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A Carlitz polynomial is a polynomial generalization of the Dedekind sum, which

in turn is an arithmetic sum playing a central role in various mathematical areas,

such as theta functions, group actions on manifolds, and integer-point enumeration

in polytopes. The most important property of any Dedekind-like sum is reciprocity

which Carlitz proved algebraically for his polynomials. In this paper we give a geo-

metric proof of Carlitz reciprocity and derive Dedekind reciprocity from our result.

This approach gives rise to alternate geometric pictures from which we get a new

version of Carlitz reciprocity and some new theorems. Finally, using Brion’s de-

composition theorem for lattice points in polyhedra, we discover two new theorems

relating Carlitz sums to the generating function of two and three-dimensional sim-

plices. In three dimensions we rederive the Mordell-Pommersheim theorem, which

marks the first appearance of Dedekind sums in Ehrhart polynomials.
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Chapter 1

Introduction

Reciprocity is a very useful mathematical tool that, in many cases, reduces a complex

argument to a trivial one. We consider two important reciprocity laws in this paper;

Dedekind reciprocity and Carlitz reciprocity.

In the 1880’s Richard Dedekind introduced what is now known as a Dedekind

sum.

Definition 1.1 (Dedekind sum). For positive integers a and b,

s (a, b) :=
b−1∑
k=1

((
ka

b

))((
k

b

))
,

where

1
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((x)) =

 x− bxc − 1/2 if x ∈ R \ Z ,

0 if x ∈ Z .
(1.1)

Here, the greatest integer function bxc denotes the greatest integer less than or equal

to x. The sum s(a, b) was introduced to study another function that Dedekind

was interested in, the Dedekind eta function defined on the upper half-plane of

the complex numbers as η(τ) = e
πıτ
12 Π∞n=1 (1− e2πınτ ). Dedekind sums are used

primarily in the fields of analytic number theory and discrete geometry and are also

found in combinatorics, topology, algebraic number theory, algorithmic complexity,

and continued fractions.

The Dedekind sum has no closed form and can take a priori quite a long time to

compute for large values of b. This is a property of the function that has the potential

to make it devastatingly difficult to work with. Fortunately, Dedekind proved the

following reciprocity theorem that eliminated this circumstance and which has had

profound implications in any field in which Dedekind sums appear.

Theorem 1.1 (Dedekind reciprocity). Let a and b be relatively prime positive in-

tegers. Then

s (a, b) + s (b, a) = −1

4
+

1

12

(
a

b
+

1

ab
+
b

a

)
.

The simple act of switching the parameters in the Dedekind sum and then adding

the two sums together gives a very simple and symmetric closed-form result which
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reduces the computations to a much more practical length of time. In fact, this is

one of the reasons that the theorem is so noteworthy. A priori, it takes about b

steps to compute a single Dedekind sum, s (a, b), which can take quite a long time

if b = 1000, for example. On the other hand, using the reciprocity theorem, it

takes about log2 b steps: for b = 1000, about ten steps! This is due to the property

of Dedekind sums that s(a, b) = s(a mod b, b) where a mod b is the remainder of a

when divided by b. The process is similar to the Euclidean algorithm and takes the

same time to compute. For example, using this property of the modulo we have

s(381, 125) = s(6, 125). Then using reciprocity we reduce this to s(125, 6) = s(5, 6).

Leonard Carlitz studied various generalizations of the classical Dedekind sums.

He is said to be one of the most prolific mathematicians of all time because he

published over 700 research papers. Carlitz polynomials are of the following form.

Definition 1.2 (Carlitz polynomial). For indeterminates u and v, and positive

integers a and b, define

c (u, v; a, b) :=
a−1∑
k=1

uk−1vb
kb
a c.

These polynomials arose while Carlitz was studying Dedekind sums through

Bernoulli polynomials. Carlitz showed [6] that these polynomials are related by a

reciprocity law similar to that of Dedekind sums.

Theorem 1.2 (Carlitz reciprocity). If u and v are indeterminates, and a and b are
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relatively prime positive integers, then

(u− 1) c(u, v; a, b) + (v − 1) c(v, u; b, a) = ua−1vb−1 − 1. (1.2)

The theorem was proved algebraically by Carlitz in 1975, but first appeared in

this form in a paper by Berndt and Dieter [4] in 1982. It is interesting to note

that the two reciprocity laws that we have mentioned are so closely related that

it is possible to algebraically obtain Dedekind reciprocity from Carlitz reciprocity.

Before proving this result, we note a few useful identities.

Lemma 1.3. Let {x} := x−bxc denote the fractional-part function. If a and b are

relatively prime positive integers, then

b−1∑
k=1

k =
b(b− 1)

2
, (1.3)

b−1∑
k=1

k2 =
b(b− 1)(2b− 1)

6
, (1.4)

b−1∑
k=1

⌊
ka

b

⌋
=

(a− 1)(b− 1)

2
, (1.5)

b−1∑
k=1

{
ka

b

}
=
b− 1

2
, (1.6)

b−1∑
k=1

{
ka

b

}2

=
(b− 1)(2b− 1)

6b
. (1.7)

Proof. The first two identities are trivial. The sum in equation (1.5) can be inter-
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preted as the number of integer points between the lines y = 0 and y = a
b
x for

x = 1, 2, . . . , b − 1. Draw the rectangle with vertices (0, 0), (a, 0), (0, b), and (a, b).

There are exactly (a− 1)(b− 1) integer points in the interior of this rectangle. If we

draw a line between the origin and the point (a, b), we decompose the rectangle into

the triangle in which we are interested, and a similar triangle. Because a and b are

relatively prime, there are no integer points along the line between the points (0, 0)

and (a, b). Therefore, there are (a−1)(b−1)
2

integer points in each triangle and we have

proved equation (1.5). To show (1.6) we substitute the fractional-part function into

equation (1.5) as follows:

(a− 1)(b− 1)

2
=

b−1∑
k=1

⌊
ka

b

⌋
=

b−1∑
k=1

(
ka

b
−
{
ka

b

})
=
a(b− 1)

2
−

b−1∑
k=1

{
ka

b

}
.

Then, using the identity in (1.3) we have proved (1.6). Note that (1.6) implies that∑b−1
k=1

{
ka
b

}
= b(b−1)

2b
=
∑b−1

k=1
k
b

=
∑b−1

k=1

{
k
b

}
. Because the function

∑b−1
k=1

{
ka
b

}
is

periodic with period b and (a, b) = 1, the sum over a complete period is just a

permutation of
∑b−1

k=1

{
k
b

}
. We use this fact to prove equation (1.7) by noting that∑b−1

k=1

{
ka
b

}2
=
∑b−1

k=1

{
k
b

}2
=
∑b−1

k=1

(
k
b

)2
= 1

b2

∑b−1
k=1 k

2. This along with equation

(1.4) gives the result.

Lemma 1.4. If a and b are relatively prime positive integers, then

s(a, b) =
1

b

b−1∑
k=1

k

{
ka

b

}
− b− 1

4
, (1.8)
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and, equivalently,

s(a, b) =
1

b

b−1∑
k=1

k

⌊
ka

b

⌋
− a(b− 1)(2b− 1)

6b
− b− 1

4
. (1.9)

Proof. Using Equation (1.1), we replace the sawtooth function in the Dedekind sum

with the fractional-part function as follows:

s (a, b) =
b−1∑
k=1

((
ka

b

))((
k

b

))
=

b−1∑
k=1

({
ka

b

}
− 1

2

)({
k

b

}
− 1

2

)

=
b−1∑
k=1

({
ka

b

}
− 1

2

)(
k

b
− 1

2

)

=
1

b

b−1∑
k=1

k

{
ka

b

}
− 1

2

b−1∑
k=1

{
ka

b

}
− 1

2b

b−1∑
k=1

k +
b−1∑
k=1

1

4

=
1

b

b−1∑
k=1

k

{
ka

b

}
− b− 1

4
.

The third equality is obtained by observing that for k ranging from 1 to b− 1, the

fractional-part function
{
k
b

}
in the second sum is equal to k

b
. After expanding, we

use a few of the identities from Lemma 1.3 in the final equality. Converting the

fractional-part function in (1.8) to the floor function, we have (1.9).

Proof that Theorem 1.2 implies Theorem 1.1. By applying the operators u ∂u twice
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and then v ∂v once to

(u− 1)
a−1∑
k=1

uk−1vb
kb
a c + (v − 1)

b−1∑
k=1

vk−1ub
ka
b c = ua−1vb−1 − 1

and then setting u = v = 1, we obtain

a−1∑
k=1

k2

⌊
kb

a

⌋
−

a−1∑
k=1

(k− 1)2

⌊
kb

a

⌋
+

b−1∑
k=1

k

⌊
ka

b

⌋
−

b−1∑
k=1

(k− 1)

⌊
ka

b

⌋2

= (a− 1)2(b− 1).

This reduces to

2
a−1∑
k=1

k

⌊
kb

a

⌋
+

b−1∑
k=1

⌊
ka

b

⌋2

=
(a− 1)(b− 1)

2
+ (a− 1)2(b− 1),

which is a relation of greatest integer functions. Now we convert the greatest-integer

functions to fractional-part functions using identities from Lemma 1.3:

2
a−1∑
k=1

k

(
kb

a
−
{
kb

a

})
+

b−1∑
k=1

(
ka

b
−
{
ka

b

})2

=
(a− 1)(b− 1)

2
+ (a− 1)2(b− 1),

which we expand to get

2
a−1∑
k=1

k

{
kb

a

}
+2

a

b

b−1∑
k=1

k

{
ka

b

}
=

2b

a

a−1∑
k=1

k2+
a2 + 1

b2

b−1∑
k=1

k2− 1

2
(a−1)(b−1) (2a− 1) .
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Multiplying the equation by 6b and simplify the right-hand side yields

12b2

a

a−1∑
k=1

k2 +
6 (a2 + 1)

b

b−1∑
k=1

k2 − 3b(a− 1)(b− 1) (2a− 1)

= 2b2(a− 1)(2a− 1) + a2(b− 1)(2b− 1) + (b− 1)(2b− 1)

− 3b(a− 1)(b− 1) (2a− 1) = 3a2b+ 3ab2 + a2 + b2 − 9ab+ 1.

and thus we have the conversion of Carlitz reciprocity to fractional-part functions,

namely,

12a
b−1∑
k=1

k

{
ka

b

}
+ 12b

a−1∑
k=1

k

{
kb

a

}
= 3a2b+ 3ab2 + a2 + b2 − 9ab+ 1. (1.10)

Now we turn our attention to Dedekind reciprocity. Using Lemma 1.4, we convert

the greatest-integer functions in the left-hand side of Equation (1.1) to fractional-

part functions:

1

b

b−1∑
k=1

k

{
ka

b

}
− b− 1

4
+

1

a

a−1∑
k=1

k

{
kb

a

}
− a− 1

4
= −1

4
+

1

12

(
a

b
+

1

ab
+
b

a

)

⇒ 12a
b−1∑
k=1

k

{
ka

b

}
+ 12b

a−1∑
k=1

k

{
kb

a

}
= 3a2b+ 3ab2 + a2 + b2 − 9ab+ 1.
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Multiplying the first equation by 12ab and rearranging the terms to isolate the

fractional-part functions on the left-hand side of the equation gives the same result

as (1.10).

In this paper we will also consider a more generalized version of the Carlitz

polynomial.

Definition 1.3. The generalization of the Carlitz polynomial, where u1, u2, . . . , un

are indeterminates and a1, a2, . . . , an are positive integers, is defined as the polyno-

mial

c (u1, u2, . . . , un; a1, a2, . . . , an) :=

a1−1∑
k=1

uk−1
1 u

j
ka2
a1

k
2 u

j
ka3
a1

k
3 · · ·u

j
kan
a1

k
n .

Berndt and Dieter proved a general polynomial reciprocity theorem [4, Theorem

5.1] for Carlitz polynomials in n indeterminates. We use the slightly more specific

form given in [1, Theorem 1.2] which states the following.

Theorem 1.5 (Berndt–Dieter). If a1, a2, . . . , an are pairwise relatively prime posi-

tive integers, then

(u1 − 1) c (u1, u2, . . . , un; a1, a2, . . . , an)

+ (u2 − 1) c (u2, u3, . . . , un, u1; a2, a3, . . . , an, a1)

+ · · ·+ (un − 1) c (un, u1, . . . , un−1; an, a1, . . . , an−1)

= ua1−1
1 ua2−1

2 · · ·uan−1
n .
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In the following chapters we will give a novel proof of Theorem 1.2 and of its

higher-dimensional analog, Theorem 1.5. Our approach will lead us to some new

reciprocity theorems and relations for Carlitz polynomials. Finally, we derive a rela-

tion between Carlitz polynomials and certain familiar geometric figures by realizing

Carlitz sums as generating functions of polyhedra.



Chapter 2

Generating Functions and Geometry

2.1 A Two-Dimensional Example of Generating Functions

In this paper we take a geometric approach to Carlitz reciprocity. It was recently

observed that Carlitz polynomials show up in the generating functions of certain

geometric objects. A geometric proof of Carlitz reciprocity was introduced by Beck

in [1] in 2006. Here we present a novel way of realizing Carlitz polynomials in a

geometric setting.

Looking at the elements that make up a Carlitz polynomial c(u, v; a, b), it is

natural to associate the variables u and v with the x and y axes, and the parameters

a and b with the point (a, b) in the first quadrant. From there we draw a ray from

the origin through the point (a, b) and we have decomposed the first quadrant into

11
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two cones.

Figure 2.1: A ray in the first quadrant.

These pointed cones are defined as the intersection of finitely many half-spaces

that intersect in exactly one point, the vertex. The pointed cones defined above are

K1 = {λ1(0, 1) + λ2(a, b) : λ1, λ2 ≥ 0} ⊂ R2,

K2 = {λ1(1, 0) + λ2(a, b) : λ1 ≥ 0, λ2 > 0} ⊂ R2,

such that K1 is closed and K2 is half-open.

Proposition 2.1. Define Q
(2)
1 := {(x, y) ∈ R2 : x, y ≥ 0}, the first quadrant in the

plane. Then K1 ∪K2 = Q
(2)
1 and K1 ∩K2 = ∅.

Proof. It is clear that K1 ∪ K2 = Q
(2)
1 . Suppose by contradiction that (u, v) ∈

K1 ∩K2. Note that, (u, v) ∈ K1 implies that (u, v) = (λa, λ2 + λb) for λ, λ2 ≥ 0 and
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(u, v) ∈ K2 implies that (u, v) = (λ1 + λa, λb) for λ ≥ 0, λ1 > 0. Then λa = λ1 +λa

and hence λ1 = 0 which is a contradiction.

The process now requires that we list the integer points in each of these cones.

The method that we employ uses generating functions to encode integer points in a

set S ⊂ Rd. Instead of vectors, each coordinate point is listed as the multidegree of

a monomial. For example, the point (a, b) is encoded in the monomial uavb in the

indeterminates u and v. This clever method is helpful for it raises the discrete set

of points to a continuous function, thereby making it easier to work with.

We define a polyhedron as the intersection of finitely many half-spaces, and call

it a rational polyhedron if the half-spaces defining the polyhedron can be written in

terms of rational parameters.

Definition 2.1. If S is a rational polyhedron, σS ∈ Rd is called the integer-point

transform of S, where

σS (z) = σS (z1, z2, · · · zd) :=
∑

m∈S∩Zd
zm.

We use the notation m := (m1, . . . ,md) and zm := zm1
1 · · · z

md
d .

The two cones that we created in the first quadrant are rational cones because

the two rays that bound each cone go through rational points. We tile the cone

with copies of the fundamental parallelogram. By tiling, we are simplifying the

infinite list of integer points in each cone to just translates of the lattice points in
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the fundamental parallelogram of each cone. Consistent with our definition of the

cones K1 and K2, we define the fundamental parallelograms

Π1 = {λ2e2 + λ(a, b) : 0 ≤ λ2, λ < 1},

Π2 = {λ1e1 + λ(a, b) : 0 < λ1 ≤ 1, 0 ≤ λ < 1}.

Figure 2.2: The fundamental parallelogram Π1.

In order to illustrate the process of writing the integer-point transform of each

cone, consider the fundamental parallelogram Π1. We begin by listing the trans-

lates of the vertices of Π1. These are the non-negative integer combinations of the

generators (0, 1) and (a, b) and so we list them using the generating function:
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∑
(m1,m2)=j(0,1)+k(a,b)

j,k≥0

um1vm2 =
∑
j≥0

(u0v1)j
∑
k≥0

(uavb)k =
1

(1− v)(1− uavb)
. (2.1)

Now we list the integer points in the interior of Π1. Because the parallelogram is

half-open, it contains the point (0, 0). Recall that the lattice point (a, b) is the first

integer point from the origin along the ray (a, b). Because this property remains

fixed for any integer translation of the ray in the plane, the point (a, b + 1) is the

first integer point along the ray extending from (0, 1) through (a, b+1). This means

that there are no integer points on the boundary lines of the parallelogram, except

at the vertices. Now, for each point along the horizontal axis between 0 and a, the

vertical height of the fundamental parallelogram is one unit. Therefore, at each of

these values along the horizontal axis, there will be exactly one interior lattice point

in the parallelogram. We use the greatest integer function to denote this point. The

vertical integer point will lie between the lines y = b
a
x and y = b

a
x + 1, for these

lines describe two sides of the parallelogram. Therefore, the vertical integer point

will have the value y =
⌊
b
a
x+ 1

⌋
=
⌊
b
a
x
⌋

+ 1 for each x and we have that the set of

interior lattice points in Π1 is the set
{

(0, 0),
(
x,
⌊
b
a
x
⌋

+ 1
)

: 1 ≤ x ≤ a− 1, x ∈ Z
}

.

Putting this information together with (2.1) we have
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σK1(u, v) =

(
u0v0 +

a−1∑
k=1

ukvb
kb
a c+1

) ∑
(m1,m2)=j(0,1)+k(a,b)

j,k≥0

um1vm2

=
1 +

∑a−1
k=1 u

kvb
kb
a c+1

(1− v)(1− uavb)
=

1 + uv c (u, v; a, b)

(v − 1) (uavb − 1)
.

We obtain the integer-point transform for K2 in the same way, careful to adjust

our sums for the half-open cone: Π2 does not contain the point (0, 0). Instead, the

point that will tile the vertices of the paralellogram is the point (1, 0) which is on

the closed side of the cone. Thus,

σK2(u, v) =
u+

∑b−1
k=1 v

kub
ka
b c+1

(1− u)(1− ubva)
=
u+ uv c (v, u; b, a)

(u− 1) (ubva − 1)
. (2.2)

2.2 An Example in 3 Dimensions

This construction is more complex for dimensions > 2, and is also much more

difficult to depict, so we illustrate it in three dimensions before generalizing. Let

Q
(3)
1 denote the first (non-negative) orthant in 3-space. In three dimensions, for

coprime positive integers a, b, c, draw an infinite ray from the origin through the

point (a, b, c). Now we decompose Q
(3)
1 into three (half-open) vertex cones,
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K1 = {λ2e2 + λ3e3 + λ(a, b, c) : λ2, λ3, λ ≥ 0} ,

K2 = {λ1e1 + λ3e3 + λ(a, b, c) : λ1, λ3, λ ≥ 0} ,

K3 = {λ1e1 + λ2e2 + λ(a, b, c) : λ1, λ2, λ ≥ 0} .

The fundamental parallelepiped

Π3 = {λ1e1 + λ2e2 + λ (a, b, c) : 0 ≤ λ1, λ2 < 1, 0 ≤ λ < 1}

corresponding to the cone K3 is bounded by the three rays that extend from the

origin through the points (1, 0, 0), (0, 1, 0), and (a, b, c).

Figure 2.3: The fundamental parallelepiped Π3.
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As in the two-dimensional case, the integer translates of the vertices of Π3 gives

the denominator for the integer-point transform of K3:

∑
(m1,m2,m3)=i(1,0,0)+j(0,1,0)+k(a,b,c)

i,j,k≥0

um1vm2wm3 =
1

(1− u) (1− v) (1− uavbwc)
.

We multiply this by the embedded list of interior points of Π3 in order to generate

the infinite list of lattice points of K3. To get the interior points of Π3, consider a

“slice” of the parallelepiped at w = k for the integer 0 < k < c as in Figure 2.3.

Figure 2.4: A slice of the fundamental parallelepiped.

Note that the parallelogram at this “slice” of Π3 has area 1. Also note that it

contains no lattice points on its edges or vertices. Π3 therefore contains exactly

one lattice point at w = k. It is immediately clear that this point has coordinates
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(⌊
ka
c

⌋
+ 1,

⌊
kb
c

⌋
+ 1, k

)
. Hence, the interior lattice points of Π3 can be listed as the

set of these points for each integer 1 ≤ k ≤ c− 1.

The final step of this process is to identify the edges of the parallelepiped that

are open and those that are closed in order to list the one vertex point that will

tile the vertices of Π3. For the cone K3, the closed face is the one along the u1 -

u2 plane, though the edges along each of those axes are open. Therefore, the point

(1, 1, 0) is contained in Π3 and will tile the vertices of the parallelepipeds. Thus,

σK3(u, v, w) =
uv +

∑w−1
k−1 u

b kac c+1vb
kb
c c+1ck

(1− u) (1− v) (1− uavbwc)
=

uv c (w, u, v; c, a, b)

(1− u) (1− v) (1− uavbwc)
.



Chapter 3

Carlitz Reciprocity

3.1 2 Dimensions

We now have an expression that lists the lattice points in each of our cones, so that

in fact we have a list of the lattice points in the first quadrant Q
(1)
2 of the plane.

Note that we can also write the integer-point transform of the first quadrant directly

for it is also a rational cone. The integer-point transform of Q
(2)
1 is

σ
Q

(2)
1

(u, v) =
1

(1− u)(1− v)
.

Proof of Theorem 1.2. By Proposition 2.1 we have that K1 ∪K2 = Q
(2)
1 and K1 ∩

K2 = ∅. This means that we have created two different expressions σK1 + σK2 and

σ
Q

(2)
1

that list the integer points in the first quadrant. Naturally we set these two

20
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expressions equal to each other to obtain

1 + uv c (u, v; a, b)

(v − 1) (uavb − 1)
+
u+ uv c (v, u; b, a)

(u− 1) (uavb − 1)
=

1

(u− 1)(v − 1)
.

To simplify, multiply the equation by (u− 1)(v − 1)(uavb − 1) and we have:

(u− 1) + uv(u− 1) c (u, v; a, b) + u(v − 1) + uv(v − 1) c (v, u; b, a) = uavb − 1

⇒ uv [(u− 1) c(u, v; a, b) + (v − 1) c(v, u; b, a)] = uavb − 1− (u− 1)− u(v − 1)

⇒ (u− 1) c(u, v; a, b) + (v − 1) c(v, u; b, a) = ua−1vb−1 − 1.

Thus we have constructed a novel proof of Theorem 1.2, the polynomial reciprocity

theorem in two dimensions due to Carlitz, using a geometric picture.

3.2 n Dimensions

It is now possible to generalize this geometric approach to Carlitz reciprocity. We

will prove Theorem 1.5 in a geometric manner similar to the two-dimensional case.

Namely, we construct a single ray in n-dimensional space, and then we decompose

the non-negative orthant into n cones, K1, K2, . . . , Kn. Again we avoid the issue

of over-counting along the common faces of the cones by defining our cones to be

half-open. Let a := (a1, a2, . . . , an) ∈ Rn such that (ai, aj) = 1 whenever i 6= j.
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Then we define

K1 = {λ2e2 + λ3e3 + · · ·+ λnen + λa : λi ≥ 0 ∀ i = 2, 3, . . . , n, λ ≥ 0} ,

K2 = {λ1e1 + λ3e3 + · · ·+ λnen + λa : λi ≥ 0 ∀ i > 2, λ1 > 0, λ ≥ 0} ,
...

Kj =

 λ1e1 + · · ·+ λj−1ej−1 + λj+1ej+1 + · · ·+ λnen + λa :

λi ≥ 0 ∀ i > j, λ1 > 0 ∀ i < j, λ ≥ 0

 ,

...

Kn = {λ1e1 + λ2e2 + · · ·+ λn−1en−1 + λa : λi > 0 ∀ i = 1, 2, . . . , n, λ ≥ 0} .

Proposition 3.1. Let Q
(n)
1 := {z = (z1, z2, . . . , zn) ∈ Rn : zi ≥ 0 ∀ i = 1, 2, . . . , n},

the first orthant in n-space. Then
⋃n
i=1Ki = Q

(n)
1 and

⋂n
i=1Kn = ∅.

Proof. It is clear that
⋃n
i=1Ki = Q

(n)
1 . Suppose by contradiction that z ∈

⋂n
i=1Kn.

Note that for j 6= k, where j, k = 1, 2, . . . , n, if z ∈ Kj then

z = (λ1 + λa1, λ2 + λa2, . . . λj−1 + λaj−1, λaj, λj+1 + λaj+1, . . . , λn + λan) ,

where λi ≥ 0 ∀ i > j and λ1 > 0 ∀ i < j. Also, z ∈ Kk implies that

z = (γ1 + γa1, γ2 + γa2, . . . γk−1 + γak−1, γak, γk+1 + γak+1, . . . , γn + γan) ,
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where γi ≥ 0 ∀ i > k and γi > 0 ∀ i < k. Suppose, without loss of generality, that

j < k. Then λaj = γj + γaj and γak = λk + λak. Note that λ 6= γ since otherwise

γaj = γj+γaj and λak = λk+λak imply that γj = 0 and λk = 0. Therefore, aj =
γj
λ−γ

and ak = −λk
λ−γ . If λ > γ,then ak < 0 which is a contradiction. Now suppose that

λ < γ. Then aj < 0. Thus Kj and Kk are disjoint for all j, k = 1, 2, . . . , n and we

have shown that the set {Ki : i = 1, 2, . . . , n} is a disjoint decomposition of the first

orthant.

We want to construct the integer-point transform for each cone K1, K2, . . . , Kn,

as well as for Q
(n)
1 . Because we are now in n dimensions, we identify the fundamental

parallelepiped for each cone by the n rays that describe it. The construction of this

generating function proceeds as in the two-dimensional case where the process is

broken down to three steps:

1. List the vertices of the translates of the fundamental parallelepiped Πj and

encode these in the generating function.

2. Encode the list of the interior points in Πj.

3. Determine the vertex of the half-open parallelepiped that will tile all of the

vertices and add this point to the list of interior points.

Proof of Theorem 1.5. For each parallelepiped Πj, j = 1, . . . , n, we first compute the

integer translates of the vertices: the non-negative integer combination of all unit
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vectors e1, e2, . . . , en, and the vector a = (a1, a2, . . . , an) and not the unit vector ej.

If we let m ∈ Kj ∩ Zn be defined through

m = k1e1 + k2e2 + · · ·+ kj−1ej−1 + kj+1ej+1 + · · ·+ knen + ka, ki ≥ 0,

and let the monomial ux := ux1
1 u

x2
2 · · ·uxnn for all x := (x1, x2, . . . , xn) ∈ Zn. Then

∑
m∈Kj∩Zn

um =
1

(1− u1) · · · (1− uj−1) (1− uj+1) · · · (1− un) (1− ua1
1 u

a2
2 · · ·uann )

=
1

(1− ua)
∏

1≤k≤n
k 6=j

(1− uk)
.

Note that the interior points at each “slice” of Πj where uj = k, k 6= j, have

coordinates

(⌊
ka1

aj

⌋
+ 1, . . . ,

⌊
kaj−1

aj

⌋
+ 1, k,

⌊
kaj+1

aj

⌋
+ 1, . . . ,

⌊
kan
aj

⌋
+ 1

)
.

Finally, we must determine the vertex which will tile all vertices of translates

of Πj. Because Πj is closed on all edges of the unit vectors e1, e2, . . . , ej−1, the

point (1, 1, . . . , 1, 0, . . . , 0), with the first 0 is in the j-th entry, will tile the vertices.
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Putting all of this together we obtain the integer-point transform of Kj,

σKj(u) =
u1u2 · · ·uj−1 +

∑aj−1
k=1 u

—
ka1
aj

�
+1

1 · · ·u

—
kaj−1
aj

�
+1

j−1 ukju

—
kaj+1
aj

�
+1

j+1 · · ·u

—
kan
aj

�
+1

n

(1− ua)
∏

1≤k≤n
k 6=j

(1− uk)

(3.1)

=
u1u2 · · ·uj−1 + ua c (uj, uj+1, . . . , un, u1, . . . , uj−1; aj, aj+1, . . . , an, a1, . . . , aj−1)

(1− ua)
∏

1≤k≤n
k 6=j

(1− uk)
.

(3.2)

We are now ready to establish a geometric proof of Theorem 1.5. We begin with

the equation

σK1(u) + σK2(u) + · · ·+ σKn(u) = σK
Q

(n)
1

(u).

Substituting the expression from (3.1) gives:

n∑
j=1

u1u2 · · ·uj−1 + ua c (uj, uj+1, . . . , un, u1, . . . , uj−1; aj, aj+1, . . . , an, a1, . . . , aj−1)

(1− ua)
∏

1≤k≤n
k 6=j

(1− uk)

=
1∏n

i=1 (1− ui)
.

Now, by multiplying the equation by (1− ua) and isolating the Carlitz polynomials
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on the left-hand side of the equation we simplify to obtain:

u1u2 · · ·un
n∑
j=1

(uj − 1) c (uj, uj+1, . . . , un, u1, . . . , uj−1; aj, aj+1, . . . , an, a1, . . . , aj−1)

= ua − 1− (u1 − 1)− u1 (u2 − 1)− u1u2 (u3 − 1)− · · · − u1 · · ·un−1 (un − 1)

= ua − u1u2 · · ·un.

Dividing by u1u2 · · ·un yields Theorem 1.5.



Chapter 4

Two Rays in Two Dimensions

The geometry used in the previous section is very simple: one ray in space. We now

turn to a slightly more complex geometric picture: two rays in space. To simplify

further, we consider only the case of two rays in the first quadrant of the plane.

Let a, b, c, d be positive integers and draw infinite rays through the points (a, b) and

(c, d) in the first quadrant. This construction decomposes the first quadrant into

three rational cones.

The integer-point transform of each of the two exterior cones, K1 andK3, is easily

computed in the same manner as in Chapter 2. However, the cone in the middle, K2

is bounded on either side by a non-unit vector, and therefore the interior points of the

fundamental parallelogram of this cone are not trivial to list. To avoid this problem,

we add the constraint that the fundamental parallelogram should have no interior

27
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Figure 4.1: Two-ray decomposition of the first quadrant.

lattice points. This is equivalent to saying that it has area 1. The fundamental

parallelogram Π2 is described by the rays (a, b) and (c, d) and therefore has area

∣∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣∣ = ad− bc.

Thus we have the constraint ad − bc = 1. This construction leads to the following

new theorem.

Theorem 4.1. If a, b, c, d are such that ad− bc = 1, then

(u− 1)
(
uavb − 1

)
c (u, v; c, d) + (v − 1)

(
ucvd − 1

)
c (v, u; b, a)

= ua+c−1vb+d−1 − uavb − ucvd + ua−1vb + ucvd−1 − ua−1vb−1 − uc−1vd−1 + 1.
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Proof. Again, we prove the theorem geometrically. To simplify our computations,

define

K1 = {λ2e2 + λcd(c, d) : λ2 > 0, λcd ≥ 0} ⊂ R2,

K2 = {λab(a, b) + λcd(c, d) : λab, λcd ≥ 0} ⊂ R2,

K3 = {λ1e1 + λab(a, b) : λ1 > 0, λab ≥ 0} ⊂ R2,

so that K2 is closed and K1 and K3 are half-open. Thus K1 ∪K2 ∪K3 = Q
(2)
1 and

K1, K2, K3 are pairwise disjoint. With the method introduced in Chapter 2, the

integer-point transform of each cone becomes the following:

σK1(u, v) =
v +

∑c−1
k=1 u

kvb
kd
c c+1

(1− v) (1− ucvd)
=
v + uv c (u, v; c, d)

(v − 1) (ucvd − 1)
,

σK2(u, v) =
1

(1− uavb) (1− ucvd)
=

1

(uavb − 1) (ucvd − 1)
,

and σK3(u, v) =
u+

∑b−1
k=1 v

kub
ka
b c+1

(1− u) (1− uavb)
=
u+ uv c (v, u; b, a)

(u− 1) (uavb − 1)
.

Because the fundamental parallelogram Π2 has no interior integer points, the gener-

ating function σK2 is relatively simple. Then the sum of the integer-point transforms

of each of the cones is equal to the integer-point transform of Q
(2)
1 so we have

σK1(u, v) + σK2(u, v) + σK3(u, v) = σ
Q

(2)
1

(u, v).
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Replacing these with the expressions above we have

v + uv c (u, v; c, d)

(v − 1) (ucvd − 1)
+

1

(1− uavb) (1− ucvd)
+
u+ uv c (v, u; b, a)

(u− 1) (uavb − 1)
=

1

(u− 1)(v − 1)
.

By clearing the denominator and isolating the Carlitz sums on the left,

(u− 1)
(
uavb − 1

)
c (u, v; c, d) + (v − 1)

(
ucvd − 1

)
c (v, u; b, a)

= ua+c−1vb+d−1 − uavb − ucvd + ua−1vb + ucvd−1 − ua−1vb−1 − uc−1vd−1 + 1.

Thus we have proved Theorem 4.1.

Recall that we are able to obtain classical Dedekind reciprocity from Carlitz

reciprocity. It is interesting to consider what would happen if we performed the

same computations on Theorem 4.1. In the classical case, we applied the operators

u ∂u twice and then v ∂v once and then set u = v = 1. If we perform these exact

operations, we obtain a trivial result, but we lose the greatest integer functions and

therefore can not obtain, through conversion to the fractional-part function, the

Dedekind sums that we are seeking. However, applying the operators u ∂u and v ∂v

twice each, and then setting u = v = 1 yields a nontrivial result.

Corollary 4.2 (Rademacher). If a, b, c, d are positive integers such that ad−bc = 1,

then

s(a, b) + s(d, c) = −1

2
+

1

12

(
a

b
+
a

c
+
d

b
+
d

c

)
.
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Proof. Let a, b, c, d be relatively prime positive integers such that ad − bc = 1.

Derivate Theorem 4.1 using the operators u ∂u and v ∂v twice each, and then set

u = v = 1 to obtain:

2a
c−1∑
k=1

⌊
kd

c

⌋2

+ 4b
c−1∑
k=1

k

⌊
kd

c

⌋
+ 2b(2a− 1)

c−1∑
k=1

⌊
kd

c

⌋
+ 2b2

c−1∑
k=1

k + (2a− 1)
c−1∑
k=1

b2

+ 2d
b−1∑
k=1

⌊
ka

b

⌋2

+ 4c
b−1∑
k=1

k

⌊
ka

b

⌋
+ 2c(2d− 1)

b−1∑
k=1

⌊
ka

b

⌋
+ 2c2

b−1∑
k=1

k + (2d− 1)
b−1∑
k=1

c2

= (a+ c− 1)2(b+ d− 1)2 − a2b2 − c2d2 + (a− 1)2b2 + c2(d− 1)2

− (a− 1)2(b− 1)2 − (c− 1)2(d− 1)2 + 1.

Then substituting the identities from Propositions 1.3 and 1.4 yields the simplifica-

tion:

12(ad+ bc) (s(a, b) + s(d, c))

= 3− 3a− 3b− 3c− 3d+ 3a2d− 3abc+ 3abd− 3b2c+ 3acd− 3bc2 + 3ad2

− 3bcd+ 3b2c2 − 3a2d2 + 4ab2c− 4a2bd+ 4bc2d− 4acd2 + 6ab− 6ad

+
a

c
+
d

b
+
ad2

c
+ bd+

a2d

b
+ ac+ 6cd

= (ad+ bc)

(
a

b
+
a

c
+
d

b
+
d

c
− 6

)
.

We use the assumption that ad − bc = 1 to obtain the second equality, and the

theorem follows.
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Corollary 4.2 was given by Hans Rademacher in 1956 [9]. It was derived al-

gebraically from classical Dedekind reciprocity using the following properties of

Dedekind sums for the relation ad− bc = 1:

s(d, b) = s(a, b) and s(b, d) = s(−c, d) = − s(c, d).

Taking the sum of the two reciprocity identities

s(d, c) + s(c, d) + s(d, b) + s(b, d) = −1

4
+

1

12

(
c

d
+
d

c
+

1

cd

)
− 1

4
+

1

12

(
b

d
+
d

b
+

1

bd

)

and substituting the above properties gives Corollary 4.2.



Chapter 5

Perpendicular Rays in the Plane

We now turn our focus back to a single ray in the plane, the ray through the points

(0, 0) and (a, b). Extending the ray to the line through these points, and drawing

the perpendicular line through the origin, we decompose each quadrant of the plane

into two cones.

If we label each of these cones counter-clockwise by convention, beginning with

the positive x-axis, then each cone has its vertex at the origin and K1 is the cone

defined by the rays (1, 0) and (a, b), K2 is defined by (a, b) and (0, 1), and so on.

5.1 Reciprocity From Any Quadrant in the Plane

We showed in Section 2.1 that Carlitz reciprocity can be derived from the geometric

picture of a ray in the first quadrant of the plane. In fact, we can do the same for

33
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Figure 5.1: Perpendicular rays in the plane.

any quadrant. In the second quadrant, letting K7 be closed and K8 half-open and

using the integer-point transform of each cone we have:

(u− 1) c

(
u,

1

v
; b, a

)
+

(
1

v
− 1

)
c

(
1

v
, u; a, b

)
= ub−1

(
1

v

)a−1

− 1, (5.1)

which is Carlitz reciprocity in the variables u and 1/v.
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5.2 Reflected Cones

We would like to have a relation between the cones σK3(u, v) and σK7(u, v). The

(half-open) cones that make up a half-space have the property that the sum of their

integer-point transfoms is zero [3, Theorem 9.2]. For example, suppose that K1 is

closed, K2 and K8 are open, and K3 is half-open: closed on the side that it shares

with K2. Then K3, K2, K1 and K8 make up an (open) half-space and

σK3(u, v) + σK2(u, v) + σK1(u, v) + σK8(u, v) = 0.

Figure 5.2: The cones K3 and K7.

Similarly, if we define K1 to be closed, K2 and K8 open as above, and K7 to be

half-open where it is closed on the side that it shares with K8, then K2, K1, K8 and
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K7 make up an (open) half-space so that

σK2(u, v) + σK1(u, v) + σK8(u, v) + σK7(u, v) = 0.

Putting these two equations together we have

σK3(u, v) = σK7(u, v), (5.2)

where

K3 = {λ1(0, 1) + λ2(−b, a) : λ1 > 0, λ2 ≥ 0} ⊂ R2,

K7 = {λ1(0,−1) + λ2(b,−a) : λ1 ≥ 0, λ2 > 0} ⊂ R2.

This construction gives rise to an interesting version of Carlitz reciprocity.

Theorem 5.1. Let a and b be relatively prime positive integers. Then for the inde-

terminates u and v,

uv−1(v − 1) (ubva − 1) c
(
v−1, u; a, b

)
+ u−1v(u− 1)

(
ubv−a − 1

)
c
(
u−1, v; b, a

)
= u

(
u−bva − 1

)
+ v

(
ubv−a − 1

)
, (5.3)



37

or equivalently,

−uva−1(v − 1) c
(
v−1, u; a, b

)
+ ub−1v(u− 1) c

(
u−1, v; b, a

)
= −uva + ubv. (5.4)

Before we prove the theorem, we first state a useful identity.

Proposition 5.2. If a and b are relatively prime positive integers and k ∈ Z≥0,

such that 1 ≤ k ≤ b− 1, then
⌊
−ka

b

⌋
= −

⌊
ka−1
b

⌋
− 1.

Proof. First note that for any integers a and b,
⌊
−a
b

⌋
≤ −

⌊
a
b

⌋
since

⌊
a
b

⌋
≤ a

b
and⌊

−a
b

⌋
≤ −a

b
. Now, let a, b ∈ Z≥0 and let 1 ≤ k ≤ b − 1. Clearly ka−1

b
< ka

b
, thus

−ka
b
< −ka−1

b
. Therefore,

⌊
−ka

b

⌋
≤
⌊
−ka−1

b

⌋
≤ −

⌊
ka−1
b

⌋
, with equality between the

first two expressions if and only if ka
b
∈ Z. Since ka

b
and ka−1

b
differ by no more than

1, we have that
⌊
−ka

b

⌋
+ 1 = −

⌊
ka−1
b

⌋
.

Proof of Theorem 5.1. Let us define the cones K3 and K7 as the (half-open) cones

as they appear in (5.2). Then the integer-point transform of each cone is written:

σK3(u, v) =
v +

∑b−1
k=1 u

−kvb
ka
b c+1

(1− v)(1− u−bva)
=
v + 1

u
v c
(

1
u
, v; b, a

)
(v − 1) (u−bva − 1)

,

σK7(u, v) =
ubv−a +

∑b−1
k=1 u

kvb−
ka
b c

(1− v−1) (1− ubv−a)
=
ubv−a + uv−1 c

(
u, 1

v
; b, a

)
(v−1 − 1) (ubv−a − 1)

.

Putting this into (5.2), we have

v + 1
u
v c
(

1
u
, v; b, a

)
(v − 1) (u−bva − 1)

=
ubv−a + uv−1 c

(
u, 1

v
; b, a

)
(v−1 − 1) (ubv−a − 1)

,
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and thus,

u
(
1− u−bva

)
c
(
u, v−1; b, a

)
= u−1v

(
ubv−a − 1

)
c
(
u−1, v; b, a

)
. (5.5)

Now we multiply this by (u − 1) so that we can use Carlitz reciprocity to replace

c (u, v−1; b, a):

u
(
1− u−bva

) (
ub−1v−(a−1) − 1 + v−1(v − 1) c

(
u−1, v; a, b

))
= u−1v(u− 1)

(
ubv−a − 1

)
c
(
u−1, v; b; a

)
,

so that

uv−1(v − 1)
(
u−bva − 1

)
c
(
u−1, v; a, b

)
+ u−1v(u− 1)

(
ubv−a − 1

)
c
(
u−1, v; b; a

)
= u

(
u−bva − 1

) (
ub−1v−(a−1) − 1

)
,

and finally,

uv−1(v − 1) (ubva − 1) c
(
v−1, u; a, b

)
+ u−1v(u− 1)

(
ubv−a − 1

)
c
(
u−1, v; b, a

)
= u

(
u−bva − 1

)
+ v

(
ubv−a − 1

)
.

It is interesting to note that Equation (5.5) can be derived algebraically by a
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simple change of variables.

Proposition 5.3. The Carlitz polynomials c (u, v−1; b, a) and c (u−1, v; b, a) are re-

lated in the following way:

u
(
1− u−bva

)
c
(
u, v−1; b, a

)
= u−1v

(
ubv−a − 1

)
c
(
u−1, v; b, a

)
.

Proof. Beginning with the right hand side of the equation,

u−1v
(
ubv−a − 1

)
c
(
u−1, v; b, a

)
=

b−1∑
k=1

u−k+bvb
ka
b c+1−a −

b−1∑
k=1

u−kvb
ka
b c+1,

replace k with b− k in both sums and the expression becomes

b−1∑
k=1

ukvb−
ka
b c+1 −

b−1∑
k=1

uk−bvb−
ka
b c+1+a.

Here note that
⌊
−ka

b

⌋
+ 1 = −

⌊
ka−1
b

⌋
by Proposition 5.2. Then, because ka−1

b
<

ka
b
/∈ Z and there does not exist any integer x such that ka−1

b
< x < ka

b
, we have⌊

ka−1
b

⌋
=
⌊
ka
b

⌋
and hence

⌊
−ka

b

⌋
+ 1 = −

⌊
ka
b

⌋
. Thus,

u−1v
(
ubv−a − 1

)
c
(
u−1, v; b, a

)
=

b−1∑
k=1

ukv−b
ka
b c −

b−1∑
k=1

uk−bv−b
ka
b c+a.
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This is equal to the left-hand side of the equation

u
(
1− u−bva

)
c
(
u, v−1; b, a

)
= −

b−1∑
k=1

uk−bv−b
ka
b c+a +

b−1∑
k=1

ukv−b
ka
b c.

Note, however, that the construction of the equation itself is not intuitive. We

emphasize that the set-up of the equation itself is a result of the geometry.



Chapter 6

Brion Decompositions

6.1 The Triangle

Until now, we have only considered pointed cones with the vertex at the origin. Let

us now turn to a different object. A convex polytope is the bounded intersection

of finitely many half-spaces, and is called rational if all of its vertices have rational

coordinates. A well-known theorem relating to convex polytopes is Brion’s theorem

[5] which gives an expression for the number of integer points in a rational polytope.

Definition 6.1. If v is a vertex of a closed polytope P , then a vertex cone Kv is

the smallest cone with apex v that contains P .

Theorem 6.1 (Brion’s theorem). Suppose P is a rational convex polytope, and let

Kv be a vertex cone with vertex v for each vertex v of P . Then we have the following

41
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identity of rational functions:

σP (z) =
∑
v

σKv(z),

where the sum is over all vertices of P .

We construct a triangle in two dimensions using the positive quadrant and the

half-space y ≤ b
a
x for relatively prime a and b as illustrated in Figure 6.1.

Figure 6.1: A simple polytope: a triangle.

This polytope P is the convex hull of the points (0, 0), (a, 0), and (0, b). If we

call the (closed) vertex cones K1, K2 and K3 with vertices at each of these three
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points, respectively, then Brion’s theorem says that

σP (z) = σK1(z) + σK2(z) + σK3(z).

This construction allows us to give a novel expression for the Carlitz sum as the

integer-point transform of a triangle.

Theorem 6.2. Let a and b be relatively prime positive integers and u and v be

indeterminates. If P is the triangle with vertices (0, 0), (a, 0) and (0, b), then the

Carlitz polynomial c
(
v, 1

u
; b, a

)
and the integer-point transform of P are related in

the following manner:

(u− 1)σP (u, v) = uav c
(
v, u−1; b, a

)
+ u

(
ua + vb

)
− vb+1 − 1

v − 1
.

Proof. Formally, we define our cones

K1 = {j(1, 0) + k(0, 1) : j, k ≥ 0} ,

K2 = {(a, 0) + j(−1, 0) + k(−a, b) : j, k ≥ 0} ,

K3 = {(b, 0) + j(a,−b) + k(0,−1) : j, k ≥ 0} .

Now let us compute the generating functions. The integer-point transform of the
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first cone, K1, is simple; we have done it before:

σK1(u, v) =
1

(1− u)(1− v)
.

To compute σK3(u, v), shift the cone K3 down b units so that the vertex is at the

origin and call this cone K ′3. K
′
3 is now a familiar object as well. We computed the

integer-point transform of a very similar object (permute a and b) in Section 5.2.

We have

σK′3(u, v) =
1 +

∑a−1
k=1 u

kvb−
kb
a c

(1− v−1) (1− uav−b)
=

1 + uv−1 c (u, v−1; a, b)

(1− v−1) (1− uav−b)
.

To shift the cone back up, multiply σK′3(u, v) by vb to obtain

σK3(u, v) = −v
b+1 + uvb c (u, v−1; a, b)

(v − 1) (uav−b − 1)
.

Applying the same process to cone K2 we have the integer-point transform

σK2(u, v) = −u
a+1 + uav c (v, u−1; b, a)

(u− 1) (u−avb − 1)
.

Using the integer-point transform of each of these three cones in Brion’s theorem
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we obtain

σP (u, v) =
1

(u− 1)(v − 1)
− ua+1 + uav c (v, u−1; b, a)

(u− 1) (u−avb − 1)
− vb+1 + uvb c (u, v−1; a, b)

(v − 1) (uav−b − 1)
.

We begin simplifying by re-writing the generating functions in a slightly different

form:

σP (u, v) =
1

(u− 1)(v − 1)
+
u2a+1 + u2av c (v, u−1; b, a)

(u− 1) (ua − vb)
− v

2b+1 + uv2b c (u, v−1; a, b)

(v − 1) (ua − vb)
.

(6.1)

Clearing the denominator gives

(u− 1)(v − 1)
(
ua − vb

)
σP (u, v) = ua − vb + u2a+1(v − 1)− v2b+1(u− 1)

+ u2av(v − 1) c
(
v, u−1; b, a

)
− uv2b(u− 1) c

(
u, v−1; a, b

)
.

Note that all but the factor vb in the final term of this equation can be replaced using

reciprocity from a variation of (5.4) from Theorem 5.1. By replacing the variable u

with 1
v

and v with 1
u
, Theorem 5.1 becomes

uvb(u− 1) c
(
u, v−1; a, b

)
− uav(v − 1) c

(
v, u−1; b, a

)
= uav − uvb,
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and substituting this into (6.1) we have

(u− 1)(v − 1)
(
ua − vb

)
σP (u, v)

= u2av(v − 1) c
(
v, u−1; b, a

)
− uvb+1(v − 1) c

(
v, u−1; b, a

)
+ ua − vb + u2a+1(v − 1)− v2b+1(u− 1)− uavb+1 + uv2b. (6.2)

Notice that we now have only one Carlitz sum in the above equation! The right-hand

side becomes

uav(v−1)
(
ua − vb

)
c
(
v, u−1; b, a

)
+ua−vb+u2a+1(v−1)−uv2b(v−1)−vb+1

(
ua − vb

)
,

so that

(u− 1)(v − 1)
(
ua − vb

)
σP (u, v) = uav(v − 1)

(
ua − vb

)
c
(
v, u−1; b, a

)
+ ua − vb + u2a+1(v − 1)− uv2b(v − 1)− vb+1

(
ua − vb

)
. (6.3)

Dividing both sides of this equation by (v− 1)
(
ua − vb

)
, we have Theorem 6.2.
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6.2 The Tetrahedron

6.2.1 Dedekind-Rademacher-Carlitz Sums

It is natural to extend the application of Brion’s theorem to a convex polytope

in higher dimensions. We consider a simple polytope in the first octant Q
(3)
1 : the

tetrahedron P defined

P =
{

(x, y, z) ∈ R3;x, y, z ≥ 0,
x

a
+
y

b
+
z

c
≤ 1
}
, (6.4)

with vertices (0, 0, 0), (a, 0, 0), (0, b, 0), (0, 0, c) where a, b and c are positive integers.

Figure 6.2: The tetrahedron P .
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The tth dilate of a subset S ⊂ Rd is the set

{(tx1, tx2, . . . , txd) : (x1, x2, . . . , xd) ∈ S} .

Let us consider the tth dilate of P for t ∈ Z>0. This gives us the dilated tetrahedron

tP with vertices (0, 0, 0), (ta, 0, 0), (0, tb, 0), and (0, 0, tc). Note that t = 1 gives the

tetrahedron in Figure 6.2.

Using the motivation of the triangle in two dimensions and the tetrahedron tP ,

we will use Brion’s theorem to find an expression for the integer-point transform of

tP .

Definition 6.2 (Dedekind-Rademacher-Carlitz (DRC) sum). If a, b, and c are pos-

itive integers, and u, v, w are indeterminates, then define

c̄(u, v, w; a, b, c) :=
c−1∑
k=0

b−1∑
j=0

ub
ja
b

+ ka
c cvjwk.

We discover that the integer-point transform of tP is an expression of DRC sums.

Theorem 6.3. Let tP be the dilated tetrahedron with vertices (0, 0, 0), (ta, 0, 0),

(0, tb, 0), (0, 0, tc) for t ∈ Z>0 and a, b and c relatively prime positive integers. Then
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for indeterminates u, v, w,

(u− 1)(v − 1)(w − 1)
(
ua − vb

)
(ua − wc)

(
vb − wc

)
σP (u, v, w)

= u(t+2)a(v − 1)(w − 1)
(
vb − wc

) [
(u− 1) + c̄

(
u−1, v, w; a, b, c

)]
− v(t+2)b(u− 1)(w − 1) (ua − wc)

[
(v − 1) + c̄

(
v−1, u, w; b, a, c

)]
+ w(t+2)c(u− 1)(w − 1)

(
ua − vb

) [
(w − 1) + c̄

(
w−1, u, v; c, a, b

)]
−
(
ua − vb

)
(ua − wc)

(
vb − wc

)
.

Proof. Let P be the tetrahedron defined above with t = 1 and define the vertex

cones

K0 = {λ1(1, 0, 0) + λ2(0, 1, 0) + λ3(0, 0, 1) : λ1, λ2, λ3 ≥ 0} ,

K1 = {(a− λ1, 0, 0) + λ2(0, b, 0) + λ3(0, 0, c) : λ1, λ2, λ3 ≥ 0} ,

K2 = {λ1(a, 0, 0) + (0, b− λ2, 0) + λ3(0, 0, c) : λ1, λ2, λ3 ≥ 0} ,

K3 = {λ1(a, 0, 0) + λ2(0, b, 0) + (0, 0, c− λ3) : λ1, λ2, λ3 ≥ 0} .

Brion’s theorem states that the sum of the integer-point transforms of these cones

is equal to the integer-point transform of P . We approach the definition of these

generating functions as we did in the two-dimensional case by shifting the vertex of

each cone Ki to the origin. If we call this shifted cone K ′i, then the fundamental

parallelepiped Π′i for each i = 0, 1, 2, 3 is defined through
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Π′0 = {λ1(1, 0, 0) + λ2(0, 1, 0) + λ3(0, 0, 1) : 0 ≤ λ1, λ2, λ3 < 1} ,

Π′1 = {λ1(−1, 0, 0) + λ2(−a, b, 0) + λ3(−a, 0, c) : 0 ≤ λ1, λ2, λ3 < 1} ,

Π′2 = {λ1(a,−b, 0) + λ2(0,−1, 0) + λ3(0,−b, c) : 0 ≤ λ1, λ2, λ3 < 1} ,

Π′3 = {λ1(a, 0,−c) + λ2(0, b,−c) + λ3(0, 0,−1) : 0 ≤ λ1, λ2, λ3 < 1} .

By construction, there exists exactly one integer point in the interior of Π′1 at each

integer j along the y-axis and k along the z-axis. In other words, for j, k ∈ Z≥0,

(x, j, k) ∈ Π′1 is written as (x, j, k) = (−λ1 − λ2a− λ3a, λ2b, λc) and hence λ2 = j
b

and λ3 = k
c
. Because 0 ≤ λi < 1, we have that j = 0, 1, . . . , a − 1 and k =

0, 1, . . . , b − 1, and hence (x, j, k) =
(⌊
− ja

b
− ka

c

⌋
, j, k

)
. Now, writing the integer-

point transform of K1 is as simple as multiplying the integer-point transform of K ′1

by ua. That is, σK1(u, v, w) = uaσK′1(u, v, w).

We would like to know how this relates to the dilated tetrahedron tP . Let tKi

denote the vertex cone related to tP (as we related Ki to P ) for i = 0, 1, 2, 3. Then

tK1 = (ta, 0, 0) +K ′1, tK2 = (0, tb, 0) +K ′2, tK3 = (0, 0, tc) +K ′3,

and tK0 = K0. So, the cones Ki and tKi, i = 1, 2, 3 are similar cones! That is, they

have the same generators but different vertices. Therefore, for t = 1, 2, 3, writing the
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integer-point transform of tK1 is as trivial as multiplying the integer-point transform

of K ′1 by uta. Similarly for tK2 and tK3, we have σtK2(u, v, w) = vtbσK′2(u, v, w) and

σtK3(u, v, w) = wtcσK′3(u, v, w).

Note that
⌊
− ja

b
− ka

c

⌋
= −

⌊
ja
b

+ ka
c

⌋
− 1 for 1 ≤ j ≤ b − 1 and 1 ≤ k ≤ c − 1.

Therefore, the integer-point transform of tK1 becomes

σtK1(u, v, w) = uta

 ∑c−1
k=0

∑b−1
j=0 u
b− jab − kac cvjwk

(1− u−1) (1− u−avb) (1− u−awc)


= uta

1 +
∑c−1

k=0

∑b−1
j=0 u

−b jab + ka
c c−1vjwk − u−1

u−2a−1 (u− 1) (ua − vb) (ua − wc)


=
u(t+2)a [(u− 1) + c̄ (u−1, v, w; a, b, c)]

(u− 1) (ua − vb) (ua − wc)
.

Similarly,

σtK2(u, v, w) = vtb

 ∑c−1
k=0

∑a−1
j=0 u

jvb−
jb
a
− kb
a cwk

(1− v−1) (1− uav−b) (1− v−bwc)


= −v

(t+2)b [(v − 1) + c̄ (v−1, u, w; b, a, c)]

(v − 1) (ua − vb) (vb − wc)
,
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and

σtK3(u, v, w) = wtc

 ∑b−1
k=0

∑a−1
j=0 u

jvkwb−
jc
a
− kc

b c

(1− w−1) (1− uaw−c) (1− vbw−c)


=
w(t+2)c [(w − 1) + c̄ (w−1, u, v; c, a, b)]

(w − 1) (ua − wc) (vb − wc)
.

The integer-point transform for K0 doesn’t change when we dilate the tetrahe-

dron so we have that the generators of K0 are the three unit vectors and

σK0(u, v, w) =
∑

(m1,m2,m3)=i(1,0,0)+j(0,1,0)+k(0,0,1)
i,j,k≥0

um1vm2wm3

= − 1

(u− 1)(v − 1)(w − 1)
.

By Brion’s theorem, we have that

σP (u, v, w) = σK0(u, v, w) + σtK1(u, v, w) + σtK2(u, v, w) + σtK3(u, v, w)

and hence

σP (u, v, w) =

u(t+2)a [(u− 1) + c̄ (u−1, v, w; a, b, c)]

(u− 1) (ua − vb) (ua − wc)
− v(t+2)b [(v − 1) + c̄ (v−1, u, w; b, a, c)]

(v − 1) (ua − vb) (vb − wc)

+
w(t+2)c [(w − 1) + c̄ (w−1, u, v; c, a, b)]

(w − 1) (ua − wc) (vb − wc)
− 1

(u− 1)(v − 1)(w − 1)
.
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Clearing the denominator gives the theorem.

6.2.2 The Relation to Dedekind Sums

It was perhaps unclear in the previous section the reason for calling the polynomial

c̄(u, v, w; a, b, c) the Dedekind-Rademacher-Carlitz sum. We hope that the following

will help to clarify this. We begin by stating a well-known theorem [7, 8]; this was the

first instant that an explicit formula for a lattice-point count in three-dimensional

polytopes was given.

The lattice-point enumerator for the tth dilate of P ⊂ Rd is denoted LP (t) and

is equivalent to #
(
tP ∩ Zd

)
, the discrete volume of P .

Theorem 6.4 (Mordell, Pommersheim). Let P be given by (6.4) and let a, b and c

be pairwise relatively prime. Then

LP (t) =
abc

6
t3 +

ab+ ac+ bc+ 1

4
t2 + (− s(bc, a)− s(ca, b)− s(ab, c)) t

+

(
3

4
+
a+ b+ c

4
+

1

12

(
bc

a
+
ca

b
+
ab

c
+

1

abc

))
t+ 1.

We will prove that Theorem 6.3 implies Theorem 6.4. Before we prove this

interesting result, we give some necessary identities.
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Proposition 6.5. If a, b and c are relatively prime positive integers, then

b−1∑
k=0

a−1∑
j=0

{
jc

a
+
kc

b

}
=
ab− 1

2
, (6.5)

b−1∑
k=0

a−1∑
j=0

j

{
jc

a
+
kc

b

}
= c s(ab, c) +

ab(c− 1)

4
, (6.6)

b−1∑
k=0

a−1∑
j=0

{
jc

a
+
kc

b

}2

=
(ab− 1)(2ab− 1)

6ab
. (6.7)

Proof. A Dedekind–Rademacher sum is like a Dedekind sum with a shift in the

sawtooth argument. We begin by noting the following invaluable property of one

such function:
a−1∑
k=0

((
x+

kc

a

))
= ((ax)) , (6.8)

which is given as an exercise in [3]. Using this, we can simplify the single sum

a−1∑
k=0

{
jc

a
+
kc

b

}
=

a−1∑
k=0

[((
jc

a
+
kc

b

))
+

1

2

]
=

((
jac

b

))
+
a

2
=

{
jac

b

}
+
a− 1

2
.

(6.9)

We use this result to prove the first two identities as follows. (6.5): Combining (6.9)

with Identity (1.6) we have that

b−1∑
k=0

a−1∑
j=0

{
jc

a
+
kc

b

}
=

b−1∑
j=0

({
jac

b

}
+
a− 1

2

)
=
ab− 1

2
.
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(6.6): Now, we use (6.9) to show

b−1∑
k=0

a−1∑
j=0

j

{
jc

a
+
kc

b

}
= a

a−1∑
j=1

j

a

b−1∑
k=0

{
jac

b

}
= a

a−1∑
j=1

{
j

a

}({
jbc

a

}
+
b− 1

2

)

= a
a−1∑
j=1

[((
j

a

))
+

1

2

] [((
jbc

a

))
+
b

2

]
= a s(bc, a) +

ab(a− 1)

4
,

where the final expression was obtained by expanding the product and using (6.8)

with x = 0. (6.7): We use Identity (1.7) and the second Bernoulli polynomial,

B2(x) := x2 − x + 1
6

to obtain the final equation. The Bernoulli function B̄k(x) :=

Bk ({x}) has the property [2] that
∑a−1

k=0 B̄k(x) = a−1B̄k(ax). Therefore, we re-write{
jc
a

+ kc
b

}2
in terms of Bernoulli polynomials and replace this in the double sum as

follows:

b−1∑
k=0

a−1∑
j=0

{
jc

a
+
kc

b

}2

=
b−1∑
k=0

a−1∑
j=0

(
B̄2

(
jc

a
+
kc

b

)
+

{
jc

a
+
kc

b

}
− 1

6

)

=
b−1∑
k=0

a−1B̄2

(
kac

b

)
+
ab− 1

2
− ab

6
=

(ab− 1)(2ab− 1)

6ab
.

Proof that Theorem 6.3 implies Theorem 6.4. Let tP be the dilated tetrahedron
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given in Theorem 6.3. If we divide both sides of the equation in the theorem by

(u− 1)(v − 1)(w − 1)
(
ua − vb

)
(ua − wc)

(
vb − wc

)
,

then we have a rational expression for σtP (u, v, w) where the numerator is

u(t+2)a(v − 1)(w − 1)
(
vb − wc

) [
(u− 1) + c̄

(
u−1, v, w; a, b, c

)]
− v(t+2)b(u− 1)(w − 1) (ua − wc)

[
(v − 1) + c̄

(
v−1, u, w; b, a, c

)]
+ w(t+2)c(u− 1)(w − 1)

(
ua − vb

) [
(w − 1) + c̄

(
w−1, u, v; c, a, b

)]
−
(
ua − vb

)
(ua − wc)

(
vb − wc

)
,

and the denominator is

(u− 1)(v − 1)(w − 1)
(
ua − vb

)
(ua − wc)

(
vb − wc

)
.

The lattice-point enumerator of tP is the number of integer points in tP . We

obtain this from the integer-point transform of tP by setting u = v = w = 1.

Because this operation reduces both numerator and denominator to zero, we use

L’Hospital’s rule to reduce. Because we have three indeterminates, the number of

times we use L’Hospital and the indeterminates with respect to which we derivate is

not immediately clear. However, both numerator and denominator are symmetric,

reducing the problem to the number of derivations. It turns out that taking the
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partial derivative with respect to u once, v twice, and w three times does the trick.

Beginning with the denominator, we derivate as described and set u = v = w =

1. The result is very simple: −12bc2.

Turning to the numerator, after differentiating and setting u = v = w = 1 we

obtain a complex expression in t. Fortunately there is a way to further simplify the

expression! Because the constant term of LP is 1 [3, Corollary 3.15], we are only

concerned with the non-constant terms of the expression:

− 2ab2c3t3 − 6ab2c3t2 − 6bc2t2 − 4ab2c3t− 18bc2t

+ 6bct
a−1∑
j=0

c−1∑
k=0

⌊
jb

a
+
kb

c

⌋
− 6bc2t

a−1∑
j=0

c−1∑
k=0

⌊
jb

a
+
kb

c

⌋

− 12bct
a−1∑
j=0

c−1∑
k=0

k

⌊
jb

a
+
kb

c

⌋
− 6bct

a−1∑
j=0

b−1∑
k=0

⌊
jc

a
+
kc

b

⌋

+ 24bc2t
a−1∑
j=0

b−1∑
k=0

⌊
jc

a
+
kc

b

⌋
+ 6bc2t2

a−1∑
j=0

b−1∑
k=0

⌊
jc

a
+
kc

b

⌋

− 6bct
a−1∑
j=0

b−1∑
k=0

⌊
jc

a
+
kc

b

⌋(
1 +

⌊
jc

a
+
kc

b

⌋)
.

As before, we replace all greatest-integer functions with fractional-part functions to
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obtain

− 2ab2c3t3 − 3b2c3t2 − 3abc3t2 − 6bc2t2 − b2c3

a
t− 6abc3t− 3bc3t− ac3t

+ 6ab2c2t+ 6abc2t− 18bc2t− 5ab2ct− 6bct
c−1∑
k=0

a−1∑
j=0

{
jb

a
+
kb

c

}

+ 6bc2t
c−1∑
k=0

a−1∑
j=0

{
jb

a
+
kb

c

}
+ 12bct

c−1∑
k=0

a−1∑
j=0

k

{
jb

a
+
kb

c

}

+ 12bct
b−1∑
k=0

a−1∑
j=0

{
jc

a
+
kc

b

}
− 24bc2t

b−1∑
k=0

a−1∑
j=0

{
jc

a
+
kc

b

}

− 6bc2t2
b−1∑
k=0

a−1∑
j=0

{
jc

a
+
kc

b

}
+

12bc2

a
t
b−1∑
k=0

a−1∑
j=0

j

{
jc

a
+
kc

b

}

+ 12c2t
b−1∑
k=0

a−1∑
j=0

k

{
jc

a
+
kc

b

}
− 6bct

b−1∑
k=0

a−1∑
j=0

{
jc

a
+
kc

b

}2

.

Now we replace the fractional-part functions in this expression with identities from

Proposition 6.5. Simplifying the expression gives:

− 2ab2c3t3 − 3b2c3t2 − 3abc3t2 − 3bc2t2 − b2c3

a
t− 3bc3t− ac3t− 3b2c2t

− 3abc2t− 9bc2t− ab2ct− c

a
t+ 12bc2 (s(ab, c) + s(ac, b) + s(bc, a)) t.

Recall that this is only the non-constant part of the numerator of the lattice-point

enumerator of P . We divide by the denominator −12bc2 and after rearranging we
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have,

abc

6
t3 +

ab+ ac+ bc+ 1

4
t2 + (− s(bc, a)− s(ca, b)− s(ab, c)) t

+

(
3

4
+
a+ b+ c

4
+

1

12

(
bc

a
+
ca

b
+
ab

c
+

1

abc

))
t.

The final step is to add to this the constant term 1 of the lattice-point enumerator,

which completes the proof.
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