lattice points. Then the integer pair (i, b) can take on the

following values

1. (0, b), b ≥ 3

2. (b, 2i+ 6), b ≤ 2i+ 6
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3. (1, 9).

Scott’s Inequality describes all convex integral polygons by their interior and

boundary lattice points. Combining Theorem 2.9 with Pick’s Theorem, we see the

following are equivalent

1. b ≤ 2i+ 6

2. a ≤ 2i+ 2

3. b ≤ a+ 4

Scott’s inequality has not been extended to rational polygons or higher-dimensional

polytopes. This is a common theme in math—the leap from two- to three-dimensional

objects is generally far more difficult than that from n- to (n + 1)-dimensional ob-

jects.

The goal of this work is to classify demoninator-two (or half-integral) polygons

based on their area, interior lattice-point and boundary lattice-point counts. We

will include all half-integral polygons in this classification and not restrict ourselves

to convex polygons.



Chapter 3

Classification of half-integral polygons

3.1 Triangulations

Definition 3.1. Let P be an n-polytope. A triangulation S of P is a finite set of

n-dimensional simplices such that

1. if S = {T1, . . . , Tk}, then P =
⋃k

j=1 Tj;

2. any two simplices in T intersect in a lower dimensional simplex, or do not

intersect.

Every polytope admits some triangulation [1]. While triangulating polytopes

often raises numerous questions, here we will focus on the questions it helps to

answer.

16
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Definition 3.2. Let

M

(
x

y

)
=

a b

c d


x
y

+

m
n

 : {a, b, c, d,m, n} ∈ Z and ad− bc = ±1

Then M is called an affine unimodular transformation.

Transformations of this form are helpful when applied to triangulations of poly-

topes. When acting on a polytope, a unimodular transformation preserves the

interior and boundary lattice-point counts, as well as the area and denominator.

Definition 3.3. Let P and Q be polytopes, with {Tj}kj=1 a triangulation of P . Let

Mj be a unimodular transformation of Tj. If

{Mj(Tj)}kj=1

is a triangulation of Q, then we say P and Q are unimodularly equivalent.

If two polytopes are unimodularly equivalent, they have the same Ehrhart quasi-

polynomial [3]. If two polygons have the same Ehrhart quasi-polynomial, they are

unimodularly equivalent [3]. Unimodular equivalence allows us to generate infinitely

many polygons with identical area, interior lattice-point count, boundary lattice-

point count, and denominator. Since these qualities are preserved under unimodu-

lar transformations, these transformations are a powerful tool when working with

rational polytopes.
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Lemma 3.1. Let P be a polygon with denominator p. Then the area of P is a

multiple of 1
2p2

.

Proof. Let P be a polygon with denominator p. Then pP is an integral polygon.

When we dilate by p, the area of P is multiplied by p2. By Pick’s Theorem, the

area of pP is a multiple of 1
2
. Therefore, the area of P is a multiple of 1

2p2
.

Lemma 3.2. Let P be a polygon with denominator p. Then P can be triangulated

into triangles of area 1
2p2

.

Proof. Every polygon admits some triangulation, and so it is sufficient to show

Lemma 3.2 is true for an arbitrary triangle T with denominator p. By Lemma 3.1,

the area of T is a multiple of 1
2p2

. Therefore, we can induct on the area of pT . If pT

has area 1
2
, then T has area 1

2p2
and the triangulation of T is trivial.

Now assume Lemma 3.2 holds for all triangles with denominator p and area less

than k
2p2

, where k > 1. Let T have area k
2p2

. Then pT has area k
2
. Since k > 1, Pick’s

theorem tells us pT contains at least four lattice points. Choose one lattice point

q that is not a vertex of pT . We can now choose the three vertices of pT and q as

vertices for triangles in a triangulation of pT . By induction, each of these triangles

can be broken up into a union of triangles, where the area of each is a multiple of 1
2
.

Since T is a triangle with area k
2p2

and since pT can be triangulated into triangles

with area 1
2
, then T be triangulated into triangles with area 1

2p2
.
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Figure 3.1: One possible triangulation of a polygon with denominator two. Note each

triangle has area 1
8 .

3.2 Minimal Triangles

Lemma 3.2 states that for any half-integral polygon, there exists some triangulation

S such that each triangle in S has area 1
8
. Call any half-integral triangle with area 1

8

minimal. These triangles allow us to describe a half-integral polygon by breaking it

up into smaller components. Instead of computing the Ehrhart quasi-polynomial for

the entire polygon P , we first triangulate into minimal triangles. We then compute

the Ehrhart quasi-polynomial for each triangle, and use the inclusion/exclusion prin-

ciple to determine the quasi-polynomial of our original polygon. In practice, these
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operations may take far more effort than determining LP (t) using other methods.

However, this approach will allow us to describe all half-integral polygons by their

respective Ehrhart quasi-polynomials.

In our half-integral case, we have (at most) two constituents: one applies when t

is even, the other when t is odd. For some half-integral polygon P , denote the odd

constituent by OP (t).

Lemma 3.3. Let P be a half-integral polygon, where OP (t) = at2 + b
2
t+ c. Then a

is the area of P and b is the number of boundary lattice points in P .

Proof. Let P be as above, with corresponding OP (t). By Theorem 2.2, a is the area

of P . By Theorem 2.5,

OP (t)−OP (−t) = 2b,

since t ≡ −t mod 2.

Note this lemma is not true for general period p. For a polygon P , let L
(k)
P (t) be

the kth constituent of LP (t). Then

L
(k)
P (−t) = L

(p−k)
P (t).

The key in Lemma 3.3 is that −1 ≡ 1 mod 2.

Lemma 3.4. Let T be a half-integral triangle with area 1
8
. Then T has one or zero

lattice points. If T has one lattice point, OT (t) = 1
8
t2 + 1

2
t+ 3

8
. If T has zero lattice
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points, OT (t) = 1
8
t2 − 1

8
.

Proof. Let T be a triangle with area 1
8
. Suppose T contains two or more lattice

points. Two lattice points differ in either their x- or y-coordinate by at least one.

This implies the area of T is at least 1
4
, a contradiction. Suppose then that T

contains exactly one lattice point. This point must be on the boundary—since T

has area 1
8
, 2T has area 1

2
. By Pick’s Theorem, 2T has no interior lattice points.

Since we know the leading coefficient of LT (t) is the area of T , and since Lemma

3.3 tells us that the linear coefficient is half the boundary lattice points,

OT (t) =
1

8
t2 +

1

2
t+ c, (3.1)

where c is some constant. Evaluating 3.1 at t = 1 gives

1 =
1

8
+

1

2
+ c

and so c = 3
8
. If T contains no lattice points, then again by Lemma 3.3 and our

knowledge about the leading coefficient, we have

OT (t) =
1

8
t2 + c.
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Evaluating at t = 1 yields

0 =
1

8
+ c,

and so c = −1
8
.

Let us name the two types of half-integral minimal triangles given by Lemma

3.4.

Figure 3.2: An example of a non-empty minimal triangle.

Definition 3.4. Let T be a half-integral minimal triangle. We say T is an empty

minimal triangle if it contains no lattice points. We say T is a non-empty minimal

triangle if it contains exactly one lattice point.

Earlier, we said that for some polygon P , we could determine LP (t) by first

triangulating and then using the inclusion/exclusion principle. If T and T ′ are

distinct minimal half-integral triangles, we would like to determine OT∪T ′(t).
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Figure 3.3: Two examples of empty minimal triangles.

Lemma 3.5. Let P be a half-integral polygon, and let S be a triangulation of P .

Let T and T ′ be two distinct minimal half-integral triangles in S.

1. If T ∩ T ′ is a line segment containing no lattice points, or is a non-integral

point, then OT∪T ′(t) = OT (t) +OT ′(t).

2. Suppose T ∩ T ′ contains some lattice point q. Let S ′ = {Tj ∈ S : q ∈ Tj}, and

suppose S ′ contains k triangles. We have two cases:

(a) If q is an interior lattice point of P , then OS(t) =
(
3
8
t2 + 5

8

)
+ (k −

3)
(
1
8
t2 − 1

8

)
.

(b) If q is a boundary lattice point of P , then OS(t) =
(
1
8
t2 + 1

2
t+ 3

8

)
+ (k −

1)
(
1
8
t2 − 1

8

)
.

Proof. Lemma 3.5 follows entirely from the inclusion/exclusion principle.
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1. If T∩T ′ is a line segment containing no lattice points, or is a non-integral point,

then no odd dilate of T ∩T ′ will contain a lattice point. Therefore, OT∩T ′(t) =

0, and by the inclusion/exclusion principle, OT∪T ′(t) = OT (t) +OT ′(t).

2. Suppose T ∩ T ′ contains some lattice point q. Let S ′ = {Tj ∈ S : q ∈ Tj}, and

suppose S ′ contains k triangles. Also suppose q is an interior lattice point of

P . Then by the inclusion/exclusion principle and Lemma 3.4,

OS′(t) = k

(
1

8
t2 +

1

2
t+

3

8

)
− k

(
1

2
t+

1

2

)
−
(
k

2

)
+ k −

k∑
j=3

(
k

j

)
(−1)j.

(3.2)

Here, we count the odd constituents of k non-empty minimal triangles, sub-

tract the odd constituent of k line segments they intersect at, and add and

subtract the lattice point q, as it was counted multiple times. Simplifying

(3.2), and using
∑k

j=0

(
k
j

)
(−1)j = 0, we have

OS′(t) =

(
3

8
t2 +

5

8

)
+ (k − 3)

(
1

8
t2 − 1

8

)
.

If q is a boundary lattice point of P , then by the inclusion/exclusion principle
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and Lemma 3.4,

OS′(t) = k

(
1

8
t2 +

1

2
t+

3

8

)
−(k−1)

(
1

2
t+

1

2

)
−
(
k

2

)
+(k−1)−

k∑
j=3

(
k

j

)
(−1)j.

(3.3)

In (3.3) we subtract off only the odd constituent of k − 1 line segments. Sim-

plifying (3.3) yields

OS′(t) =

(
1

8
t2 +

1

2
t+

3

8

)
+ (k − 1)

(
1

8
t2 − 1

8

)
.

Lemma 3.5 gives us a dictionary between half-integral polygons and the odd

constituents of their Ehrhart quasi-polynomial. As a result, for a polygon P with i

interior lattice points and b boundary lattice points, we have

OP (t) = i

(
3

8
t2 +

5

8

)
+ b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
(3.4)

for some integer k.

3.3 Minimal Segments

Let P be a half-integral polygon, and triangulate P . Call e a minimal segment of

P if e is a half-integral line segment in P and e contains exactly two half-integral
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points. Let E be the set of minimal segments in P . Call minimal segments in

∂P boundary minimal segments. If a boundary minimal segment contains a lattice

point, call it a non-empty boundary minimal segment. Otherwise, call it an empty

boundary minimal segment.

Figure 3.4: A triangle has five minimal segments, and four boundary minimal seg-
ments.

Since all half-integral polygons can be triangulated into two types of minimal

triangles, we can construct any possible half-integral polygon by choosing a starting

minimal triangle and adding additional triangles, one at a time, to boundary minimal

segments of the polygon.

Lemma 3.6. Let P be a half-integral polygon with N lattice points. Let T be a

minimal triangle such that T ∩ P is exactly one boundary minimal segment of P .

Let P have s empty boundary minimal segments.
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1. If |(T ∪P )∩Z2| = |P ∩Z2|+1, T ∩P does not contain a lattice point. Further,

P ∪ T has s− 1 empty boundary minimal segments.

2. If |(T ∪ P ) ∩ Z2| = |P ∩ Z2| and T ∪ P has one more minimal segment than

P , then T ∪ P has s+ 1 empty boundary minimal segments.

3. Let Q be a half-integral polygon with one interior lattice point and no boundary

lattice points such that if SQ is a triangulation of Q, each T ∈ S contains a

lattice point. If Q has area
aQ
8

, and P ∩Q is an empty minimal segment, then

P ∪Q has s+ aQ − 2 empty boundary minimal segments.

Proof. 1. T contains exactly one lattice point. Since T ∪ P has one more lattice

point than P , then T ∩ P cannot contain a lattice point. Further, only one

minimal segment of T is an empty boundary minimal segment. That minimal

segment is T ∩P , which is on the interior of T ∪P . Therefore, T ∪P has s−1

empty boundary minimal segment.

2. We have two cases. First, suppose T contains a lattice point, and P contains

s boundary minimal segment. Since |(T ∪ P ) ∩ Z2| = |P ∩ Z2|, T ∩ P must

contain a lattice point. Thus adding T to P changes T ∩ P to an interior

minimal segment. Of the other two minimal segments of T , one of them does

not contain a lattice point. Therefore, P ∪ T contains s + 1 empty boundary

minimal segment.

Suppose T does not contain a lattice point. Then T ∩P is an empty boundary
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minimal segment of P . Adding T to P changes T ∩ P to an interior minimal

segment. The two remaining minimal segment of T are now boundary minimal

segment of T ∪ P . Since T contained no lattice point, T ∪ P has s+ 1 empty

boundary minimal segment.

3. Since Q has area
aQ
8

, and since any triangle in a triangulation of Q contains a

lattice point, Q has aQ empty boundary minimal segments. Since P ∩Q is a

minimal segment, and since P ∩Q is on the interior of P ∪Q, then P ∪Q has

s+ aQ − 2 minimal segments.

Call Q in Lemma 3.6 (3) a basic polygon While Lemma 3.6 is by no means a

surprising result, it gives us a useful rule for constructing half-integral polygons.

A second interpretation of Lemma 3.6 is the following: if P is a polygon where

every boundary minimal segment contains a lattice point, then one cannot increase

the boundary lattice-point count of P by adding exactly one non-empty triangle.

Rather, one must first increase the number of empty boundary minimal segment

(by adding a triangle that does not increase the lattice-point count of P ).

3.4 Half-integral Polygons without Interior Lattice Points

The ideas in the previous section developed tools needed to classify half-integral

polygons containing no interior lattice points. Half-integral polygons with interior
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lattice points are more complicated, and are dealt with separately.

Theorem 3.7. Let P be a half-integral polygon containing no interior lattice points.

Then

OP (t) = b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
(3.5)

where b is the number of boundary lattice points in P , k ≥ b− 2 and k+b
8

is the area

of P .

Proof. Let P be a half-integral polygon with no interior lattice points. By Lemma

3.5, OP (t) must be of the form (3.5). Thus we need only show the bound on k

in Theorem 3.7 holds. First note that if a half-integral polygon has one or two

boundary lattice points, Theorem 3.7 holds trivially. By Lemma 3.2, any half-

integral polygon P can be triangulated into minimal triangles. Conversely, one can

construct any half-integral polygon by beginning with a single minimal triangle T ′

and adding additional minimal triangles to T ′ at the boundary minimal segment of

T ′ (and subsequently to the boundary minimal segment of the additional triangles,

and so forth).

Let T ′ be a non-empty minimal triangle. Since T ′ has one empty boundary

minimal segment e, we can add a non-empty triangle T ′′ at e. Thus T ′ ∪ T ′′ has

two boundary lattice points. By Lemma 3.6, if we wish to add additional lattice

points to our polygon T ′∪T ′′, we must first increase the number of empty boundary

minimal segments. Again by Lemma 3.6, adding one empty boundary minimal

segment is equivalent to adding one triangle that does not increase the lattice-point
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count of the polygon. By Lemma 3.5, each triangle that does not alter the lattice-

point count of a polygon contributes 1
8
t2 − 1

8
to the odd constituent of the Ehrhart

quasi-polynomiarel of the polygon.

Therefore, when constructing any polygon P with b ≥ 3 boundary lattice points

and no interior lattice points, we need at least b − 1 empty boundary minimal

segments. Since a non-empty triangle has one empty boundary minimal segment,

we need a total of b − 2 empty boundary minimal segments to construct P . Each

of these boundary minimal segments appears by adding one triangle that does not

alter the lattice-point count of P . Thus for any half-integral polygon P with no

interior lattice points,

OP (t) = b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
,

where k ≥ b− 2.

Theorem 3.7 describes all possible odd constituents of Ehrhart quasi-polynomials

of half-integral polygons. Theorem 3.8 states the converse.

Theorem 3.8. Consider the polynomial

f(t) = b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
, (3.6)

where k ≥ b− 2, and b, k ∈ Z≥0. Then there exists a half-integral convex polygon P

such that OP (t) = f(t).
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Proof. Let P = conv
(
(0, 0), (1

2
, 1
2
), (b− 1, 0), (−k−b−1

2
, 1
2
)
)
. This trapezoid has area

b+k
8

, b boundary lattice points and no interior lattice points. By Theorem 2.2 and

Lemma 3.3,

OP (t) =
b+ k

8
t2 +

b

2
t+ c.

Since OP (1) = b,

b =
b+ k

8
+
b

2
+ c,

and c = 3b−k
8

. Thus

OP (t) = b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
.

3.5 Half-integral Polygons with Interior Lattice Points

Note in the proof of Theorem 3.8, the example given is a convex polygon. However,

Theorem 3.7 does not assume convexity when describing the odd constituents of

Ehrhart quasi-polynomials of half-integral polygons. Thus, all half-integral polygons

without interior lattice points satisfy Theorem 3.7, regardless of convexity. Further,

every quasi-polynomial described by Theorem 3.8 can be realized by a half-integral

convex polygon with no interior lattice points. We would like to repeat this success

for half-integral polygons with interior lattice points.
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Lemma 3.9. Let P be a half-integral polygon with interior lattice points. Then P

must have area at least 3
8
.

Proof. Let P be some half-integral polygon with at least one interior lattice point

and area n
8
. By Lemma 3.4, P cannot have area 1

8
. If P had area 1

4
, 2P would

have area 1. By Pick’s Theorem, this cannot happen, as each integral polygon must

have at least three boundary lattice points. Figure 3.5 shows one example of a

half-integral polygon with area 3
8

and one interior lattice point.

Figure 3.5: A polygon with one interior lattice point and area 3
8 , the minimum possible

for a half-integral polygon.

In Lemma 3.9, the minimum area for a half-integral polygon with one interior

lattice point is 3
8
. Lemma 3.10 shows us how this generalizes to i interior lattice

points.
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Lemma 3.10. Let P be a half-integral polygon with i interior lattice points. Then

P has area at least 3i
8

.

Proof. Suppose P has one interior lattice point. By Lemma 3.9, P has area at least

3
8
.

Suppose for all half-integral polygons with k < i interior lattice points, the area

of the polygon is at least 3k
8

. Let P be a half-integral polygon with N interior lattice

points. Triangulate P into minimal triangles. Choose a triangle T such that at least

one minimal segment of T is on the boundary of P , and such that P\T is connected.

If T has exactly one boundary minimal segment, remove that minimal segment from

P . If T has two boundary minimal segments, remove these minimal segments and

the vertex the minimal segments share. In either case, the new polygon P ′ has area

1
8

less than that of P .

Continue this process until one of our removed triangles has an interior lattice

point as a vertex. Now remove all triangles that share this vertex; there will be at

least three, as seen in the proof of Lemma 3.9. If the remaining polygon is connected,

it has i − 1 interior lattice points and area at least 3(i−1)
8

. If not, we have several

half-integral polygons with a total of i− 1 interior lattice points between them. By

the induction hypothesis, the total area of these polygons is at least 3(i−1)
8

. Note

we decreased the area of P by at least 3
8
, and removed precisely one interior lattice

point. Thus P has area at least 3i
8

.

Lemma 3.11 shows that given any i, there exists a polygon with i interior lattice
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Figure 3.6: Proof of Lemma 3.9.

points and area 3i
8

.

Lemma 3.11. Let
(
x
y

)
∈ R2. Let M be the affine unimodular transformation given

by

M

(
x

y

)
=

 3 −1

−2 1


x
y

+

 1

−1

 (3.7)

and let T be the triangle with vertices
(
1
2
,−1

2

)
,
(
−1

2
, 0
)
,
(
0, 1

2

)
. Then

P =
i−1⋃
k=0

Mk(T ) (3.8)

is a polygon with i interior lattice points, 0 boundary lattice points and area 3i
8

, with

OP (t) = i

(
3

8
t2 +

5

8

)
.
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Proof. We first note that for any polygon Q, Mk(Q) is a polygon with the same

interior and boundary lattice-point counts and area. Further, the denominator of

each vertex of Q is fixed under M . Thus, we need to show P given by (3.8) is

connected and for all j 6= k, area
(
M j(T ) ∩Mk(T )

)
= 0.

For i = 1, we have P = T . See Figure 3.7 for i = 2.

Assume Lemma 3.11 is true for all j < i. In particular,

P ′ =
i−2⋃
k=0

Mk(T ) (3.9)

is connected, has i−1 interior lattice points and has area 3(i−1)
8

. Since M is unimodu-

lar, M(P ′) is connected, has i−1 lattice points and has area 3(i−1)
8

. The minimal seg-

ment e with endpoints
(
1
2
,−1

2

)
,
(
−1

2
, 0
)

is contained in T ∩M(P ′). If e 6= T ∩M(P ′),

then by the unimodularity of M , T ⊂ M(P ′). Note M
(
x
y

)
=
(

3x−y+1
−2x+y−1

)
. Thus for

any x ≥ 0, y ≤ 0, (1, 0) · M
(
x
y

)
≥ x and (0, 1) · M

(
x
y

)
≤ y. This implies that

(0, 1
2
) /∈ M(P ′); otherwise, some triangle M j(T ) equals T , which cannot happen.

Therefore, e = T ∩M(P ′). Therefore, the polygon T ∪M(P ′) has area 3i
8

, i interior

lattice points and no boundary lattice points.

Note that for M as above, M j(T ) ∩ Mk(T ) 6= ∅ if and only if j and k are

consecutive. Further, since T has no boundary lattice points, M j(T )∩M j+1(T ) has

no lattice points in its intersection; thus,

OMj(T )∩Mj+1(T )(t) = 0.
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Since M j(T ) ∩Mk(T ), where j 6= k, contains no boundary lattice points,

OP (t) =
i−1∑
j=0

M j(T ) = iOT (t) = i

(
3

8
t2 +

5

8

)
.

Figure 3.7: A half-integral polygon with two interior lattice points.

Lemma 3.11 allows us to construct a half-integral polygon with i interior lattice

points and area 3
8
i. We can use this lemma to generate half-integral polygons with

various interior and boundary lattice-point counts.

Theorem 3.12. Consider the polynomial

f(t) = i

(
3

8
t2 +

5

8

)
+ b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
(3.10)
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where k ≥ b− 3, and i, k, b ∈ Z≥0. Then there exists a half-integral polygon P such

that OP (t) = f(t), with i interior lattice points and b boundary lattice points.

Proof. Let f(t) be as in (3.10). By Lemma 3.11, the polygon

P ′ =
i−1⋃
k=0

Mk(T )

has i interior lattice points, 0 boundary lattice points and area 3i
8

(where T is the

triangle with vertices
(
1
2
− 1

2

)
,
(
−1

2
, 0
)
,
(
0, 1

2

)
and M is given by (3.7)). By Lemma

3.11,

OP ′(t) = i

(
3

8
t2 +

5

8

)
.

Let

T1 = conv

((
1

2
,−1

2

)
, (0, 1) ,

(
0,

1

2

))
T2 = conv

((
0,

1

2

)
,

(
−1

2
, 0

)
, (−1, 0)

)
T3 = M i+1

(
conv

((
−1

2
, 0

)
, (0, 0) ,

(
1

2
,−1

2

)))
.

For b = 1, 2, 3, let P (b) = P ′∪T1, P ′∪T1∪T2, P ′∪T1∪T2∪T3, respectively. The

intersection of Ti with P ′ contains no lattice points, and so

OP (b)(t) = OP ′(t) + b

(
1

8
t2 +

1

2
t+

3

8

)
.
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For b > 3, let

P (b) = (conv(T1, (0, b− 2))) ∪ P (3).

The resulting polygon P (b) has i interior lattice points and b bounday lattice

points. Further, we added 2(b− 3) nonempty minimal triangles to P (3). When the

intersection of any two of these triangles contains a boundary lattice point, the odd

constituent of the Ehrhart quasi-polynomial of that intersection is 1
2
t + 1

2
. There

are b − 3 places where two non-empty minimal triangles intersect such that the

intersection contains a boundary lattice point, and so

OP (b)(t) = i

(
3

8
t2 +

5

8

)
+ b

(
1

8
t2 +

1

2
t+

3

8

)
+ (b− 3)

(
1

8
t2 − 1

8

)
.

Let T4 = conv
(
(−1

2
, 1
2
), (−1

2
, 0), (0, 1

2
)
)
. Then

OP (b)∪T4
(t) = OP (b)(t)+

1

8
t2−1

8
= i

(
3

8
t2 +

5

8

)
+b

(
1

8
t2 +

1

2
t+

3

8

)
+(b−2)

(
1

8
t2 − 1

8

)

since P (b) ∩ T4 is a line segment with no boundary lattice points. For k > b− 2, let

P =

(
conv

(
−k − b− 3

2
,
1

2

)
, T4

)
∪ P (b).

By Lemma 3.5, the polygon Q = conv
((
−k−b−3

2
, 1
2

)
, T4
)

has Ehrhart quasi-

polynomial

OQ(t) = k

(
1

8
t2 − 1

8

)
,
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Figure 3.8: An half-integral polygon with two interior lattice points, four boundary lattice
points and area 11

8 .

since it consists of k empty triangles. Let P = Q ∪ P (b). Then

OP (t) = i

(
3

8
t2 +

5

8

)
+ b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
.

In Theorem 3.7, we showed that given a half-integral polygon P with no interior

lattice points, OP (t) was given by (3.6), where k ≥ b − 2. Further, given f(t) as

in (3.6), one could construct a half-integral polygon P containing no interior lattice

points such that f(t) = OP (t). If P has interior lattice points, however, this is no
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Figure 3.9: The final step in Theorem 3.12.

longer the case. Given f(t) as in (3.10), we can construct a half-integral polygon

P such that OP (t) = f(t). However, there may exist a polygon whose Ehrhart

quasi-polynomial is not given by (3.10).

Lemma 3.13. Let P be a half-integral polygon with interior lattice points. Let S

be a triangulation of P into minimal triangles, and let q be an interior lattice point

of P . Let S ′ = {T ∈ S : q ∈ T}. Then S ′ contains k ≥ 3 elements, and Q =
⋃

S′ T

has k boundary empty minimal segments.

Proof. Let P, S, q, S ′ and Q be as stated. By Lemma 3.9, S ′ has k ≥ 3 elements.

Since q is an interior lattice point, and since every triangle T containing q is in S ′,
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q is an interior lattice point of Q. Further, for any triangle T ∈ S ′, two minimal

segments of T are interior minimal segments. Thus, Q has k boundary empty

minimal segments.

Definition 3.5. Let P be a half-integral polygon with boundary lattice points, and

let S be a triangulation of P . Suppose e is an empty minimal segment in P . Call

e a sub-boundary empty minimal segment if there exists a boundary lattice point

q ∈ P such that conv(e, q) is a minimal triangle.

For each boundary lattice point in P , there must be at least one sub-boundary

empty minimal segment, since in any triangulation of P , each boundary lattice point

is contained in at least one non-empty minimal triangle.

Theorem 3.14. Let P be a half-integral polygon with i interior lattice points and b

boundary lattice points. Then

OP (t) = i

(
3

8
t2 +

5

8

)
+ b

(
1

8
t2 +

1

2
+

3

8

)
+ k

(
1

8
t2 − 1

8
t2
)

(3.11)

where k + i+ 2 ≥ b.

Proof. Let P be a half-integral polygon, and let S be a triangulation of P . Suppose

P has b boundary lattice points and i ≥ 2 interior lattice points. By Lemma 3.5,

OP (t) = i

(
3

8
t2 +

5

8

)
+ b

(
1

8
t2 +

1

2
+

3

8

)
+ k

(
1

8
t2 − 1

8
t2
)
,
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and so we need only show that the bound k + i+ 2 ≥ b holds.

For each interior lattice point qj in P , let Pj = {T ∈ S : qj ∈ Pj}. Let
aj
8

be the

area of Pj. Then by Lemma 3.5,

OPj
(t) =

(
3

8
t2 +

5

8

)
+ (aj − 3)

(
1

8
t2 − 1

8

)
.

Further, Pj contains aj empty minimal segments. Let Q =
⋃i

j=1 Pj. By unimod-

ularity, we can assume without loss of generality that Q is connected. We have

OQ(t) = i

(
3

8
t2 +

5

8

)
+

(
i∑

j=1

(aj − 3)

)(
1

8
t2 − 1

8

)
,

since Pi ∩ Pj is a line segment containing no lattice points.

Except for at most two, each basic polygon Pj shares at least two of its empty

minimal segments with another basic polygon. Thus Q contains at most i + 2 +∑i
j=1(aj − 3) sub-boundary empty minimal segments. By Lemma 3.6, each triangle

in S ′ adds one empty minimal segment to Q. Then S ′ contains at most |S ′| empty

minimal segments, and

OQ∪S′(t) = i

(
3

8
t2 +

5

8

)
+

(
i∑

j=1

(aj − 3) + |S ′|

)(
1

8
t2 − 1

8

)
.

For each boundary lattice point bj in P , let Rj = {T ∈ S : bj ∈ T}. Let
cj
8

be
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the area of Rj. By Lemma 3.5,

ORj
(t) =

1

8
t2 +

1

2
t+

3

8
+ (cj − 1)

(
1

8
t2 − 1

8

)
.

Rj is unimodulary equivalent to the union of one non-empty minimal triangle

and cj − 1 empty minimal triangles. By Lemma 3.6, these cj − 1 empty minimal

triangles add at most cj−1 sub-boundary empty minimal segments to Q∪S ′. Thus,

P has at most i+2+
∑i

j=1(aj−3)+
∑b

j=1(cj−1)+|S ′| sub-boundary empty minimal

segments, and

OP (t) = i

(
3

8
t2 +

5

8

)
+b

(
1

8
t2 +

1

2
+

3

8

)
+

(
i∑

j=1

(aj − 3) +
b∑

j=1

(cj − 1) + |S ′|

)(
1

8
t2 − 1

8

)
.

Let k =
∑i

j=1(aj − 3) +
∑b

j=1(cj − 1) + |S ′|. Let E be the set of sub-boundary

empty minimal segments in P . Then k + i+ 2 ≥ |E| ≥ b.

3.6 A Final Conjecture

For half-integral polygons with interior lattice points, we are not able to construct

all the half-integral polygons with Ehrhart quasi-polynomials that are given by The-

orem 3.14. We believe the bound given by Theorem 3.14 is not tight.

Conjecture 3.1. Let P be a polygon with i interior lattice points and b boundary
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lattice points. Then

OP (t) = i

(
3

8
t2 +

5

8

)
+ b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
,

where k ≥ b− 3.

Conjecture 3.1 tightens the bound on k, resulting in a one-to-one correspondence

between half-integral polygons that can be constructed and half-integral polygons

that are possible using Theorem 3.12. The remainder of this document will be

dedicated to providing the motivation behind Conjecture 3.1.

Lemma 3.15. Let P be a half-integral polygon with two interior lattice points and

area 5
4

such that

(T ∪M(T )) ⊂ P (3.12)

where T is the triangle with vertices (−1
2
, 0), (0, 1

2
), (1

2
,−1

2
) and M is given by (3.7).

Then P has at most three boundary lattice points.

Proof. Suppose T ∪M(T ) ⊂ P and P has area 5
4
. Here, T ∪M(T ) has four empty

boundary minimal segments. Suppose P has four boundary lattice points and area

5
4
. Then we can construct P by adding a minimal triangle to each empty boundary

minimal segments of T ∪ M(T ), where each of these triangles adds exactly one

boundary lattice point to T ∪M(T ).

Assume the minimal segment conv
(
(0, 1

2
), (1

2
,−1

2
)
)

is contained in a non-empty

minimal triangle T1. Then T1 has vertex set
{

(0, 1
2
), (1

2
,−1

2
), (a1,−2a1 + 1)

}
, where
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a1 is an integer. If a1 is positive, however, P is self-intersecting (Figure 3.10). Thus

a1 ≤ 0. (3.13)

Figure 3.10: Line L contains possible vertices for a half-integral triangle that contains
conv

(
(0, 12), (12 ,−

1
2)
)
.

If the minimal segment conv
(
(0, 1

2
), (−1

2
, 0)
)

is contained in a non-empty minimal

triangle T2, T2 has vertex set
{

(0, 1
2
), (−1

2
, 0), (a2, a2 + 1)

}
, where a2 is an integer.

If a2 ≥ 0, then P is self-intersecting or shares a lattice point with T1. If T2 ∩ T1

contains a lattice point, then P has at most three boundary lattice points (due to
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the bound on the area of P ) (Figure 3.11). Thus,

a2 ≤ −1. (3.14)

Figure 3.11: Line J contains possible vertices for a half-integral triangle that contains
conv

(
(0, 12), (−1

2 , 0)
)
.

If the minimal segment conv
(
M
(
(−1

2
, 0), (1

2
,−1

2
)
))

is contained in a non-empty

minimal triangle T3, T3 has vertex set
{

(−1
2
, 0), (3,−5

2
), (a3,−5

7
a3 − 3

7
)
}

, where a3

and −5
7
a3 − 3

7
are integers. If a3 ≤ −2, P is self-intersecting (Figure 3.12). Thus,

a3 ≥ 5. (3.15)
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Finally if the last minimal segment conv
(
M
(
(0, 1

2
), (1

2
,−1

2
)
))

is contained in a

non-empty minimal triangle T4, T4 has vertex set
{

(1
2
,−1

2
), (3,−5

2
), (a4,−4

5
a4)
}

. a4

must be a multiple of five; however, a4 ≤ 0 will cause P to be self-intersecting; if

a4 ≥ 5, P will be self-intersecting or T4 will intersect T3 at a line segment containing

a boundary lattice point (Figure 3.13). In either case, P has three boundary lattice

points. If we assume conv
(
(0, 1

2
), (1

2
,−1

2
)
)

is not contained in a non-empty triangle,

then T ∪M(T ) has only three empty mimimal segments. By Lemma 3.6, only three

triangles that add boundary lattice points to T ∪M(T ) may be added to T ∪M(T )

(by our bound on the area of P ), and so P cannot have more than three boundary

lattice points.

Figure 3.12: Line N contains possible vertices for a half-integral triangle that contains
conv

(
M
(
(−1

2 , 0), (12 ,−
1
2)
))

.
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Figure 3.13: Line O contains possible vertices for a half-integral triangle that contains
conv

(
M
(
(0, 12), (12 ,−

1
2)
))

. Note no vertices may be integral.

We can expand the argument from Lemma 3.15 to characterize a larger class of

half-integral polygons.

Lemma 3.16. Let P be a half-integral polygon with i interior lattice points and area

3
8
i+ 1

2
such that (

i−1⋃
k=0

Mk(T )

)
⊂ P, (3.16)
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where T is the triangle with vertices (−1
2
, 0), (0, 1

2
), (1

2
,−1

2
) and M is given by (3.7).

Then P has at most three boundary lattice points.

Proof. From Lemma 3.3, if P contains four boundary lattice points, any triangula-

tion of P must contain at least four non-empty minimal triangles, each containing

a boundary lattice point. Further, no two of these triangles may intersect at a line

segment containing a lattice point.

Suppose i = 1, P ⊃ T , and P has area 7
8
. By Lemma 3.6, since T has only three

empty boundary minimal segments, P can have at most three boundary lattice

points.

Figure 3.14: A polygon with area 3
4 and three boundary lattice points. Any polygon with

four boundary lattice points has area at least 1.
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Suppose T ∪M(T ) ⊂ P , P has area 5
4

and P has two interior lattice points.

Then by Lemma 3.15, P has at most three boundary lattice points.

Suppose i > 1, and suppose Lemma 3.16 holds for all 2 < j < i. Also suppose

that for all j < i, only the following can be sub-boundary empty minimal segments

(for i = 2 this was trivially true):

E1 =conv

((
0,

1

2

)
,

(
1

2
,−1

2

))
E2 = conv

((
0,

1

2

)
,

(
−1

2
, 0

))
E3 =conv

(
M j−1

((
−1

2
, 0

)
,

(
1

2
,−1

2

)))
E4 = conv

(
M j−1

((
0,

1

2

)
,

(
1

2
,−1

2

)))
.

Suppose P has area i3
8

+ 1
2
, and

i−1⋃
k=0

Mk(T ) ⊂ P.

Note

P ⊃ Q =
i−1⋃
k=1

Mk(T ) = M

(
i−2⋃
k=0

Mk(T )

)
.

By the induction hypothesis and unimodularity of M , if P ′ ⊃ Q and P ′ has

area 3
8
(i− 1) + 1

2
, P ′ can have at most three boundary lattice points. Further, if the

non-empty minimal triangles that contain these lattice points each share an minimal
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segment with Q, then these minimal segments are

E5 =conv

(
M

(
(
1

2
,−1

2
), (0,

1

2
)

))
E6 = conv

(
M

(
(0,

1

2
), (−1

2
, 0)

))
E7 =conv

(
M i−1

(
(−1

2
, 0), (

1

2
,−1

2
)

))
E8 = conv

(
M i−1

(
(
1

2
,−1

2
), (0,

1

2
)

))
.

For E5 to be a sub-boundary empty minimal segment, it must be contained

in conv
(
(1
2
, 1
2
), (3,−5

2
), (a5,−4

5
a5)
)
, where a5 ≤ 0 (otherwise, P ′ would be self-

intersecting). For E6 to be a sub-boundary empty minimal segment, it must be

contained in conv
(
(−1

2
, 0), (1

2
,−1

2
), (a6,−1

2
a6)
)
.

Note Q ∪ T ⊂ P . Thus, non-empty minimal triangles can only contain minimal

segments E1, E2, E7, E8. E6 can no longer be a sub-boundary empty minimal seg-

ment, and no other empty minimal segment can be a sub-boundary empty minimal

segment, less P become self-intersecting; this follows from our induction hypothesis,

since Q ⊂ P . We need only show that of these four minimal segments, no more

than three may be sub-boundary empty minimal segments.

Recall from Lemma 3.15 that if E1 and E2 were contained in minimal triangles

that add boundary lattice points to Q∪T , and we arrived at inequalities (3.13) and

(3.14), respectively. Also, E1 ⊂ T1 and E2 ⊂ T2, where T1, T2 are given by Lemma

3.15. Since these minimal segments appear again in Q ∪ T , the same inequalities

and set containments hold. Thus, suppose E7 is a sub-boundary empty minimal

segment. Then it is contained in M i−2(T3) (where T3 is given by Lemma 3.15). Two
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of the vertices of M i−2(T3) are vertices of E7. The third vertex q is on the line

M i−2(a3,−5
7
a3 − 3

7
). By the induction hypothesis, in P ′,

(1, 0)M i−2
(
a3,−

5

7
a3 −

3

7

)
≥ (1, 0)M i−2

(
3,−5

2

)
;

otherwise, M i−2(T3)∩M(T2) was non-empty, or they share an integer lattice point.

This implies there are no integer points on the line M i−2(a3,−5
7
a3− 3

7
) between a3 =

0 and where M i−2(a3,−5
7
a3 − 3

7
) intersects the line given by (a6,−1

2
a6). Since the

line given by (a6,−1
2
a6) has a more negative slope than the line given by (a2, a2 + 1)

(which contains a vertex of T2), then for M i−2(T3) ∈ P ,

(1, 0)M i−2
(
a3,−

5

7
a3 −

3

7

)
≥ (1, 0)M i−2

(
3,−5

2

)
.

Now we have that E1, E2, and E7 are each contained in distinct non-empty

minimal triangles. Further, M i−2(T3) ∈ P ,

(1, 0)M i−2
(
a3,−

5

7
a3 −

3

7

)
≥ (1, 0)M i−2

(
3,−5

2

)
.

By the induction hypothesis again, when this constraint on the x-coordinate of q

appeared for q ∈ P ′, E8 was not a sub-boundary empty minimal segment. Since

E7, E8 ⊂ P , then when E1, E2, E7 are each sub-boundary empty minimal segments,

E8 cannot be. Thus, P contains at most three sub-boundary non-empty minimal
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segments. By Lemma 3.6, for any half-integral polygon P with area i3
8

+ 1
2

such that

(3.16) holds, P has at most three boundary lattice points.

Lemma 3.16 has a second interpretation. Let

P =
i−1⋃
k=0

Mk(T )

for some i. Then Lemma 3.16 tells us we can add non-empty minimal triangles to

P at exactly four minimal segments. Further, we can add triangles to no more than

three of these minimal segments simultaneously.

This second interpretation finds a use in Lemma 3.17.

Lemma 3.17. Let P be a half-integral polygon with i interior lattice points and b

boundary lattice points such that (3.16) holds. Then

OP (t) = i

(
3

8
t2 +

5

8

)
+ b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
, (3.17)

where k ≥ b− 3.

Proof. Suppose P is a half-integral polygon with i interior lattice points, and b

boundary lattice points such that (3.16) holds. As in the proof of Theorem 3.7,

since we can triangulate P , we can construct P by adding half-integral triangles to

Q =
i−1⋃
k=0

Mk(T ).
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Q has i + 2 empty boundary minimal segments. Lemma 3.16 states that only

three of these are sub-boundary empty minimal segments. By Lemma 3.6, for each

additional boundary lattice point in P , we must add a sub-boundary empty minimal

segment. By Lemma 3.6, this is accomplished by adding a triangle that does not

add a boundary lattice point to Q.

By Lemma 3.5,

OP (t) = i

(
3

8
t2 +

5

8

)
+ b

(
1

8
t2 +

1

2
t+

3

8

)
+ k

(
1

8
t2 − 1

8

)
,

where k ≥ b− 3.

For the polygon in Lemma 3.17, the bound k ≥ b − 3 holds. It appears that

no matter how one arranges basic polygons and minimal triangles, one can only

decrease the number of sub-boundary empty minimal segments. This observation

inspires Conjecture 3.1.

Conjecture 3.2. Let P be a half-integral polygon with i interior lattice points. Then

P is unimodularly equivalent to a half-integral polygon containing

i−1⋃
j=0

M j(T ).

Conjecture 3.3. Let P and Q be two unimodularly equivalent half-integral polygons.

Let T be a minimal triangle such that P ∩T is a minimal segment. Then there exists
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some affine unimodular transformation M such that M(T )∩Q is a minimal segment.

Presently, there is no clear way to proceed in proving Conjectures 3.2 or 3.3,

but both imply Conjecture 3.1. Every polygon containing
⋃i−1

j=0M
j(T ) is described

by Lemma 3.17, and so Conjecture 3.1 follows directly from Conjecture 3.2. With

Conjecture 3.3, let P be a half-integral polygon that is unimodularly equivalent to

Q, where
⋃i−1

j=0M
j(T ) ⊂ Q. If there does not exist a minimal triangle T such that

T ∪ Q has one more lattice boundary point than Q, then there does not exist T ′

such that T ′∪P has one more lattice boundary point than P . Thus since Q satisfies

Lemma 3.17, P satisfies Conjecture 3.1.
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