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Abstract

Given d positive integers a1, a2, . . . , ad such that gcd(a1, a2, . . . , ad) = 1, the Frobenius coin-

exchange problem asks to find the largest number n that does not have a nonnegative integer

solution (x1, x2, . . . , xd) to the equation n = a1x1 + a2x2 + · · · + adxd. The generalized

Frobenius problem asks to find the largest number n that does not have more than s distinct

solutions to the above equation; this is the generalized Frobenius number. We prove that

the generalized Frobenius number grows asymptotically like (s(d − 1)! a1a2 · · · an)
1

d−1 . We

also find explicit bounds for the generalized Frobenius number in three specific cases.



v

Acknowledgments

I would like to thank my advisor, Matthias Beck, for introducing the Frobenius problem to

me, and for meeting with me nearly every week for two years. His wisdom has guided me

to a level of mathematical maturity I could not have imagined when I entered this program.

It is with his support that I consider myself a mathematician. I thank Federico Ardila and

Emily Clader for their helpful comments on this paper, and for their personal support of

my learning, development, and service inside and outside of class. I thank Kim Seashore for

the uncountable hours of wisdom that helped me make the most of my Master’s program,

through teaching, presenting, and living well. I also thank the entire BAMM! community

for their financial, professional, academic, and emotional support. I would like to thank

every member of the San Francisco State University mathematics department; every class,

meeting, event, and friendship has made my time here priceless. I thank my family for en-

couraging me to continue learning and pursuing math, even when the numbers disappeared.

I thank Andrea Padilla for always having an answer to my questions.

This work was supported, in part, by a grant from SFSU BAMM: NSF S-STEM #1930373.



vi

Table of Contents

Table of Contents vi

List of Figures vii

1 Introduction 1
1.1 McMotivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 4
2.1 The Frobenius number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 History of the Frobenius problem . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The generalized Frobenius number . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Quasi-polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Asymptotics of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Dedekind and Fourier-Dedekind sums . . . . . . . . . . . . . . . . . . . . . . 14

3 Generalized Frobenius numbers of products with many common factors 21

4 Generalized Frobenius number when a|lcm(b, c) 25

5 Generalized Frobenius numbers of pairwise coprime elements 34
5.1 Asymptotics of g∗s in terms of s . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Explicit bounds when A = {a, b, c} . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Explicit upper bounds when A = {a1, a2, . . . , ad} . . . . . . . . . . . . . . . . 43

6 Future Work 52

Bibliography 54



vii

List of Figures

1.1 The nugget selection at McDonald’s in the United Kingdom [21]. . . . . . . . . 1

2.1 The fractional part function y = {x} (above) and the sawtooth function y = ((x))
(below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The sets N,N+, and N− are subsets of the domain of pA(n). Respectively, we
represent them here as the dark gray part of pA(n), the darker shaded part of the
horizontal line y = s, and the lighter shaded part of the line y = s. In this case,
A = {6, 9, 20}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 The function
∣∣cot (πk

b

)∣∣d−1
, plotted from 0 to b. We estimate the finite sum∑b−1

k=1

∣∣cot (πk
b

)∣∣d−1
by using the lines connecting the four labeled points. . . . . 47



1

Chapter 1

Introduction

1.1 McMotivation

Let’s say that you’re throwing a 35th birthday party for your friend who loves chicken

nuggets. While looking at the menu (Figure 1.1), you see three options: a six-piece box, a

nine-piece box, and a twenty-piece “Sharebox.”

Figure 1.1: The nugget selection at McDonald’s in the United Kingdom [21].
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You notice that luckily, buying one of each box yields your friend’s age in nuggets:

6 + 9 + 20 = 35. So, you purchase one box of each size as a gift. The next year, you plan

to buy a similar gift. While studying the menu, you realize that you can order 36 nuggets

in three ways: 4 nine-pieces, 6 six-pieces, or 3 six-pieces and 2 nine-pieces. The following

year, when your friend turns 37, you run into a snag. No matter how you combine your

options, you find that it is impossible to buy exactly 37 nuggets. What is going on here?

What numbers of nuggets are possible to buy? When do you have multiple options? Will

there ever be a point when you can always buy your desired number of nuggets?

These questions are all aspects of what is known as the Frobenius problem, with study

going back to the 1800s. In this paper, given a set A, we obtain results on the size of the

generalized Frobenius number: the largest number that cannot be constructed in more than

s ways by adding elements of A. The above scenario exhibits the case A = {6, 9, 20}.

1.2 Organization

In Chapter 2, we begin by going deeper into the definitions, history, and classical results

of the Frobenius problem. We follow this by restating a generalization introduced by Beck

and Kifer, along with some key results of the generalized Frobenius problem. We then, for

the sake of completeness, include some preliminary results on quasi-polynomials, Dedekind

and Dedekind-Fourier sums, and function asymptotics.

The main result in Chapter 3 is Theorem 3.3. Given an initial set of coprime positive inte-
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gers a1, a2, . . . , ad, Theorem 3.3 gives an exact characterization of the generalized Frobenius

number of A when

A = {a1a2 · · · ad−1, a1a2 · · · ad−2ad, . . . , a2a3 · · · ad},

the collection of all products of d − 1 elements of A. This strengthens a theorem of Beck

and Kifer. Our proof has a combinatorial flavor.

The main result in Chapter 4 is Theorem 4.2, an upper bound on the generalized Frobe-

nius number of A = {a, b, c} where a|lcm(b, c). This is a more general form of the d = 3 case

in Chapter 3. The proof here is more technical, relying on coprimality in multiple ways.

In Chapter 5, the only restriction we place on the set A is for the constituent elements

to be pairwise coprime. We first prove Theorem 5.1, giving an asymptotic result on the

magnitude of the generalized Frobenius number. We then prove Theorem 5.2, giving a direct

bound on the specific case d = 3. Finally, we demonstrate a method to find an explicit upper

bound on the generalized Frobenius number for a set A of any size. Here, we take advantage

of the nature of the restricted partition function with an analytic perspective. Consequently,

this is the most technical chapter.

We conclude with future directions for research.
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Chapter 2

Preliminaries

We begin with some terminology. Let N = {0, 1, 2, 3, . . . } be the natural numbers in-

cluding zero. We refer to this set as the nonnegative integers, and the set N\{0} as the

positive integers. We call a set A = {a1, a2, . . . , ad} of positive integers coprime when

gcd(a1, a2, . . . , ad) = 1. Recall that gcd(a1, a2, . . . , ad) = gcd(a1, gcd(a2, . . . , ad)). We call a

set A = {a1, a2, . . . , ad} of positive integers pairwise coprime when gcd(ai, aj) = 1 for all

i ̸= j.

2.1 The Frobenius number

Let A = {a1, a2, . . . , ad} be a set of d positive integers. If, for some n ∈ N, we can find

x = (x1, x2, . . . , xd) ∈ Nd that solves

n = x1a1 + x2a2 + · · ·+ xdad,
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we call x a representation of n using the parts of A. For example, let a1 = 6, a2 = 9, and

a3 = 20. Our McMotivation above tells us that n = 35 has 1 representation, n = 36 has 3

representations, and n = 37 has 0 representations.

The Frobenius problem (or the Chicken McNugget problem1) asks which num-

bers have no representations, and specifically, which is the greatest. The following theorem

characterizes when such a number exists.

Theorem 2.1. Suppose that A = {a1, a2, . . . , ad} is a set of positive integers. Then there

exists a highest nonrepresentable nonnegative integer if and only if A is coprime.

Proof. Suppose gcd(a1, a2, . . . , ad) = 1. By Bézout’s lemma, there exists a representation

x ∈ Zd for n = 1. The entries xi of x may not be nonnegative. For each entry xi that is

negative, repeatedly add a1 to xi until it is positive. We now have a nonnegative integer

representation x′ for n = 1 + k1a1, with k1 being some positive integer. We may represent

any number n ≡ 1 mod a1 greater than 1 + k1a1 by increasing k1. Repeat this process

with 2x, 3x, . . . , a1x to get representations for 2 + k2a1, 3 + k3a1, . . . , a1 + ka1a1, and all

numbers greater than them in their respective equivalence classes. Since there are only

finitely many numbers less than i+ kia1 for each i, it follows that there is a unique maximal

nonrepresentable element.

Now suppose gcd(a1, a2, . . . , ad) = m ≥ 2. Then only multiples of m are representable,

so every number that is not a multiple of m cannot be represented. Therefore, there are

1A recent poll [19] shows that 2 out of 3 mathematicians prefer this latter name.
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infinitely many nonrepresentable integers, so there is not a highest nonrepresentable integer.

We call the greatest nonnegative integer that has no representations the Frobenius

number g(A). We also write g(a1, a2, . . . , ad), or just g when A is clear.

2.2 History of the Frobenius problem

Determining the Frobenius number when d = 2 is the simplest case, with a folkloric result

that inspired the further study for higher d.

Theorem 2.2 (Unknown). If a and b are coprime positive integers, then g(a, b) = ab−a−b.

The Frobenius problem and the Frobenius number are named after Ferdinand Georg

Frobenius. Frobenius popularized the Frobenius problem by occasionally bringing it up in

his lectures. Theorem 2.2 is often attributed to Frobenius, but it is unknown who first proved

the result. However, it is likely that James Joseph Sylvester knew about Theorem 2.2 when

he published the following result.

Theorem 2.3 (Sylvester [29]). If a and b are coprime positive integers, then exactly half of

the integers between 1 and g(a, b) + 1 = ab− a− b+ 1 are representable.

Not only does Sylvester’s result implicitly tell us about Theorem 2.2, it also answers

our question above about which numbers are representable at all. The proof given in [10]

actually gives us more: for i ∈ {1, 2, . . . , ab−1} such that i is not divisible by a or b, there is
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a correspondence that states that i is representable if and only if ab− i is nonrepresentable.

Since there are (a− 1)(b− 1) = ab− a− b+ 1 integers between 1 and ab not divisible by a

or b, Theorem 2.3 directly follows from the correspondence.

The beauty of Theorems 2.2 and 2.3 inspired research into g(a, b, c) and beyond. Unfor-

tunately, we have come up short. No closed form for g(a, b, c) has been found, and it may

not exist at all. Curtis [15] proved that there is no piecewise complex polynomial function

that can determine g(A), outside of the result of Theorem 2.2. However, there are many

algorithms for determining the Frobenius number in polynomial time; see Chapter 1 of [25].

It is of interest to note that each of these algorithms depend on d being fixed, as Ramı́rez-

Alfonśın [24] showed that varying d as a parameter will no longer admit a polynomial time

algorithm.

From a theoretical perspective, we have some identities to rely on to simplify our search.

A classic result by Brauer and Shockley says the following.

Theorem 2.4 (Brauer and Shockley [13]). Let A = {a1, a2, . . . , ad} be coprime. Let ri be

the least nonnegative integer congruent to i mod a1 that is representable. Then

g(a1, a2, . . . , ad) = max
0≤i≤a1−1

ri − a1.

This reduces the problem to searching for a1 special elements r0, r1, . . . , ra1−1 called the

Apéry numbers. Apéry [3] introduced this set of “reached values” originally in the context

of algebraic geometry.

The next result yields a way to “factor out” the elements of A, in a sense.
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Theorem 2.5 (Johnson [18]). Let A = {a1, a2, . . . , ad} be coprime. If gcd(a2, . . . , ad) = m,

then
g(a1, a2, . . . , ad) = mg

(
a1,

a2
m
, . . . ,

ad
m

)
+ a1(m− 1).

This greatly simplifies calculations when the elements of A have many common factors.

We will remark on a generalization to this theorem in the next section.

Seeing as a simple closed-form formula for g(A) in general remains out of our grasp, much

research has been done when different restrictions are imposed on A. For example, Brauer

found the Frobenius number of d consecutive elements.

Theorem 2.6 (Brauer [12]). Let a be a positive integer. Then

g(a, a+ 1, . . . , a+ d− 1) = a

(⌊
a− 2

d− 1

⌋
+ 1

)
− 1.

Roberts later found a generalization of Brauer’s result for general arithmetic progressions.

Theorem 2.7 (Roberts [26]). Let a, d, k be positive integers such that gcd(a, d) = 1. Then

g(a, a+ k, . . . , a+ dk) = a

(⌊
a− 2

d

⌋
+ 1

)
+ (k − 1)(a− 1)− 1.

Robles-Pérez and Rosales determined the Frobenius numbers of sequences of consecutive

triangular numbers Tn =
(
n+1
2

)
and tetrahedral numbers THn =

(
n+2
3

)
, viewing them as

different generalizations of Brauer’s result.

Theorem 2.8 (Robles-Pérez and Rosales [27]). Let n be a positive integer. Then

g(Tn, Tn+1, Tn+2) =


3n3+6n2−3n−10

4
if n = 2k + 1,

3n3+9n2+6n−4
4

if n = 2k,
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and

g(THn, THn+1, THn+2, THn+3)

=



n−3
3
THn+1 + nTHn+2 +

n
2
THn+3 − THn if n = 6k,

(n− 1)THn+1 +
n−1
2
THn+2 +

n−1
3
THn+3 − THn if n = 6k + 1,

(n− 1)THn+1 +
n−2
3
THn+2 +

n
2
THn+3 − THn if n = 6k + 2,

n−3
3
THn+1 +

n−1
2
THn+2 + (n+ 1)THn+3 − THn if n = 6k + 3,

n+2
3
THn+2 +

n+2
2
THn+1 + (n+ 2)THn − THn+3 if n = 6k + 4,

(n+ 4)THn+2 +
n+1
3
THn+1 +

n+1
2
THn − THn+3 if n = 6k + 5.

The introduction of [27] references many other works that determine the Frobenius num-

ber with certain restrictions imposed on A.

2.3 The generalized Frobenius number

As we have seen thus far, the Frobenius problem is incredibly deep. But we remark that

it does not concern itself with multiple representations of integers. Instead, the Frobenius

problem is only interested in when numbers have no representations at all. We take a

step towards our desired generalization by first counting the number of representations: the

restricted partition function pA(n) counts the number of representations of n that use

only the elements of the set A as parts. For example, recalling the values found in our
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McMotivation,

p{6,9,20}(35) = 1, p{6,9,20}(36) = 3, p{6,9,20}(37) = 0.

We now can define a generalization of the classical Frobenius number. For s ∈ N, the

generalized Frobenius number g∗s(A) of a coprime set A is the greatest nonnegative

integer that has s or fewer2 representations using the parts of A. In other words,

g∗s(A) = max{n ∈ N : pA(n) ≤ s}.

As above, we may also write g∗s(a1, a2, . . . , ad), or g
∗
s when A is clear. Note that g(A) = g∗0(A).

We desire analogues of results about g for g∗s . One can find analogues to Theorems 2.2, 2.3,

2.4, and 2.5 in [8]. Below we will use their generalization of Theorem 2.5 many times, so we

restate it here.

Theorem 2.9 (Beck and Kifer [8]). Let A = {a1, a2, . . . , ad} be coprime. If

gcd(a2, a3, . . . , ad) = m,

then

g∗s(a1, a2, . . . , ad) = mg∗s

(
a1,

a2
m
, . . . ,

ad
m

)
+ a1(m− 1).

2The star in this notation reminds us that other authors have defined the “generalized Frobenius num-
ber” to be the greatest number that has exactly s representations, following the work of Beck and Robins
[9] in 2002. Beck and Kifer [8] in 2010 introduced the g∗s generalization after realizing that s or fewer
representations resulted in much more natural results than those following the generalization of Beck and
Robins.
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2.4 Quasi-polynomials

In order to understand the generalized Frobenius number better, we need to learn more

about the restricted partition function. How does it behave? How does it grow? How

“strange” is it?

It turns out that for any set A, the restricted partition function pA(n) is a quasi-

polynomial. A quasi-polynomial q(n) is function on the integers that has the form

q(n) = qd(n)n
d + qd−1(n)n

d−1 + · · ·+ q1(n)n+ q0(n),

where qi(n) are periodic functions on the integers satisfying qi(n + ki) = qi(n) for some

ki ∈ N. Call P = lcm(k0, k1, . . . , kd) the period of q(n). An equivalent way of defin-

ing a quasi-polynomial is by defining P − 1 constituent polynomials pi(n), and setting

q(n) = pi(n) when n ≡ i mod P . For example, we now see that g(Tn, Tn+1, Tn+2) and

g(THn, THn+1, THn+2, THn+3) are quasi-polynomials in n.

In order to investigate the quasi-polynomial behavior of pA(n), we define the following

functions. The fractional part function {x} is given by {x} = x− ⌊x⌋, where ⌊x⌋ is the

greatest integer less than or equal to x. The sawtooth function ((x)) is given by

((x)) =


{x} − 1

2
, if x /∈ Z,

0, if x ∈ Z.

Since {x} and ((x)) are themselves periodic (see Figure 2.1), they are trivially quasi-

polynomials. They will assist in our construction of more complex quasi-polynomials. We



CHAPTER 2. PRELIMINARIES 12

Figure 2.1: The fractional part function y = {x} (above) and the sawtooth function y = ((x))
(below).

now state a celebrated theorem giving our first example of a concrete formula of a restricted

partition function.

Theorem 2.10 (Barlow–Popoviciu formula [5, 22]). If a and b are coprime positive integers,

then

p{a,b}(n) =
n

ab
−
{
b−1n

a

}
−
{
a−1n

b

}
+ 1,

where b−1b ≡ 1 mod a and a−1a ≡ 1 mod b.

A proof using the machinery of generating functions can be found in Chapter 1 of [10].

It will be convenient for our purposes to decompose a quasi-polynomial q(n) into a “poly-

nomial part” A(n) and a “quasi part” B(n), such that q(n) = A(n) + B(n). However, sub-
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tracting any polynomial from B(n) and adding it to A(n) will yield a different decomposition,

so we need to work a bit harder to make our decomposition well-defined.

For a quasi-polynomial q(n) with period P , we define the periodic part Quasi(n) of

q(n) to be the quasi-polynomial

Quasi(n) = qd(n)n
d + qd−1(n)n

d−1 + · · ·+ q1(n)n+ q0(n)

that satisfies
∑P

n=1 qi(n) = 0 for all 0 ≤ i ≤ d. We then define the polynomial part Poly(n)

of q(n) to be

Poly(n) = q(n)−Quasi(n).

2.5 Asymptotics of a function

Owing to the difficulty of the generalized Frobenius problem, and the quasi-polynomial

nature of the restricted partition function, we find it necessary at times to consider the

growth rate at a larger scale. The concept of asymptotics of a function f(n) is a common

one in analytic number theory; we take a step back and estimate the average growth rate as

n goes to infinity. In this sense, n2 grows faster than log n, but grows at roughly the same

rate as n2 + n. Two functions f(n) and g(n) are hence considered to be of the same order

if we have

lim
n→∞

f(n)

g(n)
= 1.

We also denote this as f ∼ g.
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Here we state two theorems having to do with functions being of the same order. We

will use these in Chapter 5.

Theorem 2.11 (Entringer [16]). If f(x) → ∞, f(x) ∼ g(x) and h(x) ∼ f−1(x) as x → ∞,

and if g−1(x) exists, h(x) is monotonic and h′(x)
h(x)

= O( 1
x
) for all sufficiently large x, then

h(x) ∼ g−1(x) and hence f−1(x) ∼ g−1(x) as x → ∞.

Theorem 2.12 (Schur [28]). Let A = {a1, a2, . . . , ad} be coprime. Then as n → ∞,

pA(n) ∼
1

(d− 1)! a1a2 · · · ad
nd−1.

In other words, PolyA(n) is a degree (d− 1) polynomial with leading term shown above.

2.6 Dedekind and Fourier-Dedekind sums

We now look at a class of sums that will determine the quasi-polynomial structure of the

restricted partition function for certain sets A. The Dedekind sum s(a, b) is given by the

following, for coprime positive integers a and b:

s(a, b) =
b−1∑
k=0

((
ka

b

))((
k

b

))
.

The Dedekind sum has deep connections throughout number theory. The sum was initially

found as a consequence of the behavior of Dedekind’s eta function η(τ), making a link to the

study of modular forms in analytic number theory. Additionally, we will state an elegant

reciprocity theorem for the Dedekind sum below; this reciprocity is actually equivalent to

the law of quadratic reciprocity.
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Proposition 2.13. Let a and b be coprime positive integers. Then

s(a, b) = s(a mod b, b).

Proposition 2.14. Let k be a positive integer. Then

s(1, k) =
(k − 1)(k − 2)

12k
.

Proposition 2.15 (Dedekind reciprocity). Let a and b be coprime positive integers. Then

s(a, b) + s(b, a) =
1

12

(
a

b
+

b

a
+

1

ab

)
− 1

4
.

For proofs of the above propositions, and further information on the Dedekind sum, see

[4, 10, 23].

Using the machinery of discrete Fourier analysis, we now wish to generalize the Dedekind

sum. Discrete Fourier analysis allows us to express periodic functions with period b in a new

way: as a degree b polynomial in the bth complex root of unity ξb := e
2πi
b .

Theorem 2.16. Let a(n) be any periodic function on Z, with period b. Then we have the

following discrete Fourier series expansion of a(n):

a(n) =
b−1∑
k=0

â(k)ξnkb ,

where

â(n) =
1

b

b−1∑
k=0

a(k)

ξnkb
.

For example, [10] shows that the sawtooth function (as a function of n ∈ Z) is given by
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the following discrete Fourier series expansion:

((n
b

))
=

i

2b

b−1∑
k=1

cot

(
πk

b

)
ξnkb .

We can then immediately use this to restate the classical Dedekind sum:

s(a, b) =
1

4b

b−1∑
k=1

cot

(
πk

b

)
cot

(
πak

b

)
.

It turns out3 that finite sums of cotangents of this form may be rewritten as a finite sum of

the form

b−1∑
k=1

1

(1− ξa1kb ) · · · (1− ξadkb )
ξnkb , (∗)

plus some error term we may compute. We will see a derivation of this fact later in Chapter

5. The consequences of this derivation will require the use of Hölder’s inequality in order

to handle the product structure these sums have. We state a generalized version of the

inequality here for convenience.

Theorem 2.17 (Hölder’s Generalized Inequality [14]). Let p, q1, q2, . . . , qn ∈ (0,∞] such that

1

p
=

1

q1
+

1

q2
+ · · ·+ 1

qn
.

Then for all measurable complex-valued functions f1, f2, . . . , fn we have∥∥∥∥∥
n∏

i=1

fi

∥∥∥∥∥
p

≤
n∏

i=1

∥fi∥qi .

3Here we will make major simplifications to this fascinating field, as its nuances end up being wiped out
by our estimation techniques in later chapters. For more details on the application of discrete Fourier analysis
to the Frobenius problem, see Chapter 7 of [10]. For a deep dive into the topic, see Terras’ monograph [32].
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In particular, we will use the norm∥∥∥f(·)∥∥∥
p
= p

√√√√ c−1∑
k=1

|f(k)|p

for any p > 0.

For now, we take the discrete Fourier series seen in (∗) as motivation for a generalization

of the Dedekind sum s(a, b). We define the Fourier-Dedekind sum sn(a1, a2, . . . , ad; b) to

be the following discrete Fourier series:

sn(a1, a2, . . . , ad; b) =
1

b

b−1∑
k=1

1

(1− ξa1kb )(1− ξa2kb ) · · · (1− ξadkb )
ξnkb .

Later we will see how this generalizes the classical Dedekind sum. For now, we remark that

this sum easily falls out of the generating function of a restricted partition function (again, see

[10] for details). This derivation leads to the following theorem, allowing us precious insight

into an entire class of restricted partition functions (and therefore, generalized Frobenius

numbers).

Theorem 2.18 (Beck, Diaz, and Robins [6]). Let A = {a1, a2, . . . , ad} be pairwise coprime.

Then the restricted partition function pA(n) for the set A is a quasi-polynomial with period

lcm(a1, a2, . . . , ad), and the periodic part Quasi(n) := QuasiA(n) is given by the sum

s−n(a2, a3, . . . , ad; a1) + s−n(a1, a3, . . . , ad; a2) + · · ·+ s−n(a1, a2, . . . , ad−1; ad);

in particular, pA(n) is only periodic in its constant term.

An immediate corollary of the above theorem is that QuasiA(n) is bounded by some

real number B ≥ 0, since QuasiA(n) = Quasi(n) = q0(n) takes on a finite number of
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values. We note that this does not necessarily happen for some term of the form qi(n)n
i in

a generic quasi-polynomial. We now take advantage of the bounded nature of QuasiA(n) in

the following important lemma.

Lemma 2.19 (Approximation Lemma). Let A = {a1, a2, . . . , ad} be pairwise coprime. If

the restricted partition function pA(n) is given by PolyA(n) + QuasiA(n) as above, then the

generalized Frobenius number g∗s(A) is bounded above and below by the greatest roots of the

polynomials PolyA(n)−B− s and PolyA(n)+B− s, respectively, where B is a bound on the

modulus of QuasiA(n).

Proof. By definition, the generalized Frobenius number of a set A is the largest nonnegative

integer n such that pA(n) is less than or equal to s. Define N to be the set of solutions in

n ∈ N to the inequality pA(n) ≤ s, so that g∗s(A) = maxN . By Theorem 2.18, we know

that for A pairwise coprime pA(n) is equal to a polynomial PolyA(n) plus a periodic function

QuasiA(n) that satisfies QuasiA(n) = QuasiA(n+ lcm(a1, a2, . . . , ad)). Since QuasiA(n) takes

on finite values, there exists some B ≥ 0 such that |QuasiA(n)|≤ B for all n ∈ N. Therefore,

we have the polynomial approximations PolyA(n)−B and PolyA(n) +B that satisfy

PolyA(n)−B ≤ pA(n) ≤ PolyA(n) +B

for all n ∈ N. We define approximations of the set N corresponding to these polynomials:

N+ = {n ∈ N : PolyA(n) +B ≤ s} and N− = {n ∈ N : PolyA(n)−B ≤ s}.

We know that N− will be nonempty since the generalized Frobenius number exists. N+ may
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Figure 2.2: The sets N,N+, and N− are subsets of the domain of pA(n). Respectively, we
represent them here as the dark gray part of pA(n), the darker shaded part of the horizontal
line y = s, and the lighter shaded part of the line y = s. In this case, A = {6, 9, 20}.

be empty, in which case, define N+ = {0}. Theorem 2.12 tells us that PolyA(n) is increasing,

and thus we see that N+ ⊂ N ⊂ N−. Hence,

maxN+ ≤ maxN ≤ maxN−.

Obtaining maxN+ or maxN− will give us lower and upper bounds on g∗s(A) respectively.

Since PolyA(n) + B − s is continuous on R, maxN+ is precisely the maximum root of

PolyA(n) +B − s.

By a similar argument, maxN− is the maximum root of PolyA(n)−B − s.

We may interpret Lemma 2.19 and its proof graphically; see Figure 2.2. We know that

the restricted partition function pA(n) is a quasi-polynomial, and moreover, the only periodic

part of pA(n) is the constant term. Thus, y = pA(n) appears graphically as a jagged line,
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roughly following the path of a polynomial. We note that pA(n) is only defined on N, but

we draw it as a continuous function in Figure 2.2 for ease of viewing.

The generalized Frobenius number g∗s(A) shows up in Figure 2.2 as (the horizontal coor-

dinate of) the dot to the right, once we plot y = s as the horizontal dotted line. We have

darkened the set N on the graph of pA(n). Thus, g∗s(A) is the rightmost highlighted value

of N . We see in the figure that N−\N+ contains g∗s(A).
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Chapter 3

Generalized Frobenius numbers of

products with many common factors

One prolific author on the Frobenius problem is Amitabha Tripathi, who in [33] proved

the following result about a certain family of products.

Theorem 3.1 (Tripathi). Let a1, a2, . . . , ad be positive integers with product Π. Let Ai =
Π
ai

for 1 ≤ i ≤ d. Let Σ = A1 + A2 + · · ·+ Ad. If a1, a2 . . . , ad are pairwise coprime, then

g(A1, A2, . . . , Ad) = Π(d− 1)− Σ.

For the remainder of this section, we adopt the set of conditions in the first three sentences

of the above theorem. Beck and Kifer [8] proved the following for the generalized Frobenius

number.

Theorem 3.2 (Beck and Kifer [8]). Suppose the same conditions as above hold. If we have
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that a1, a2 . . . , ad are pairwise coprime, then

g∗s(A1, A2, . . . , Ad) = Π(d+ t)− Σ,

where t ≥ 0 is the unique integer that satisfies(
d+ t− 1

d− 1

)
≤ s <

(
d+ t

d− 1

)
.

In this chapter, we strengthen this theorem.

Theorem 3.3. Suppose the same conditions as above hold. If gcd(a1, a2, . . . , ad) = 1, then

g∗s(A1, A2 . . . , Ad) = Π(d+ t)− Σ,

where t ≥ −1 is the unique integer that satisfies(
d+ t− 1

d− 1

)
≤ s <

(
d+ t

d− 1

)
.

We remark that this is quite an extreme case of the behavior of g∗s . As s varies, the

integer t and therefore g∗s may remain constant for arbitrarily long stretches of increasing s,

provided s is sufficiently large.

The proof of Theorem 3.3 involves using Theorem 2.9 repeatedly to “factor out” all of

the common factors for each collection of d−1 parameters. To investigate this reduced case,

we look to the restricted partition function.

Proposition 3.4. Let A be the multiset consisting of 1 with multiplicity d. Then

pA(n) =

(
n+ d− 1

d− 1

)
.
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Proof. We wish to count the number of distinct solutions (x1, x2, . . . , xd) ∈ Nd to

n = x1 + x2 + · · ·+ xd.

This is the combinatorial situation of placing n indistinguishable balls into d distinct boxes.

As such, there are
(
n+d−1
d−1

)
ways to do this.

Proposition 3.5. Let A be the multiset consisting of 1 with multiplicity d. Then g∗s(A) = t,

where t ≥ −1 is the unique integer that satisfies

(
d− 1 + t

d− 1

)
≤ s <

(
d+ t

d− 1

)
.

Proof. For n an integer greater than or equal to −1, the restricted partition function pA(n) =(
n+d−1
d−1

)
increases as n increases. Therefore, for a given s ≥ 0 there exists some unique t ≥ −1

such that (
d− 1 + t

d− 1

)
≤ s <

(
d+ t

d− 1

)
.

By definition of g∗s(A), we see t is the maximum value that solves pA(t) ≤ s.

Proof of Theorem 3.3. We use Theorem 2.9 to “factor out” each ai one by one. We start

with a1:

g∗s(A1, . . . , Ad) = g∗s

(
Π

a1
,
Π

a2
,
Π

a3
, . . . ,

Π

ad

)
= a1 g

∗
s

(
Π

a1
,

Π

a1a2
,

Π

a1a3
, . . . ,

Π

a1ad

)
+

Π

a1
(a1 − 1)

= a1 g
∗
s

(
Π

a1
,

Π

a1a2
,

Π

a1a3
, . . . ,

Π

a1ad

)
+Π− A1.
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We now repeat for a2:

g∗s(A1, . . . , Ad) = a1

[
a2 g

∗
s

(
Π

a1a2
,

Π

a1a2
,

Π

a1a2a3
, . . . ,

Π

a1a2ad

)
+

Π

a1a2
(a2 − 1)

]
+Π− A1

= a1a2 g
∗
s

(
Π

a1a2
,

Π

a1a2
,

Π

a1a2a3
, . . . ,

Π

a1a2ad

)
+Π− A2 +Π− A1.

We notice a pattern of each subsequent step multiplying the first term by ai, then adding Π

and subtracting Ai. We continue repeating for each common factor ai, until we reach ad:

g∗s(A1, . . . , Ad)

= a1 · · · ad−1 g
∗
s

(
Π

a1 · · · ad−1

,
Π

a1 · · · ad−1

, . . . ,
Π

a1 · · · ad−1ad

)
+Π− Ad−1 + · · ·+Π− A1

= a1 · · · ad−1

[
ad g

∗
s

(
Π

a1 · · · ad
,

Π

a1 · · · ad
, . . . ,

Π

a1 · · · ad

)
+

Π

a1 · · · ad
(ad − 1)

]
+Π− Ad−1 + · · ·+Π− A1

= Π g∗s(1, 1, . . . , 1) + Π− Ad +Π− Ad−1 + · · ·+Π− A1

= Π g∗s(1, 1, . . . , 1) + Πd− Σ.

We now apply Proposition 3.5. Let t ≥ −1 be the unique integer that satisfies

(
d− 1 + t

d− 1

)
≤ s <

(
d+ t

d− 1

)
.

Therefore g∗s(A1, . . . , Ad) = Π g∗s(1, 1, . . . , 1) + Πd− Σ = Π(d+ t)− Σ.
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Chapter 4

Generalized Frobenius number when

a|lcm(b, c)

Another paper of Tripathi [34] generalizes Theorem 3.1 in the case when d = 3. That

is, if A1 = a2a3, A2 = a1a3, and A3 = a1a2, where a1, a2 and a3 are pairwise coprime, then

A1|lcm(A2, A3). This restriction on A using the least common multiple yields the following

remarkable formula for the classical Frobenius number.

Theorem 4.1 (Tripathi). Let A = {a, b, c}, where gcd(a, b, c) = 1 and a|lcm(b, c). Then

g(a, b, c) = lcm(a, b) + lcm(a, c)− a− b− c.

Using similar methods to the ones we used in Chapter 3, we obtain the following bound

on the generalized Frobenius number in this situation.
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Theorem 4.2. Suppose gcd(a, b, c) = 1, and a|lcm(b, c). Then

g∗s(a, b, c) ≤
[
1

4
a2 +

1

2
a lcm(a, b) +

1

2
a lcm(a, c) +

1

4
lcm(a, b)2 +

1

4
lcm(a, c)2 +

1

4
bc lcm(a, b)

+
1

4
bc lcm(a, c) + 2abcs

] 1
2

+ bc+
1

2
lcm(a, b) +

1

2
lcm(a, c)− 3

2
a− b− c,

and a similar lower bound holds.

By fixing a, b, and c, we obtain the following corollary describing the asymptotic behavior

of g∗s .

Corollary 4.3. Suppose gcd(a, b, c) = 1, and a|lcm(b, c). Then

g∗s(a, b, c) ∼
√
2abcs.

We prove Theorem 4.2 by reframing the condition of a|lcm(b, c) in a different way. Taking

inspiration from Chapter 3, we find that we can rewrite A = {a, b, c} as a set of products

instead.

Lemma 4.4 (Tripathi [34]). Suppose a, b, c are positive integers, with gcd(a, b, c) = 1. Let

β = gcd(a, b) and γ = gcd(a, c). If a|lcm(b, c), then a = βγ. Moreover, gcd(β, γ) = 1.

Therefore, we may reduce finding g∗s(a, b, c) when a|lcm(b, c) and gcd(a, b, c) = 1 to

finding g∗s(βγ, βm, γn) with a = βγ, b
β
= m, and c

γ
= n. So, if we are able to determine the

generalized Frobenius number g∗s(1,m, n) then the proof of Theorem 4.2 follows a similar

argument to the proof of Theorem 3.3 in Chapter 3 by using Theorem 2.9 twice. We now

claim a bound on this reduced generalized Frobenius number.
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Proposition 4.5. We have

g∗s(1, a, b) ≤ ab

⌊√
1 + 2a+ 2b+ a2 + b2 + a2b+ ab2 + 8abs− 1− a− b

2ab

⌋
+ ab− 1.

Assuming this claim, we now prove Theorem 4.2.

Proof of Theorem 4.2. Let a|lcm(b, c). Set β = gcd(a, b) and γ = gcd(a, c). Using Proposi-

tion 4.5, Lemma 2.5, and Lemma 4.4, we obtain

g∗s(a, b, c) = β g∗s

(
γ,

b

β
, c

)
+ c(β − 1)

= β

(
γ g∗s

(
1,

b

β
,
c

γ

)
+

b

β
(γ − 1)

)
+ c(β − 1)

= a g∗s

(
1,

b

β
,
c

γ

)
+ bγ − b+ cβ − c

≤ a

bc

a


√

1 + 2b
β
+ 2c

γ
+ b2

β2 +
c2

γ2 +
b2c
βa

+ bc2

aγ
+ 8bcs

a
− 1− b

β
− c

γ

2bc
a

+
bc

a
− 1


+ bγ − b+ cβ − c

= bc

a
√

1 + 2b
β
+ 2c

γ
+ b2

β2 +
c2

γ2 +
b2c
βa

+ bc2

aγ
+ 8bcs

a
− a− bγ − cβ

2bc

+ bc− a

+ bγ − b+ cβ − c

= bc

⌊√
a2 + 2abγ + 2acβ + b2γ2 + c2β2 + b2cγ + bc2β + 8abcs− a− bγ − cβ

2bc

⌋

+ bc− a+ bγ − b+ cβ − c.

We finish by using the identities bγ = b a
β
= ab

gcd(a,b)
= lcm(a, b) and cβ = lcm(a, c) to obtain
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the estimation

g∗s(a, b, c) ≤ bc

⌊
1

2bc
(a2 + 2a lcm(a, b) + 2a lcm(a, c) + lcm(a, b)2 + lcm(a, c)2 + bc lcm(a, b)

+bc lcm(a, c) + 8abcs)
1
2 +

1

2bc
(−a− lcm(a, b)− lcm(a, c))

⌋
+ bc+ lcm(a, b)

+ lcm(a, c)− a− b− c

≤ 1

2
(a2 + 2a lcm(a, b) + 2a lcm(a, c) + lcm(a, b)2 + lcm(a, c)2 + bc lcm(a, b)

+ bc lcm(a, c) + 8abcs)
1
2 +

1

2
(−a− lcm(a, b)− lcm(a, c)) + bc+ lcm(a, b)

+ lcm(a, c)− a− b− c

=
1

2
(a2 + 2a lcm(a, b) + 2a lcm(a, c) + lcm(a, b)2 + lcm(a, c)2 + bc lcm(a, b)

+ bc lcm(a, c) + 8abcs)
1
2 + bc+

1

2
lcm(a, b) +

1

2
lcm(a, c)− 3

2
a− b− c

≤
[
1

4
a2 +

1

2
a lcm(a, b) +

1

2
a lcm(a, c) +

1

4
lcm(a, b)2 +

1

4
lcm(a, c)2 +

1

4
bc lcm(a, b)

+
1

4
bc lcm(a, c) + 2abcs

] 1
2

+ bc+
1

2
lcm(a, b) +

1

2
lcm(a, c)− 3

2
a− b− c.

Now let us prove the claim of Proposition 4.5. The arguments used here will act as a

warmup for those seen in Chapter 5. We begin with a direct combinatorial proof.

Proposition 4.6. Let A be a set that does not contain 1. Then

pA∪{1}(n) =
n∑

i=0

pA(i).

Proof. Any representation of an integer between 0 and n using only the elements of A can be

made into a representation of n by adding an appropriate number of 1’s. Any representation
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of n using the elements of A∪{1} can be made into a representation of some integer between

0 and n using only the elements of A by removing the 1’s.

Proposition 4.7. Let a and b be coprime positive integers. Then

n(n+ 1)

2ab
+

⌊
n
a

⌋
+
⌊
n
b

⌋
2

− a

8
− b

8
+

1

4
≤ p{1,a,b}(n).

Proof. We first use Proposition 4.6 to reduce the number of parts we must work with:

p{1,a,b}(n) =
n∑

i=0

p{a,b}(i).

We then use Theorem 2.10 to determine p{a,b}(i) explicitly. Recall that we define b−1 to be

the inverse of b mod a; that is, b−1b ≡ 1 mod a. We thus have

n∑
i=0

p{a,b}(i) =
n∑

i=0

[
i

ab
−
{
b−1i

a

}
−
{
a−1i

b

}
+ 1

]

=
n∑

i=0

[
i

ab
−
({

b−1i

a

}
− 1

2

)
−
({

a−1i

b

}
− 1

2

)]

=
n∑

i=0

i

ab
−

n∑
i=0

((
b−1i

a

))
+
∑

0≤i≤n
b|a−1i

1

2
−

n∑
i=0

((
a−1i

b

))
+
∑

0≤i≤n
a|b−1i

1

2
.

Since a and b are coprime, a|b−1i implies a|b−1bi, and hence a|i. We also note that the

sawtooth function is periodic, with period a, and that the values attained in each period

are exactly the multiples of 1
a
between −0.5 and 0.5. Therefore, since the multiples of 1

a
are

symmetric for any a − 1 consecutive terms of the sequence
((

b−1i
a

))
, their sum vanishes.

Noting that a
⌊
n
a

⌋
is the largest multiple of a less than or equal to n (since n

a
≥
⌊
n
a

⌋
), we
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obtain

p{1,a,b}(n) =
n∑

i=0

i

ab
−

n∑
i=0

((
b−1i

a

))
−

n∑
i=0

((
a−1i

b

))
+
∑

0≤i≤n
b|a−1i

1

2
+
∑

0≤i≤n
a|b−1i

1

2

=
n∑

i=0

i

ab
−

a⌊n
a⌋−1∑
i=0

((
b−1i

a

))
−

n∑
i=a⌊n

a⌋

((
b−1i

a

))
−

b⌊n
b ⌋−1∑
i=0

((
a−1i

b

))

−
n∑

i=b⌊n
b ⌋

((
a−1i

b

))
+
∑

0≤i≤n
b|i

1

2
+
∑

0≤i≤n
a|i

1

2

=
n∑

i=0

i

ab
−

n∑
i=a⌊n

a⌋

((
b−1i

a

))
−

n∑
i=b⌊n

b ⌋

((
a−1i

b

))
+

∑
0≤i≤n/a

1

2
+

∑
0≤i≤n/b

1

2

=
n(n+ 1)

2ab
+

⌊
n
a

⌋
+
⌊
n
b

⌋
2

−
n∑

i=a⌊n
a⌋

((
b−1i

a

))
−

n∑
i=b⌊n

b ⌋

((
a−1i

b

))
.

Let us focus on the sums shown in the preceding line. We know that

n∑
i=a⌊n

a⌋

((
b−1i

a

))
=

n−a⌊n
a⌋∑

i=0

((
b−1i

a

))

is summing at most a − 1 terms. The effect of multiplying the fractions i
a
by b−1 can be

approximated by a random permutation of the ath fractions. Taking the sawtooth function

of these yields terms of the form

1

2
− i

a
=

a− 2i

2a
.

The worst case scenario, in terms of the absolute value of this sum, would be when we sum

up all of the positive terms in the period, then stop before we add any of the negative terms.

In other words, this would be when b−1 = 1, and n =
⌊
a−1
2

⌋
. We make these heuristics
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formal with the estimation∣∣∣∣∣∣∣
n−a⌊n

a⌋∑
i=0

((
b−1i

a

))∣∣∣∣∣∣∣ ≤
⌊a−1

2 ⌋∑
i=0

((
i

a

))

= 0 +
a− 2

2a
+

a− 4

2a
+ · · ·+

a− 2
⌊
a−1
2

⌋
2a

=
1

2a

(
a− 2 + a− 4 + · · ·+ a− 2

⌊
a− 1

2

⌋)

=
1

2a

⌊a−1
2 ⌋∑

i=1

a−
⌊a−1

2 ⌋∑
i=1

2i


=

1

2a

(
a

⌊
a− 1

2

⌋
− 2

(⌊
a−1
2

⌋ (⌊
a−1
2

⌋
+ 1
)

2

))

=
1

2a

(
(a− 1)

⌊
a− 1

2

⌋
−
⌊
a− 1

2

⌋2)
.

This bound is sharp. However, straying from sharpness we obtain∣∣∣∣∣∣∣
n−a⌊n

a⌋∑
i=0

((
b−1i

a

))∣∣∣∣∣∣∣ ≤
1

2a

(
(a− 1)

⌊
a− 1

2

⌋
−
⌊
a− 1

2

⌋2)

≤ 1

2a

(
(a− 1)

a− 1

2
−
(
a− 1

2

)2
)

=
(a− 1)2

8a

≤ a− 1

8
.

Returning to p{1,a,b}(n), we finally obtain

n(n+ 1)

2ab
+

1

2

⌊n
a

⌋
+

1

2

⌊n
b

⌋
− a− 1

8
− b− 1

8
≤ p{1,a,b}(n)

and

n(n+ 1)

2ab
+

1

2

⌊n
a

⌋
+

1

2

⌊n
b

⌋
+

a− 1

8
+

b− 1

8
≤ p{1,a,b}(n).
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Proof of Proposition 4.5. By Lemma 2.19 and the lower bound in Proposition 4.7,

g∗s(1, a, b) ≤ maxN− = max

{
n ∈ N :

n(n+ 1)

2ab
+

1

2

⌊n
a

⌋
+

1

2

⌊n
b

⌋
− a− 1

8
− b− 1

8
≤ s

}
.

We attempt solving the condition for n in terms of s. Note that the inequality below comes

from the fact that for any real number x and positive integer m, we have x
m

≥
⌊

x
m

⌋
, which

implies x ≥ m
⌊

x
m

⌋
. Hence,

0 ≥ n2

ab
+

n

ab
+
⌊n
a

⌋
+
⌊n
b

⌋
− a− 1

4
− b− 1

4
− 2s

≥ ab
⌊ n
ab

⌋2
+
⌊ n
ab

⌋
+ b
⌊ n
ab

⌋
+ a

⌊ n
ab

⌋
− a− 1

4
− b− 1

4
− 2s

= ab
⌊ n
ab

⌋2
+ (1 + a+ b)

⌊ n
ab

⌋
− a− 1

4
− b− 1

4
− 2s.

Geometrically, this inequality describes the solutions between the two roots of a quadratic

function in
⌊

n
ab

⌋
. Therefore,

⌊ n
ab

⌋
≤

−(1 + a+ b) +
√

(1 + a+ b)2 − 4(ab)(−a−1
4

− b−1
4

− 2s)

2ab

=
−(1 + a+ b) +

√
1 + 2a+ 2b+ a2 + b2 + a2b+ ab2 + 8abs

2ab
.

Now rewrite n as abq + r, with 0 ≤ r ≤ ab− 1. We see that in order to maximize n, we

have to maximize ⌊abq+r
ab

⌋. Therefore we set r = ab− 1 and now maximize q =
⌊

n
ab

⌋
∈ N,

g∗s(1, a, b) ≤ max

{
n ∈ N :

n(n+ 1)

2ab
+

1

2

⌊n
a

⌋
+

1

2

⌊n
b

⌋
− a− 1

8
− b− 1

8
≤ s

}
max

{
abq + ab− 1 ∈ N :

q ≤ −(1 + a+ b) +
√
1 + 2a+ 2b+ a2 + b2 + a2b+ ab2 + 8abs

2ab

}
.
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Some simplification yields

g∗s(1, a, b) ≤ ab

⌊
−(1 + a+ b) +

√
1 + 2a+ 2b+ a2 + b2 + a2b+ ab2 + 8abs

2ab

⌋
+ ab− 1.

Proof of Corollary 4.3. We may get a lower bound on g∗s(a, b, c) when a|lcm(b, c) by following

a similar argument to the one above. Namely, we find a lower bound on g∗s(1, a, b) by

way of the lower bound on p1,a,b(n). The argument follows exactly the same from there,

only this time with a different expression in terms of a and b under the square root than

1+2a+2b+a2+ b2+a2b+ab2. However, the 8abcs remains untouched, yielding our desired

asymptotic result once we bring the 1
2
inside the square root.
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Chapter 5

Generalized Frobenius numbers of

pairwise coprime elements

In the previous two chapters, we required the elements of A = {a1, a2, . . . , ad} to each be

products of some common factors. In this chapter, we forgo this requirement. Instead, we

impose a simplifying assumption for the remainder of the chapter: that gcd(ai, aj) = 1 for

i ̸= j. In this setting, we now wish to find a bound on the generalized Frobenius number by

way of the geometry of polynomials.

5.1 Asymptotics of g∗s in terms of s

As seen in the last two chapters, as well as the wider literature, the generalized Frobenius

number is difficult to determine. For this reason, we investigate the growth of g∗s as s → ∞.
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Aliev, Fukshansky, and Henk [1] used the geometry of lattices to obtain the following bounds

on g∗s(A), when A is coprime:

g∗s(A) ≥ ((s+ 1)(d− 1)! a1a2 · · · ad)
1

d−1 − a1 − a2 − · · · − ad,

g∗s(A) ≤ (s(d− 1)! a1a2 · · · ad)
1

d−1 + g∗0(A).

Comparable results using similar geometrical arguments are given in [2, 17]. Note that both

the upper and lower bounds have the same growth rate as s → ∞:

(s(d− 1)! a1a2 · · · ad)
1

d−1 .

Thus an immediate corollary to their work is that for a fixed A, we have

g∗s(A) ∼ (s(d− 1)! a1a2 · · · ad)
1

d−1 .

Kevin Woods [35] corroborated this asymptotic result using recurrences on pA(n) and gen-

erating functions. Here we reprove this asymptotic result using solely the growth of the

restricted partition function.

Theorem 5.1. Let A = {a1, a2 . . . , ad} be pairwise coprime. Then as s → ∞,

g∗s(A) ∼ (s(d− 1)! a1a2 · · · ad)
1

d−1 .

Proof. Let N+
s = N+, Ns = N, and N−

s = N− be as in the proof of Lemma 2.19, for any

desired s. In order to show

g∗s(a1, a2, . . . , ad) ∼ (s(d− 1)! a1a2 · · · ad)
1

d−1 ,
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we must show that the following limit is 1:

lim
s→∞

g∗s(a1, a2, . . . , ad)

(s(d− 1)! a1a2 · · · ad)
1

d−1

= lim
s→∞

maxNs

(s(d− 1)! a1a2 · · · ad)
1

d−1

.

We show that the limit on the right is equal to 1 by replacing Ns with N+
s and N−

s , so that

lim
s→∞

maxN+
s

(s(d− 1)! a1a2 · · · ad)
1

d−1

≤ lim
s→∞

maxNs

(s(d− 1)! a1a2 · · · ad)
1

d−1

≤ lim
s→∞

maxN−
s

(s(d− 1)! a1a2 · · · ad)
1

d−1

.

If we can show the leftmost and rightmost limits are both equal to 1, we are done.

First consider N+
s . Since PolyA(n) + B is a polynomial that is eventually increasing,

there exists a point M such that for all n ≥ M , PolyA(n) +B is an increasing and therefore

invertible function. Define t(n) to be the inverse of PolyA(n) +B for n ≥ M . That is,

t(PolyA(n) +B) = n = PolyA(t(n)) +B

for all n ≥ M . Namely, for s ≥ M, we see that n = t(s) is the greatest root of PolyA(n)+B−s.

Therefore

lim
s→∞

maxN+
s

(s(d− 1)! a1a2 · · · ad)
1

d−1

= lim
s→∞

t(s)

(s(d− 1)! a1a2 · · · ad)
1

d−1

.

We claim that t(n) has the same order as the inverse of 1
(d−1)!a1a2···ad

nd−1. Assuming the

claim, the inverse of 1
(d−1)!a1a2···ad

nd−1 at s is (s(d− 1)! a1a2 · · · ad)
1

d−1 , and thus we conclude

that

lim
s→∞

t(s)

(s(d− 1)! a1a2 · · · ad)
1

d−1

= lim
s→∞

(s(d− 1)! a1a2 · · · ad)
1

d−1

(s(d− 1)! a1a2 · · · ad)
1

d−1

and therefore

lim
s→∞

maxN+
s

(s(d− 1)! a1a2 · · · ad)
1

d−1

= 1
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as desired.

We now prove the claim. Let f(n) = 1
(d−1)!a1a2···ad

nd−1, and g(n) = PolyA(n) + B. Let g̃

be g restricted to n ≥ M . Hence g−1 ∼ g̃−1. We now show that f−1 ∼ g̃−1. First, we know

f(n) → ∞. From Theorem 2.12, f(n) ∼ pA(n), and furthermore pA(n) ∼ g̃(n) by

lim
n→∞

pA(n)

PolyA(n)
= lim

n→∞

PolyA(n)

PolyA(n)
+

QuasiA(n)

PolyA(n)
= lim

n→∞
1 +

B

PolyA(n)
= 1

and

lim
n→∞

g̃(n)

PolyA(n)
= lim

n→∞

PolyA(n) +B

PolyA(n)
= 1.

Let h(n) = (n(d− 1)! a1a2 · · · ad)
1

d−1 . By construction h(n) ∼ f−1(n). Since g̃(n) is increas-

ing, g̃−1(n) exists. Additionally h(n) is monotonic. We lastly have

h′(n)

h(n)
=

1
d−1

((d− 1)! a1a2 · · · ad)
1

d−1 n(
1

d−1
−1)

((d− 1)! a1a2 · · · ad)
1

d−1 n
1

d−1

=
1

d− 1
n−1 = O

(
1

n

)
.

By Theorem 2.11, we are done.

5.2 Explicit bounds when A = {a, b, c}

In Section 5.3, we will demonstrate a method to obtain bounds on g∗s(A) that are asymp-

totically sharp. In this section, we tackle the case A = {a, b, c} as a warmup.

Theorem 5.2. If A = {a, b, c} is pairwise coprime, then

g∗s(A) ≤

⌊√
2abcs+

(a+ b+ c)2 − 2abc(a+ b+ c)

12
− 1

2
(a+ b+ c)

⌋
,
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and

g∗s(A) ≥

⌊√
2abcs+

(a+ b+ c)2 + 2abc(a+ b+ c)− 4(ab+ ac+ bc)

12
− 1

2
(a+ b+ c)

⌋
.

Corollary 5.3. If A = {a, b, c} is pairwise coprime, then

g∗s(A) ∼
√
2abcs.

We sketch the proof as follows: first we use Lemma 2.19 to approximate g∗s(a, b, c) as

a root of a polynomial. To do this, we find a suitable bound on Quasi{a,b,c}(n). We then

use the quadratic formula to solve our polynomial that we constructed, yielding our desired

bound.

We begin by bounding Quasi{a,b,c}(n). Recall that for a, b, and c pairwise coprime,

Theorem 2.18 tells us

Quasi{a,b,c}(n) = s−n(a, b; c) + s−n(a, c; b) + s−n(b, c; a).

Proposition 5.4. For all n ∈ Z and all pairwise coprime a, b, c ∈ N, we have

|sn(a, b; c)|≤ s0(c− 1, 1; c).

Proof. By the definition of the Fourier-Dedekind sum and the triangle inequality,

|sn(a, b; c)|=

∣∣∣∣∣1c
c−1∑
k=1

1

(1− ξakc )(1− ξbkc )
ξknc

∣∣∣∣∣ ≤ 1

c

c−1∑
k=1

∣∣∣∣ 1

(1− ξakc )(1− ξbkc )

∣∣∣∣ .
Define f(k) = 1

1−ξkc
. Then

1

c

c−1∑
k=1

∣∣∣∣ 1

(1− ξakc )(1− ξbkc )

∣∣∣∣ = 1

c

c−1∑
k=1

|f(ak)f(bk)|.
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We now apply the Cauchy–Schwarz inequality (Theorem 2.17 with p = 1 and q1 = q2 = 2)

to obtain

1

c

∥∥∥f(a(·))f(b(·))∥∥∥
1
≤ 1

c

∥∥∥f(a(·))∥∥∥
2

∥∥∥f(b(·))∥∥∥
2
=

1

c

√√√√ c−1∑
k=1

|f(ak)|2

√√√√ c−1∑
k=1

|f(bk)|2.

We note that a and b are coprime to c. Thus, if f(ak1) = f(ak2), then ak1 ≡ ak2 mod c,

and thus k1 ≡ k2 mod c. Hence, the set of values {f(1), f(2), . . . , f(c− 1)} is equivalent to

the set of values {f(a), f(2a), . . . , f((c− 1)a)}. We call this a complete residue system.

Thus we have the identity

1

c

c−1∑
k=1

|f(ak)|2= 1

c

c−1∑
k=1

|f(bk)|2= 1

c

c−1∑
k=1

|f(k)|2.

Therefore

1

c

√√√√ c−1∑
k=1

|f(ak)|2

√√√√ c−1∑
k=1

|f(bk)|2 = 1

c

c−1∑
k=1

|f(k)|2= 1

c

c−1∑
k=1

f(k)f(k).

Multiplying each term of the last sum by ξ0ic yields

1

c

c−1∑
k=1

1

1− ξkc

1

1− ξkc
ξ0kc =

1

c

c−1∑
k=1

1

1− ξkc

1

1− ξkc
ξ0kc

=
1

c

c−1∑
k=1

1(
1− ξ

(c−1)k
c

) (
1− ξkc

)ξ0kc
= s0(c− 1, 1; c).

Taking advantage of the classical Dedekind sum, we can now determine s0(c− 1, 1; c).

Proposition 5.5. If a, b are coprime positive integers, then s0(b− 1, 1; b) = b
12

− 1
12b

.
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Proof. Euler’s formula gives us the following:

cot

(
πx

y

)
= i

ξ
x/2
y + ξ

−x/2
y

ξ
x/2
y − ξ

−x/2
y

= −i
1 + ξxy
1− ξxy

.

Furthermore,

1

2

(
1 + x

1− x

)
=

1

1− x
− 1

2
.

Putting these together, we see that

1

1− ξxy
− 1

2
=

i

2
cot

(
πx

y

)
.

Additionally, we see

(
1

1− ξakb
− 1

2

)(
1

1− ξkb
− 1

2

)
=

(
1

1− ξak

)(
1

1− ξk

)
− 1

2

(
1

1− ξak

)
− 1

2

(
1

1− ξk

)
+

1

4
.

Using the above two identities, we change s0(a, 1; b) from a complex sum to a real sum:

s0(a, 1; b) =
1

b

b−1∑
k=1

1

(1− ξakb )(1− ξkb )

=
1

b

b−1∑
k=1

(
1

1− ξakb
− 1

2

)(
1

1− ξkb
− 1

2

)
+

1

b

b−1∑
k=1

1

2

(
1

1− ξak

)

+
1

b

b−1∑
k=1

1

2

(
1

1− ξk

)
− 1

b

b−1∑
k=1

1

4

=
1

b

(
i

2

)2 b−1∑
k=1

cot

(
πak

b

)
cot

(
πk

b

)
+

1

b

b−1∑
k=1

1

2

(
1

1− ξak

)

+
1

b

b−1∑
k=1

1

2

(
1

1− ξk

)
− b− 1

4b
.

We now use the fact that 1
b

∑b−1
k=1

1
2

(
1

1−ξak

)
and 1

b

∑b−1
k=1

1
2

(
1

1−ξk

)
reduce to 1

4
− 1

4b
, courtesy

of [10]. The authors use restricted partition function machinery to determine this identity
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on the way to proving Theorem 2.10. We also know the first sum is actually the classical

Dedekind sum, so we now obtain

s0(a, 1; b) = −s(a, b) +
b− 1

4b
.

We now have a relationship between the Fourier-Dedekind and classical Dedekind sums. In

order to simplify further, we first apply Proposition 2.15, then Proposition 2.13, and finally

Proposition 2.14:

s0(b− 1, 1; b) = −s(b− 1, b) +
b− 1

4b

= s(b, b− 1)− 1

12

(
b− 1

b
+

b

b− 1
+

1

b(b− 1)

)
+

1

4
+

b− 1

4b

= s(1, b− 1)− 1

12

(
b− 1

b
+

b

b− 1
+

1

b(b− 1)

)
+

1

4
+

b− 1

4b

=
(b− 2)(b− 3)

12(b− 1)
− 1

12

(
b− 1

b
+

b

b− 1
+

1

b(b− 1)

)
+

1

4
+

b− 1

4b

=
b

12
− 1

12b
.

We now have the tools to bound Quasi{a,b,c}(n), so we proceed with the proof of Theorem

5.2.

Proof of Theorem 5.2. We begin with the following estimation:

p{a,b,c}(n) = Poly{a,b,c}(n) + Quasi{a,b,c}(n)

= Poly{a,b,c}(n) + s−n(a, b; c) + s−n(a, c; b) + s−n(b, c; a)

≤ Poly{a,b,c}(n) + s0(c− 1, 1; c) + s0(b− 1, 1; b) + s0(a− 1, 1; a).
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Now using Proposition 5.5, we obtain

p{a,b,c}(n) ≤
n2

2abc
+

n

2

(
1

ab
+

1

ac
+

1

bc

)
+

1

12

(
3

a
+

3

b
+

3

c
+

a

bc
+

b

ac
+

c

ab

)
+

a

12
− 1

12a
+

b

12
− 1

12b
+

c

12
− 1

12c

=
n2

2abc
+

n

2

(
1

ab
+

1

ac
+

1

bc

)
+

(a+ b+ c)(abc+ a+ b+ c)

12abc
.

Moving directly forward as before,

g∗s(a, b, c) = max
{
n ∈ N : p{a,b,c}(n)− s ≤ 0

}
≤ max

{
n ∈ N :

n2

2abc
+

n

2

(
1

ab
+

1

ac
+

1

bc

)
+
(a+ b+ c)(abc+ a+ b+ c)

12abc
− s ≤ 0

}
= max

{
n ∈ N :

n2

2
+

n

2
(a+ b+ c) +

(a+ b+ c)(abc+ a+ b+ c)

12
− abcs ≤ 0

}
.

We once again take advantage of the geometry of our estimation of the restricted partition

function, using the quadratic formula to determine that n is at most the greater root of the

quadratic function. Thus, the last line above is equal to

max

{
n ∈ N : n ≤ −1

2
(a+ b+ c)

+

√
1

4
(a+ b+ c)2 − 4 · 1

2

(
(a+ b+ c)(abc+ a+ b+ c)

12
− abcs

)}
.

After some simplification, we obtain

g∗s(a, b, c) ≤ max

{
n ∈ N : n ≤ −1

2
(a+ b+ c) +

√
2abcs+

(a+ b+ c)2 − 2abc(a+ b+ c)

12

}

=

⌊
−1

2
(a+ b+ c) +

√
2abcs+

(a+ b+ c)2 − 2abc(a+ b+ c)

12

⌋
.
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Similarly, we can bound g∗s(a, b, c) from below by using

p{a,b,c}(n) ≥
n2

2abc
+

n

2

(
1

ab
+

1

ac
+

1

bc

)
+

(a+ b+ c)2 − abc(a+ b+ c) + 2(ab+ ac+ bc)

12abc
,

which yields

g∗s(a, b, c) ≥

⌊
−1

2
(a+ b+ c) +

√
2abcs+

(a+ b+ c)2 + 2abc(a+ b+ c)− 4(ab+ ac+ bc)

12

⌋
.

5.3 Explicit upper bounds when A = {a1, a2, . . . , ad}

Emboldened by our success in the previous section, we attempt to generalize each step to

give a similar bound on g∗s(A), when A = {a1, a2, . . . , ad} is pairwise coprime. The biggest

obstacle is the use of the quadratic formula. Since there is no way to precisely determine

the largest root of PolyA(n) ± B in general, we need to use a different method. We turn

to the geometry of polynomials to help us. There is a long history of finding the maximum

modulus of the roots of polynomial equations. Lagrange and Cauchy were the first to find

bounds using only the coefficients of a polynomial, and estimations have improved since (see

chapter VII of Marden [20], and chapter VI of Yap [36]). A classical result of Lagrange will

suffice for us.

Theorem 5.6 (Lagrange). Let f(z) = cdz
d + cd−1z

d−1 + · · ·+ c1z + c0 be a polynomial. Let

R be the set

R =

{∣∣∣∣ckcd
∣∣∣∣ 1
d−k

: ck is a coefficient of f

}
.
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If r1, r2 are the two greatest (not necessarily distinct) elements of R, then any root r of f

satisfies |r| ≤ r1 + r2.

Therefore, once we determine our approximation of the restricted partition function of

A, we may calculate an upper bound on g∗s(A) which perfectly matches the asymptotics for

g∗s(A) found in the last section.

5.3.1 Four lemmas

First, some lemmas.

Lemma 5.7 (Cotangent Expansion). Let A = {a1, a2, . . . , ad} pairwise coprime. Then for

every k,

1(
1− ξa1kad

)
· · ·
(
1− ξ

ad−1k
ad

)

=

(
i

2

)d−1

cot

(
πa1k

ad

)
· · · cot

(
πad−1k

ad

)
−

d−2∑
j=0

(−1

2

)d−j ∑
S⊂[d−1],
|S|=j

∏
i∈S

1

1− ξaikad

 .

In particular, there is a product of d− 1 factors on the left hand side, and only products of

d− 2 or less factors on the right hand side (modulo the term made up of cotangents).

Proof. Let fi(k) =
1

1−ξ
aik

b

. We now investigate

(
f1 −

1

2

)(
f2 −

1

2

)
· · ·
(
fd−1 −

1

2

)
=

d−1∑
j=0

(−1

2

)d−j ∑
S⊂[d−1],
|S|=j

∏
i∈S

fi

 ,
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which may be rewritten as

f1f2 · · · fd−1 =

(
f1 −

1

2

)(
f2 −

1

2

)
· · ·
(
fd−1 −

1

2

)
−

d−2∑
j=0

(−1

2

)d−j ∑
S⊂[d−1],
|S|=j

∏
i∈S

fi

 .

Recall that fi(k)− 1
2
= 1

1−ξ
aik

b

− 1
2
= 1

2

1+ξ
aik

b

1−ξ
aik

b

= cot
(
πaik
b

)
. Therefore

1(
1− ξa1kad

)
· · ·
(
1− ξ

ad−1k
ad

)

=

(
i

2

)d−1

cot

(
πa1k

ad

)
· · · cot

(
πadk

ad

)
−

d−2∑
j=0

(−1

2

)d−j ∑
S⊂[d−1],
|S|=j

∏
i∈S

1

1− ξaikad

 .

Lemma 5.8 (Cosecant Bound). If b ≥ 2, then

b−1∑
k=1

∣∣∣∣ 1

1− ξkb

∣∣∣∣ = 1

2

b−1∑
k=1

csc

(
πk

b

)
<

1

2π
b2.

Proof. Finding the modulus of 1− ξkb is equivalent to finding the distance between 1 and the

kth power of the first bth root of unity. So,

b−1∑
k=1

∣∣∣∣ 1

1− ξkb

∣∣∣∣ = b−1∑
k=1

1√
(1− cos(2πk

b
))2 + (sin(2πk

b
))2

=
b−1∑
k=1

1√
2(1− cos(2πk

b
))
.

Using the double angle formula, we get

b−1∑
k=1

1√
2(1− cos(2πk

b
))

=
b−1∑
k=1

1√
2(2 sin2(πk

b
))

=
b−1∑
k=1

1

2 sin(πk
b
)
=

1

2

b−1∑
k=1

csc

(
πk

b

)
.

By the work of Blagouchine and Moreau [11],

b−1∑
k=1

csc

(
πk

b

)
<

2b

π

(
log

2b

π
+ γ

)
− π

36b
+

7π3

21600b3
,

where γ = 0.577... is the Euler-Mascheroni constant. When b ≥ 2, we may use the cruder

upper bound 1
2π
b2, by estimating log b < 1

2
b.
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Lemma 5.9 (Fourier Alignment). Let f be a periodic function with period b. Let a1, . . . , an

be integers with gcd(ai, b) = 1. Then

b−1∑
k=1

|f(a1k)f(a2k) · · · f(ank)| ≤
b−1∑
k=1

|f(k)|n.

Proof. We interpret
∑b−1

k=1|f(a1k)f(a2k) · · · f(ank)| as a norm, much like in the proof of

Proposition 5.5. We apply Theorem 2.17 with p = 1 and q1 = q2 = · · · = qn = n to obtain

∥f(a1(·))f(a2(·)) · · · f(an(·))∥1 ≤ ∥f(a1(·))∥n ∥f(a2(·))∥n · · · ∥f(an(·))∥n .

Since ak and b are coprime for all k, we have a complete residue system over the set

{1, 2, . . . , b− 1}, and thus the identity

b−1∑
k=1

|f(ak(·))|p=
b−1∑
k=1

|f(1(·))|p

holds for any p. Hence ∥f(ak(·))∥n = ∥f(·)∥n for all k. Therefore

∥f(a1(·))∥n ∥f(a2(·))∥n · · · ∥f(an(·))∥n = ∥f(·)∥nn =
b−1∑
k=1

|f(k)|n.

Lemma 5.10 (Cotangent Bound). Let d ≥ 2, b ≥ 2. Then

b−1∑
k=1

∣∣∣∣cot(πk

b

)∣∣∣∣d−1

<
1

4πd−1
bd +

3b

4
.

Proof. As the absolute value of the cotangent function (and any of its positive powers) is

concave on the interval (0, π), we may bound it above by the three lines given in Figure 5.1.

We begin by splitting up the interval 0 < k < b into quarters, and the sum into 4 smaller
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Figure 5.1: The function
∣∣cot (πk

b

)∣∣d−1
, plotted from 0 to b. We estimate the finite sum∑b−1

k=1

∣∣cot (πk
b

)∣∣d−1
by using the lines connecting the four labeled points.

sums. By the symmetry of
∣∣cot (πk

b

)∣∣d−1
, we can just consider the first two sums doubled:

b−1∑
k=1

∣∣∣∣cot(πk

b

)∣∣∣∣d−1

≤ 2

⌊ b
4⌋∑

k=1

∣∣∣∣cot(πk

b

)∣∣∣∣d−1

+

⌊ b
2⌋∑

k=⌊ b
4⌋

∣∣∣∣cot(πk

b

)∣∣∣∣d−1

 .

We bound above the function values in the first sum by the line from
(
1, cotd−1

(
π
b

))
to(

b
4
, 1
)
. The region under this line is a trapezoid with width ⌊ b

4
⌋, and heights cotd−1

(
π
b

)
and

1. Since we are doubling this quantity, we can instead view the region as a rectangle with

the same width, but a height of cotd−1
(
π
b

)
+ 1. Hence,

2

⌊ b
4⌋∑

k=1

∣∣∣∣cot(πk

b

)∣∣∣∣d−1

 ≤
⌊ b

4⌋∑
k=1

(
cotd−1

(π
b

)
+ 1
)
.
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We bound above the function values in the second sum by 1; we write

2

 ⌊ b
2⌋∑

k=⌊ b
4⌋

∣∣∣∣cot(πk

b

)∣∣∣∣d−1

 ≤ 2

⌊ b
2⌋∑

k=⌊ b
4⌋

1.

Since neither of these estimations depend on k, we multiply them by the width of one quarter

of the period. So,

b−1∑
k=1

∣∣∣∣cot(πk

b

)∣∣∣∣d−1

≤
(
cotd−1

(π
b

)
+ 1
)( b

4

)
+ (2)

(
b

4

)
=

b

4
cotd−1

(π
b

)
+

3b

4
.

Recalling the Taylor expansion of cotangent around the origin, we have that cot(x) < 1
x
for

x ∈ (0, π/2]. Hence cotd−1
(
π
b

)
<
(
b
π

)d−1
for b ≥ 2. Therefore,

b

4
cotd−1

(π
b

)
+

3b

4
<

1

4πd−1
bd +

3b

4
.

5.3.2 Determining an upper bound for g∗s(A)

Theorem 5.11. Let A = {a1, a2, . . . , ad} be pairwise coprime. Then there exists an upper

bound of g∗s(A) that is constructable. Moreover, when s is sufficiently large, the upper bound

will be have the form (s(d− 1)! a1a2 · · · ad)
1

d−1 + c, where c is a constructable number.

Proof. We begin by bounding QuasiA(n). Since the elements of A are pairwise coprime,

QuasiA(n) = s−n(a1, a2, . . . , ad−1; ad)+s−n(a1, a2, . . . , ad−2, ad; ad−1)+· · ·+s−n(a2, a3, . . . , ad; a1).

Without loss of generality, we bound s−n(a1, a2, . . . , ad−1; ad). Let ξ = ξad . Then

|s−n(a1, a2, . . . , ad−1; ad)| =

∣∣∣∣∣ 1ad
ad−1∑
k=1

1

(1− ξa1k)(1− ξa2k) · · · (1− ξad−1k)
ξ−kn

∣∣∣∣∣
=

1

ad

ad−1∑
k=1

∣∣∣∣ 1

(1− ξa1k)(1− ξa2k) · · · (1− ξad−1k)

∣∣∣∣ .
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We now repeatedly use the cotangent expansion lemma on any remaining term that has

more factors than one. We now have an expression of the form

1

ad

ad−1∑
k=1

∣∣∣∣∣∣∣∣
B1

1− ξa1k
+

B2

1− ξa2k
+ · · ·+ Bd−1

1− ξad−1k
+ C +

∑
S⊂[d−1],
|S|=d−1

DS i
|S|
∏
j∈S

cot

(
πajk

ad

)

+
∑

S⊂[d−1],
|S|=d−2

DS i
|S|
∏
j∈S

cot

(
πajk

ad

)
+ · · ·+

∑
S⊂[d−1],
|S|=2

DS i
|S|
∏
j∈S

cot

(
πajk

ad

)∣∣∣∣∣∣∣∣ ,
where Bℓ, C, and DS are real constants for all ℓ ∈ [d − 1] and S ⊂ [d − 1]. Applying the

triangle inequality hence yields

∑
ℓ

|Bℓ|

(
1

ad

ad−1∑
k=1

∣∣∣∣ 1

1− ξaℓk

∣∣∣∣
)

+ |C|

(
1

ad

ad−1∑
k=1

|1|

)
+

∑
S⊂[d−1]

|DS|

(
1

ad

ad−1∑
k=1

∏
j∈S

∣∣∣∣cot(πajk

ad

)∣∣∣∣
)
.

Using the fact that the inner sum of the first term covers the complete residue system, we

may replace aℓ by 1. Using the cosecant bound lemma, we have

ad−1∑
k=1

∣∣∣∣ 1

1− ξk

∣∣∣∣ ≤ 1

2π
a2d.

Using the Fourier alignment lemma, we see that

ad−1∑
k=1

∏
j∈S

∣∣∣∣cot(πajk

ad

)∣∣∣∣ ≤ ad−1∑
k=1

∣∣∣∣cot(πk

ad

)∣∣∣∣|S| .
for any S ⊂ [d− 1]. Furthermore, by the cotangent bound lemma, we have

ad−1∑
k=1

∣∣∣∣cot(πk

ad

)∣∣∣∣|S| < 1

4π|S|a
|S|
d +

3ad
4

.
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All of these bounds thus yield

|s−n(a1, a2, . . . , ad−1; ad)| <
∑
ℓ

|Bℓ|
(

1

ad

(
1

2π
a2d

))
+

|C|(ad − 1)

ad

+
∑

S⊂[d−1]

|DS|
(

1

ad

(
1

4π|S|a
|S|
d +

3ad
4

))
.

We have now bounded the Fourier-Dedekind sum by a specific polynomial in ad of degree at

most d − 2. Therefore, there exist d polynomials bi in ai with real coefficients of degree at

most d−2 such that |QuasiA(n)|< b1+b2+· · ·+bd. Recall that since A is fixed, b1+b2+· · ·+bd

acts as a constant depending on A. Call this bound bA.

We now turn our attention to PolyA(n). Beck, Gessel, and Komatsu in [7] detail an

explicit method using the Bernoulli numbers to calculate PolyA(n) by way of generating

functions. Thus, we may denote PolyA(n) as pd−1n
d−1 + pd−2n

d−2 + · · ·+ p0, with pk ∈ R.

We conclude by using Lagrange’s bound (Theorem 5.6) on the polynomial

pd−1n
d−1 + pd−2n

d−2 + · · ·+ p0 − bA − s.

We know that pd−1 =
1

(d−1)!a1a2···ad
from Theorem 2.12, so we now construct the set

R = {1, |pd−2(d− 1)! a1a2 · · · ad|
1
3 , |pd−3(d− 1)! a1a2 · · · ad|

1
4 , . . . ,

|p1(d− 1)! a1a2 · · · ad|
1

d−2 , |(p0 − bA − s)(d− 1)! a1a2 · · · ad|
1

d−1}.

We obtain our bound on g∗s(A) by choosing the two largest elements from R. In the case

that s is sufficiently large, the element |(p0 − bA − s)(d− 1)! a1a2 · · · ad|
1

d−1 will be one of our

choices. This bound matches our asymptotic result from above; namely, when our second
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choice from R is M , we have

((s− bA − p0)(d− 1)! a1a2 · · · ad)
1

d−1 +M ∼ (s(d− 1)! a1a2 · · · ad)
1

d−1 .



52

Chapter 6

Future Work

Most of the results of this paper are consequences of the approximation lemma from

Chapter 2; that is, from approximating pA(n) by PolyA(n). How good is this approximation?

That is, how big is QuasiA(n)? Are there cases where the Fourier-Dedekind sums are large

compared to PolyA(n)? We remark that this direction of research requires a fair amount of

discrete Fourier analysis in order to refine our bounds.

Additionally, our approximation lemma requires A to be pairwise coprime. This is quite

a strong condition. There is literature on the structure of the restricted partition function

when A is just coprime, some coming directly from Sylvester [30, 31]. Does this more general

case admit approximations as nice as the pairwise coprime case?

The results of Chapters 3 and 4 follow easily from the powerful Theorem 2.9. In the wide

world of classical Frobenius numbers, what other results are there when A is a collection of

products? Do they also have direct generalizations like the ones in this paper?
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Is there a way to generalize the work in Chapter 4 to d > 3? There is a great amount of

symmetry in the lemmas of Chapter 4. Is there more structure here to take advantage of?

The bound for g∗s(A) discussed in Chapter 5 has several crude estimations. How can we

improve on these? Additionally, are there other methods in the geometry of polynomials we

can use to make this bound sharper and/or more explicit?
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