
h∗-polynomials of graphical
zonotopes.

Master’s thesis

Freie Universität Berlin
Fachbereich Mathematik und Informatik

Submitted by Claudia Mitukiewicz
Matriculation number 5046954
Email cmitukiewicz@zedat.fu-berlin.de

First supervisor Prof. Dr. Matthias Beck
Second supervisor Prof. Dr. Giulia Codenotti

Berlin, 18th June 2024

Contents

1 Introduction 2

2 Background 5
2.1 Lattice polytopes and their Ehrhart polynomials in different bases 5
2.2 Descent statistics . 6
2.3 Graphs . 7
2.4 Graphical zonotopes . 9
2.5 Matroids . 10
2.6 h∗- polynomials of zonotopes . 11

3 Universal methods 12
3.1 Change of basis . 12
3.2 Simplifying a graph . 13
3.3 Determining the c-vector . 14
3.4 Computing the c-vector from the Ehrhart polynomial 20
3.5 Combining the c-vectors . 28

4 Special cases 31
4.1 Graphs with a single cycle . 31
4.2 Cactus graphs . 31
4.3 Fan graphs . 34

4.3.1 Trees from a cluster . 36
4.3.2 Types of clusters . 38
4.3.3 Which cluster types for which k? 42
4.3.4 The c-vector of a fan graph . 44

5 Open problems 49

Bibliography 51

1

1. Introduction

The Ehrhart function, denoted by ehrP (t), for a polytope P , records the number of integer
lattice points within the t-th positive integer dilation of the polytope. If P is a lattice
polytope, meaning that the coordinates of its vertices are integers, Ehrhart demonstrated
in [10] that this function agrees with a polynomial, referred to as the Ehrhart polynomial
of the polytope. The characterisation of Ehrhart polynomials is still a huge challenge, even
in dimension 3. A crucial tool in this endeavor is the h∗-polynomial of a d-dimensional
lattice polytope, which encodes its Ehrhart polynomial in the basis

(
t
d

)
,
(
t+1
d

)
, . . . ,

(
t+d
d

)
.

We discuss Ehrhart’s theory in more detail in Section 2.1.

Due to its extraordinary arithmetic properties, the graphical zonotope serves as a famous
illustration for the application of Ehrhart theory. Zonotopes, broadly defined as polytopes
resulting from the Minkowski sums of a finite number of line segments, were initially
explored in 1969 by Bolker [5]. Zonotopes are prevalent across various mathematical
domains. Apart from geometry and combinatorics, they contribute to fields such as
approximation theory, optimization, and crystallography. The class of zonotopes being
the object of interest of this thesis are graphical zonotopes defined as follows

Definition. Given a graph G, the graphical zonotope ZG induced by G is a zonotope
generated by all vectors ei− ej , where ei and ej are unit vectors and ij is an edge in G
with i > j.

This definition and more background on graphical zonotopes can be found in Section 2.4.
The goal of this thesis is to compute the h∗-polynomial of a graphical zonotope directly
from the underlying graph.

Inspired by the paper of Matthias Beck, Katharina Jochemko and Emily Maccullough
[2], we change the basis of the h∗-polynomial from the standard monomial basis to the
(A, j)-Eulerian polynomial basis. The vector whose entries are the coefficients of this
representation is called the c-vector. This thesis is not the first work introducing methods
of computing the c-vector of a graphical zonotope. In the dissertation of Aaron Dall from
2015 [8] the c-vector of a graphical zonotope for connected graphs is investigated under
the name h-vector of a graphical matroid. Dall proves that the coefficients of the c-vector
of a graphical zonotope are the coefficients of the arithmetic Tutte polynomial of the
graphical matroid evaluated at y = 1, i.e.,

TA(x, 1) =
d∑

i=0

cix
d−i, (1.1)

where A is a rank d arithmetic matroid represented by the integer vectors generating
this graphical zonotope. A geometrical method of computing the coefficients of (1.1) is
described in [13].

Dall’s work and this thesis have in common that they are both based on the matroidal
aspects of a graphical zonotope, see Section 2.5. There are two ways of representing the
graphical zonotope in the world of matroids; first, a matroid whose ground set consists
of the generating vectors of a zonotope and sets of linearly independent vectors are the
independent sets; second, the graphical matroid of the underlying graph. This discussion

2

combined with the outcomes of [2] led us to the following theorem, which is the main
result of this thesis.

Theorem 1. The coefficient cj of a c-vector of a graph G counts the spanning forests of
G with j − 1 internally passive edges.

The internally passive edges of a spanning forest are those which can be replaced by a
smaller edge without creating a cycle.

The role of the spanning trees in computing the c-vector of a graphical zonotope seems
reasonable. Indeed, the fact that any zonotope can be decomposed into half-open paral-
lelepipeds is very useful for determining the h∗-polynomial of a zonotope, and hence also
its c-vector [2]. Moreover, there is an analogy between the half-open parallelepipeds in
the decomposition of the zonotope and the spanning forests of the graph. Specifically,
for every spanning forest in a graph, there is a half-open parallelepiped, whose number of
missing facets is the number of the internally passive edges in this spanning forest.

Section 3.2 is devoted to proving that to compute the c-vector of a graph G it suffices to
consider a simplified version, i.e., connected and without cut-edges, see Corollary 14. We
call the result of such a modification of G the reduced graph of G and denote it by G̃.
We hoped to come up with a closed formula allowing us to easily compute the number of
spanning forests of a graph for every number of internally passive edges. However, this
task turned out to be more difficult than expected. In the end, the closest we got to our
aim is the following theorem, proved combinatorially in Section 3.3 and algebraically in
Section 3.4.

Theorem 2. Let G be a graph and ZG a graphical zonotope on G with c-vector (c1, c2, . . . , cd)
and let G̃ be the reduced graph of G. Then

1. c1 = 1.

2. c2 is the cyclomatic number of G̃, i.e., c2 = |E(G̃)| − |V (G̃)|+ 1.

3. c3 = c2 +
(
c2
2

)
.

4. cj > 0 for j ∈ [1, |V (G̃)|], and cj = 0 otherwise.

5. The sum of all entries of the c-vector equals the number of the spanning trees of G̃,
which by Kirchhoff’s theorem [12] is the product of the eigenvalues of the Laplacian
of G̃ divided by |V (G̃)|.

Alternative proofs of Kirchhoff’s theorem can be found in [1] and [8].

A closed formula for computing the j-th coefficient of the c-vector developed in this thesis
is

cj =

j−1∑
i=0

(−1)j−1−i

(
v − i− 1

j − i− 1

)
bi(G),

coming from the Ehrhart polynomial of a graphical zonotope, see Corollary 17. However,
this way of computing the c-vector requires the knowledge of the number of subforests of G
with i edges for i ∈ {0, 1, . . . , j−1}, denoted by bi(G). Since this is not a trivial problem,
we did not stop here and continued developing other methods of computing the c-vectors

3

of different graphs. For instance, if a graph G can be constructed by connecting graphs
with known c-vectors, Section 3.5 equips us with Proposition 21, which is a practical tool
for computing the c-vector of G.

In Chapter 4 we discuss the c-vectors for three special kinds of graphs. Section 4.1 is
devoted to graphs with exactly one cycle. It turns out that all non-zero entries of their
c-vectors are 1, see Proposition 23. An interesting aspect of computing the c-vectors of
the two remaining classes of graphs is that they are related to two very well-known basic
enumeration problems: weak compositions and integer partitions. The first of these are
cactus graphs, which also form the simplest class of graphs that Proposition 21 can be
used for. In Section 4.2 we then provide an example of an application of Proposition 21,
but mainly, as mentioned before, we show in Proposition 24 that computing the c-vector
of a cactus graph is equivalent to computing a special kind of restricted weak composi-
tions. Interestingly enough, such restricted weak compositions are topics of many papers
in Computer Science, such as [14]. We also propose an algorithm, which can be used
for this problem (see Algorithm 4.1). The third kind of graphs, investigated in Section
4.3, are fan graphs. Even though fan graphs do not seem to have complicated structures,
computing their c-vectors is quite challenging. This is mostly due to the fact that the
simple cycles of fan graphs share edges. In the case of fan graphs, we divide the pro-
cedure of computing the c-vector into three parts. Section 4.3.1 introduces the concept
of producing spanning trees from clusters, which are special subgraphs of fan graphs.
Moreover, we prove Proposition 25, which tells us how many different spanning trees are
produced from one cluster. In Section 4.3.2, we distinguish different types of clusters and
show how to compute the number of clusters of each type. The most important result
of Section 4.3.2 is Proposition 26, applying to arbitrary types of clusters, but we also
develop methods which are practical for some special cases. All formulae presented in
this section are recursive. Finally, the last thing we need for computing the c-vector of
a fan graph is to determine which types of clusters can be its subgraphs. The answer
can be found in Section 4.3.3. This is where the aforementioned integer partitions play
a major role, see Proposition 27. Similarly to weak compositions, integer partitions have
been an object of interest in Computer Science. We provide an algorithm ourselves (see
Algorithm 4.2) however, since it is not very efficient, we recommend reaching for some
professional sources (see for example [18]). Section 4.3.4 summarises Sections 4.3.1, 4.3.2
and 4.3.3 and explains how the methods developed there can be used in practice. For
better understanding, it also contains an example of computing the c-vector of a fan graph
with five 3-cycles.

4

2. Background

This chapter serves as a source of background knowledge for the methods to be developed.

2.1 Lattice polytopes and their Ehrhart polynomials in dif-
ferent bases

We begin with introducing lattice polytopes and basics of the Ehrhart theory. We follow
[3] and [4].

Definition. For a finite point set {v1,v2, ...,vn} ⊆ Rd, a polytope P is the smallest
convex set containing these points, i.e.,

P = {λ1 v1+λ2 v2+ · · ·+ λn vn |λ1, λ2, . . . , λn ≥ 0 and λ1 + λ2 + · · ·+ λn = 1}.

For a convex polytope P ⊂ Rd, we say that the hyperplane H := {x ∈ Rd : a ·x = b} is a
supporting hyperplane of P if P lies entirely on one side of H, that is,

P ⊂ {x ∈ Rd : a ·x ≤ b} or P ⊂ {x ∈ Rd : a ·x ≥ b}.

A face of P is a set of the form P ∩H, where H is a supporting hyperplane of P . The
dimension of a polytope P is the dimension of its affine hull aff(P), defined as the
inclusion-minimal affine subspace of Rd that contains P

aff(P) =
⋂{

H hyperplane in Rd : P ⊆ H
}
.

If P has dimension d, we call P a d-polytope. The 0-dimensional faces of P are called
vertices. If all vertices of P have only integral coordinates we call P a lattice polytope.

Ehrhart proved in [10] that for a lattice d-polytope P ⊆ Rd, the lattice point enumerator

ehrP (t) := |tP ∩ Zd|

agrees with a polynomial of degree d for positive integers t. We refer to ehrP (t) as the
Ehrhart polynomial of P . Furthermore we call the generating function

EhrP (z) := 1 +
∑
t≥1

ehrP (t)z
t

the Ehrhart series of P . We observe that if

ehrP (t) = ao + a1t+ · · ·+ adt
d

then

EhrP (z) = a0
∑
t≥0

zt + a1
∑
t≥0

tzt + · · ·+ ad
∑
t≥0

tdzt

=
a0

1− z
+ a1z

d

dz

(1

1− z

)
+ · · ·+ ad

(
z
d

dz

)d(1

1− z

)
=

h∗(z)

(1− z)d+1
,

where h∗(z) is a polynomial in z of degree at most d.

5

Theorem 3 (Stanley [15]). Let P be a convex lattice d-polytope with Ehrhart series

EhrP (z) =
h∗dz

d + h∗d−1z
d−1 + · · ·+ h∗0

(1− z)d+1
.

Then the coefficients h∗d, h
∗
d−1, . . . , h

∗
0 are nonnegative.

While Theorem 3 was proven in [15] from a commutative-algebra point of view, an al-
ternative, geometrical proof can be found in [3].
Expanding the Ehrhart series into binomial series yields

ehrP (t) =

(
t+ d

d

)
+ h∗1

(
t+ d− 1

d

)
+ · · ·+ h∗d

(
t

d

)
(2.1)

(see the proof of Lemma 3.14 in [3]). Observe that (2.1) is a representation of the Ehrhart
polynomial in basis

(
t
d

)
,
(
t+1
d

)
, . . . ,

(
t+d
d

)
, called the (h∗)-basis in [4]. In this work however,

we focus on the (γ)-basis representation of the Ehrhart polynomial, which is

ehrP (t) =
d∑

j=0

cj+1t
j(t+ 1)d−j . (2.2)

Definition. We call c = (c1, c2, . . . , cd+1) the c-vector of P .

2.2 Descent statistics

In this section we follow [2].
Let d ∈ N and let Sd denote the set of all permutations on [d] := {1, 2, . . . , d}.

Definition. For a permutation word σ = σ1σ2 . . . σd in Sd the descent set is defined by

Des(σ) := {i ∈ [d− 1] : σi > σi+1}.

Definition. The Eulerian number a(d, k) counts the number of permutations in Sd

with exactly k descents:

a(d, k) := |{σ ∈ Sd : des(σ) = k}|,

where des(σ) := |Des(σ)|.

Definition. The (A, j)-Eulerian number aj(d, k) is the number of permutations σ ∈ Sd

with last letter d+ 1− j and exactly k descents:

aj(d, k) := |{σ ∈ Sd : σd = d+ 1− j and des(σ) = k}|.

Definition. The (A, j)-Eulerian polynomial is

Aj(d, t) =
d−1∑
k=0

aj(d, k)t
k.

Note that by definition aj(d, k) = 0 when k < 0, j < 1, k > d − 1 or j > d. The (A, j)-
Eulerian polynomials were most likely first considered by Brenti and Welker [7], though
the (A, j)-Eulerian numbers and generalizations of them were considered earlier (see, e.g.,
[9], [16]).

6

2.3 Graphs

The definitions in this section are based on [4].

Definition. A graph G is an ordered pair G = (V,E) where V is the set of nodes and
E ⊆

(
V
2

)
is the set of edges. We denote the set of nodes of G by V (G) and the set of

edges by E(G).

Remark. It is common to define a graph in a way that allows it to have multiple edges
and loops and refer to the object defined above as a simple graph. However, since we do
not consider any non-simple graphs in this work, for convenience we just call the simple
graph a graph.

Definition. A trail in G is a sequence v1, v2, . . . , vs of nodes such that every two element
set {vj−1, vj} is a distinct edge in G for all j = 1, . . . , s. If {vs, v1} is also an edge, then
v1, v2, . . . , vs, vs+1 := v1 is called a cycle. Moreover, if the nodes vi for i ∈ [s] are distinct,
we refer to v1, v2, . . . , vs, vs+1 := v1 as a simple cycle. A trail that is not a cycle is called
a path.

Definition. A graph H = (V ′, E′) is called a subgraph of a graph G = (V,E) if V ′ ⊆ V
and E′ ⊆ E. If H is a subgraph of G, we say that G contains H.

Definition. A connected component of a graph G is a subgraph H of G, so that for
every pair of nodes v, v′ ∈ V (G) there is a trail t with v, v′ ∈ t. If G has only one connected
component we say it is a connected graph. Otherwise we callG a disconnected graph.

Definition. A forest is a graph that has no cycles. A tree is a connected forest. An
inclusion-maximal cycle-free subgraph of a graph G is called spanning forest, if G is
disconnected and spanning tree if G is connected.

Definition. A complete graph Kv is a graph such that |V (Kv)| = v and
E(G) =

(
V (Kv)

2

)
.

An example of a complete graph is the graph G = K4 in Figure 3.2.

Definition. The cyclomatic number of a graph G is |E(G)| − |V (G)| + κ(G), where
κ(G) is the number of connected components of G.

Definition. We call an edge a cut-edge if it is not contained in any cycle.

Definition. Let V ′ = {v1, v2, . . . vk} ⊆ V (G) and v /∈ V (G). The identification of V ′

results in a graph GV ′
with a node set

V (GV ′
) := V (G) \ V ′ ∪ {v}

and the edge set

E(GV ′
) := {e ∈ E(G) : e ∩ V ′ = ∅} ∪ {e \ {vi} ∪ {v} : (∃i ∈ [k] : e ∩ V ′ = {vi})}.

Definition. LetG be a graph with connected components C1, . . . , Ck andX = {x1, . . . , xk} ⊆
V (G) a set of nodes of G, so that xi ∈ Ci for all i ∈ [k]. Moreover, let x be a node with
x /∈ V (G). We call the graph GX , obtained by identification of X, the X-connected
graph of G.

7

G GX

x1

x2

x

Figure 2.1: Example of an X-connected graph of G.

Remark.

1. Notice that by the definition of identification

V (GX) = V (G) \X ∪ {x} =⇒ |V (GX)| = |V (G)| − k + 1

and

E(GX) = {e ∈ E(G) : e ∩X = ∅} ∪ {e \ {xi} ∪ {x} : e ∩X ̸= ∅}
=⇒ |E(G)| = |E(GX)|,

because GX has all the edges of G that do not contain any node xi and for every
edge (v, xi) ∈ E(G) with i ∈ [k], so that v ∈ V (Ci) there is exactly one edge
(v, x) ∈ E(GX) just as for every edge (w, x) ∈ E(GX) there is exactly one edge
(w, xi) ∈ E(G), since there is exactly one connected component Ci of G with w ∈ Ci.
This defines a one-to-one correspondence between the edges of G and GX . Moreover,
in this work, every edge of GX has the same label as the corresponding edge in G.

2. Analogously, we can connect any two connected graphs G1 and G2, by defining a
graph G, with two connected components C1 = G1 and C2 = G2. We denote such
a graph as G1XG2, where X = {x1, x2} for some x1 ∈ V (G1) and x2 ∈ V (G2).

3. Observe that GX is always connected, since for any vertex vi ∈ Ci there is a trail ti
so that vi, xi ∈ ti and hence for any vertex v of GX , there is a trail tv with v, x ∈ tv.
Therefore for any two vertices v, w of GX there is a trail t := tv ∪ tw with v, w ∈ t.

Definition. For an edge e ∈ E(G), the deletion of e results in the graph G \ e :=
(V,E \ {e}). The contraction G/e is the graph obtained by identification of the two
nodes of e and removing e.

Definition. Let G1 and G2 be two graphs. The union of G1 and G2 is a graph G1 ∪G2

such that
V (G1 ∪G2) := V (G1) ∪ V (G2)

and
E(G1 ∪G2) := E(G1) ∪ E(G2).

The join of G1 and G2 is a graph G1∇G2 such that

V (G1∇G2) := V (G1) ∪ V (G2)

and
E(G1∇G2) := E(G1) ∪ E(G2) ∪ {{v, w} : v ∈ G1 ∧ w ∈ G2}.

An example of a join of two graphs is presented in Figure 2.2.

8

G1 G2

G1∇G2

Figure 2.2: Example of a join of two graphs.

2.4 Graphical zonotopes

Just as in the previous section we follow [3] and [4].

Definition. A Minkowski sum of two convex sets K1,K2 ⊂ Rd is

K1 +K2 = {p+q : p ∈ K1,q ∈ K2}.

Definition. A Zonotope ZG is a Minkowski sum of line segments. Moreover, if for some
n ∈ N and wi ∈ Zd, ZG =

∑n
i=1[0,wi], we say that it is generated by the vectors wi.

Definition. Given a graph G, the graphical zonotope ZG induced by G is a zonotope
generated by all vectors ei− ej , where ei and ej are unit vectors and ij is an edge in G
with i > j.

Lemma 4. Consider a subset I ⊆ {ei− ej : ij ∈ [d], i > j} and an associated graph GI

with vertex set [d] and edge set {ij : ej − ei ∈ I}. Then I is linearly independent if and
only if GI is a forest.

Lemma 5. Suppose w1,w2, . . . ,wn ∈ Zd are linearly independent, let

Π := {λ1w1+λ2w2+ · · ·+ λnwn : 0 ≤ λ1, λ2, . . . , λn < 1},

and let D be the greatest common divisor of all n× n minors of the matrix formed by the
column vectors w1,w2, . . . ,wn. Then for every positive integer t,

#(tΠ ∩ Zd) = Dtn.

Consider a case, where every wl is a vector of form ei− ej . If they are linearly independ-
ent, the minors of the matrix formed by these vectors are 1 and hence, so is their greatest
common divisor D. We conclude that Π contains only one lattice point and this point is
0. This leads us to the following corollary.

Corollary 6. Let I be a linearly independent subset of {e1− e2, e2− e3, . . . , ed−1− ed}.
Then the open parallelepiped ∑

ei − ej∈I
(0, ei− ej)

contains no lattice points.

9

Corollary 7. Let G be a graph. Then the dimension of the graphical zonotope ZG is
|V (G)| − κ(G). In particular, if G is connected, the dimension of Z(G) is |V (G)| − 1.

Proof. First we notice that |V (G)|−κ(G) is the number of edges in every spanning forest
of G. Hence, by Lemma 4, the largest linearly independent subset of generators of ZG is
of size |V (G)| − κ(G). Thus, the affine hull aff(ZG) is of dimension |V (G)| − κ(G) and
consequently, so is ZG itself. Moreover, if G is a connected graph, then κ(G) = 1 and the
dimension of ZG is |V (G)| − 1.

2.5 Matroids

The paper [17] by Whitney from 1935 introduces matroids as a way to abstract the
concepts of linear algebra and graph theory. Indeed, the theory of matroids has proven
very useful for the research in these fields of mathematics, including this thesis. In this
section, we present the basic notions and facts concerning matroids, most of which were
inspired by [11].

Definition. A matroid M = (S, I) is an ordered pair consisting of a finite ground set S
and a collection I of subsets of S that satisfy the following independent set axioms:

I1 ∅ ∈ I;

I2 I is closed with respect to taking subsets; and

I3 if I1, I2 ∈ I with |I1| < |I2|, then there is some e ∈ I2 \ I1 such that I1 ∪ {e} ∈ I.

Definition. The maximally independent subsets of I are called bases. We denote the
collection of all bases by B.

Corollary 8. The bases of a matroid have the same cardinality.

Proof. Let M be a matroid and B1, B2 two bases with |B1| < |B2|. Then by I3 there
is e ∈ B2 \ B1 such that B1 ∪ {e} ∈ I, which is a contradiction to B1 being maximally
independent.

Definition. The rank of a matroid M is the cardinality of any basis of M .

For this part we use concepts introduced in [2]. Consider a matroid M = (W, I), where
W = {w1, . . . ,wm} ⊂ Zd is a set of vectors and I denotes the set of independent subsets
of W , i.e., sets of linearly independent vectors. Moreover, let w1 < · · · < wm be a fixed
order on the elements of W . For simplicity, we identify wi with i ∈ [m] in the sequel. The
order on [m] induces an order on B, namely B1 < B2 whenever B1 is lexicographically
smaller than B2.

Definition. An element i in a basis B is called internally passive if there is an element
j < i with j /∈ B, such that {j} ∪ B \ {i} is a basis. In other words, i can be exchanged
with a smaller element j. We denote the set of internally passive elements of B by IP(B).
Note that, in particular, IP(B) ⊂ B.

Definition. Let G be a graph with node set V (G) and edge set E(G). One defines the
graphic matroid M(G) as the matroid with ground set S = E(G) and independent sets
given by forests. The bases are then spanning forests of G, and hence the rank of M(G)
is given by |V (G)| − κ(G), where κ(G) is the number of connected components of G.

10

Remark. Notice that we could also represent a graph G as a matrix W with ei− ej
as column vectors for all ij ∈ E(G). By Lemma 4, (W, I) is a matroid with I ∈ I
independent if and only if GI is a forest. Moreover, the bases of (W, I) are all sets B,
so that GB is a spanning forest of G. Furthermore, for every internally passive element
p ∈ IP(B) and q /∈ B, such that B′ := B\{p}∪{q}. Thus, if ep is the edge corresponding
to p, then ep ∈ IP(GB). We refer to ep as an internally passive edge of GB.

2.6 h∗- polynomials of zonotopes

The following theorem is stated as Theorem 1.4 in [2] with a slight difference, namely in
[2] it was generalised for any translation-invariant valuation while here we only consider
the lattice point enumerator.

Theorem 9. Let Z be a d-dimensional lattice zonotope generated by a set of vectors
W ⊂ Zd. Then

h∗(Z)(t) =
∑
I⊆I

l(I)
∑
B∈B
B⊇I

A|I∪IP(B)|+1(d+ 1, t), (2.3)

where l(I) is the number of lattice points of the open parallelepiped generated by the vectors
in I. By convention l(∅) = 1.

11

3. Universal methods

The goal of this thesis is to derive methods of computing c-vector of a graphical zono-
tope, which can be performed by investigating only the underlying graph rather than the
zonotpe itself. We primarly value tools that can be applied to an arbitrary graph, and
these are the subject of this chapter.

3.1 Change of basis

In section 2.1 we see that Ehrhart polynomials can be expressed in three different bases.
It is not surprising, that there also exist different ways of expressing the h∗-polynomial.
One of these is the focus of this thesis. We simplify Theorem 9 for the case of graphical
zonotopes.

Corollary 10. Let G be a graph and ZG a d-dimensional graphical zonotope on G. Then

h∗(ZG)(t) =
∑
T∈T

A| IP(T)|+1(d+ 1, t), (3.1)

where T is the set of all spanning forests of G.

Proof. Let W ⊂ Zd be the set of vectors generating ZG. First we observe that due to
Corollary 6, l(I) = 0 unless I = ∅, in which case l(I) = 1. This means that the only
independent set of W we need to consider is I = ∅. Hence, for the graphical zonotope
the second sum of (2.3) is taken over all bases of W , since all of them contain ∅.
By the definition of a graphical zonotope, the vectors generating ZG are all of the form
ei− ej . As described in Section 2.5, the matroid M = (W, I) is a representation of the
graphical matroid M(G) and there is a one-to-one correspondence between the bases of
M and M(G). Moreover, any order on the vectors of W induces an order on the edges of
E(G) and hence the lexicographical order of bases of M also applies to the corresponding
spanning forests of G, which means that | IP(B)| = | IP(TB)|, for any B ∈ B and the
corresponding spanning forest TB.

Notice that | IP(T)| can be at most the number of edges of the spanning forests T of G,
which is |V (G)| − κ(G). Furthermore, by Corollary 7, the dimension of ZG is
d = |V (G)| − κ(G). From this observation and Corollary 10 it follows that if G is an
arbitrary graph, h∗(ZG)(t) is a linear combination of the (A, j)-Eulerian polynomials
Aj(d+ 1, t) for j ∈ [d+ 1].
The following result is taken from [2].

Proposition 11. Let ZG be a graphical zonotope with

h∗(ZG)(t) = c1A1(d+ 1, t) + c2A2(d+ 1, t) + · · ·+ cd+1Ad+1(d+ 1, t). (3.2)

Then c = (c1, c2, . . . , cd+1) is the c-vector of ZG.

For convenience, in this work we often say the c-vector of G instead of ZG. We are now
able to prove Theorem 1, stating that the coefficient cj of the c-vector of a graph G counts
the spanning forests of G with j − 1 internally passive edges.

12

Proof of Theorem 1. First we observe that the coefficient cj of the c-vector of a graph
G counts how often Aj(d + 1, t) appears in (3.1). Since the sum runs over all spanning
forests of G, and every index j is in fact the number of internally passive edges of some
spanning forest of G increased by one, Theorem 1 follows.

3.2 Simplifying a graph

In this section, we show that for computing the c-vector of a graph G, it suffices to consider
a simplified version of G, which is connected and devoid of cut-edges.
Recall that connecting a graph means picking an arbitrary vertex in every connected
component of the graph and identifying these vertices. See Section 2.3 for more details.

Proposition 12. Let X be defined as in Section 2.3 and GX be the X-connected graph
of G. Then the c-vectors of G and GX are the same.

Proof. We show that there is a bijection between the spanning forests of G and the
spanning trees of GX , preserving the number of internally passive elements. Consider a
map sending every spanning forest T of G to TX , the X-connected graph of T . First we
show that any such TX is a spanning tree of GX . We observe that since T is a spanning
forest, V (T) = V (G). Let k denote the number of connected components of G and Ci

the i-th connected component. Since

V (TX) = V (T) \X ∪ {x} = V (G) \X ∪ {x} = V (GX),

TX also contains all nodes of GX . Moreover, TX is a tree because it is connected and

|E(TX)| = |E(T)| = |V (T)| − k = |V (TX)| − 1.

Now we prove that this map is bijective. Since the sets of spanning trees of G and GX

are both finite, it suffices to show that this map is injective.
Injectivity:
Assume that T1 and T2 are two spanning forests of G with T1 ̸= T2 and TX

1 = TX
2 . Then

for any edge e ∈ E(T1) we have two cases:

1.
∀i ∈ [k] : xi /∈ e =⇒ e ∈ E(TX

1) = E(TX
2).

Since e is an edge of TX
2 , which does not contain x, it must be an edge of T2.

2.

∃i ∈ [k] : xi ∈ e =⇒ e = (v, xi), for some v ∈ V (Ci)

=⇒ (v, x) ∈ E(TX
2)

=⇒ ∃j : (v, xj) ∈ E(T2), but v ∈ V (Ci)

=⇒ j = i

=⇒ E(T2) ∋ (v, xj) = e.

An analogous argument holds for any e ∈ E(T2) and hence

E(T1) = E(T2) =⇒ T1 = T2,

13

which contradicts our assumption.
Internally passive elements:
It remains to show that the number of internally passive elements is invariant under this
map. Let T be again a spanning forest of G and e ∈ IP(T). Then there is an edge es with
a label smaller then the label of e, so that Ts = T \ {e} ∪ {es} is a spanning forest of G.
Hence, TX

s is a spanning tree of GX . Let now ex and exs be the edges of GX corresponding
to e and es, respectively. Then ex > exs and

E(TX
s) = E(TX) \ {ex} ∪ {exs} =⇒ ex ∈ IP(TX).

Conversely, let now T ∗ be a spanning tree of GX , e∗ ∈ IP(T ∗), e∗s < e∗ and T ∗
s =

T ∗ \ {e} ∪ {es}. Since the map is surjective, there is a unique spanning forest T of G, so
that T ∗ = TX and a unique spanning forest Ts, with T ∗

s = TX
s . Then again, if e and es

are the edges in G corresponding to e∗ and e∗s, respectively, then

E(Ts) = E(T) \ {e} ∪ {es} =⇒ e ∈ IP(T).

Since Proposition 12 holds independently of the choice of X, throughout this work, we
denote by G◦ a graph connected by any X.

Proposition 13. The c-vector of a graph does not change under the contraction of cut-
edges.

Proof. Let G be a graph and e one of its cut-edges. Then e is contained in every spanning
forest of G. Observe that if T is a spanning forest of G then T/{e} is a spanning forest
of G/{e} with | IP(T)| = | IP(T/{e})|, since e cannot be replaced by any smaller edge in
T and hence is not an internally passive element of T . Moreover, the collection of T/{e}
for every spanning forest T of G is the collection of all spanning forests of G/{e} and the
lemma follows.

Inspired by Proposition 12 and Proposition 13 we define the reduced graph of G.

Definition. We call a graph G̃ obtained by contracting all cut-edges of G◦ the reduced
graph of G.

Furthermore, we conclude the following.

Corollary 14. The c-vector of a graph G is the same as the c-vector of its reduced graph
G̃.

From now on, in order to characterise the c-vector of a graph, we only consider its reduced
version, since it is often smaller then the original graph, there are no cut-edges in it and it
is always connected. However, we have to keep in mind that the zonotope of the reduced
graph can have a different dimension, as it depends on the number of nodes and connected
components.

3.3 Determining the c-vector

This section is devoted to presenting a few universal properties of the c-vector, which
faciliate its computation. In this work, the order on the edges of any graph is always
strict, hence for every graph there exists a unique lexicographically minimal spanning
forest Tmin, constructed from the minimal edges of G, such that no cycle is created.

14

Definition. A spare edge is an edge not contained in the lexicographically minimal
spanning forest of a graph.

We observe a very useful fact about the spare edges.

Corollary 15. If a spanning forest T contains a spare edge s then s ∈ IP(T).

s

e e
e∗

s

Cs

Ce

Figure 3.1: This Figure depicts the situation in the proof of Corollary 15. Picture on the
left shows cycle Cs, created by adding the spare edge s to the lexicographically minimal
spanning forest of graph G. The right side of the figure presents cycle Ce, created by
adding e to the spanning forest T . We see that
Cs ∪ Ce \ (Cs ∩ Ce) is indeed a cycle.

Proof. Let T be a forest containing a spare edge s. Furthermore, let Cs be the cycle
created by adding s to Tmin. Then except for s, the cycle Cs consists only of edges
of Tmin. Thus, there must be an edge e ∈ E(Cs) ∩ E(Tmin), such that e /∈ E(T). If the
subgraph T \s∪e is not a forest, and Ce is the cycle of this subgraph, then Ce∪Cs\(Ce∩Cs)
is a cycle of G and there must be another edge e′ ∈ E(Cs) \ E(Ce), such that e′ /∈ E(T).
If T \s∪e′ still has a cycle, we repeat the argument until we find an e∗, such that T \s∪e∗

is a spanning forest of G, see Figure 3.1. Since T \ s∪ e∗ is lexicographically smaller than
T , the edge s is indeed an internally passive edge of T .

Definition. Let T be a spanning forest of G with j := | IP(T)|. Then we refer to T as
an Aj+1-forest.

Remark. Since we mainly investigate the reduced graphs, which are always connected, we
mostly use the term Aj+1-trees.

To count the number of spare edges of a graph G, we need to subtract the number of
edges of a spanning forest from the number of all edges. Therefore, there are

|E(G)| − |V (G)|+ κ(G)

spare edges, which brings us to the following corollary.

Corollary 16. The number of spare edges of a graph is the cyclomatic number of a graph.

We now have all the tools needed to prove Theorem 2 combinatorially.

Proof of Theorem 2. Let G be a graph and G̃ the reduced graph of G. We show that

1. c1 = 1;
This is clear, since there is exactly one lexicographically minimal spanning tree of G̃,
which does not have internally passive edges. Moreover, by Corollary 15, since the
other spanning trees contain at least one spare edge, their sets of internally passive
edges are not empty.

15

2. c2 is the cyclomatic number of G̃, i.e., c2 = |E(G̃)| − |V (G̃)|+ 1;
Observe that A2-trees are those in which exactly one edge can be exchanged in
order to get a lexicographically smaller spanning tree. In other words, these are the
lexicographically minimal spanning trees containing exactly one spare edge. Since
for every spare edge there is exactly one lexicographically minimal spanning tree
containing it, the claim follows. We could think about this as adding a spare edge
s to the minimal spanning tree and then deleting the maximal edge e ̸= s, in the
cycle produced in this process, see Figure 3.2.

3. c3 = c2 +
(
c2
2

)
;

Analogously to 2. A3-trees are those with exactly two internally passive elements.
Similarly as before, we add a spare edge s to the lexicographically minimal spanning
tree, which results in a cycle C and then remove the second largest edge e of the
set E(C) \ {s}, see an example in Figure 3.3. We can always do that, because
every cycle has at least three edges. However, if the number of spare edges exceeds
one, we also have A3-trees with exactly two spare edges. In this case, the spare
edges must be the only internally passive elements, so all the other edges must be
lexicographically minimal, as shown in Figure 3.4. The number of trees of the first
type is simply c2, and the number of trees of the second type is the same as the
number of pairs of spare edges, which is

(
c2
2

)
. Hence the claim follows.

4. cj > 0 for j ∈ [1, |V (G̃)|], and cj = 0 otherwise;
We want to show that the largest index j, so that cj > 0, is j = |V (G̃)| =: v. First
notice that |V (G̃)| = |E(T)|+1, where T is any spanning tree of G̃. Hence, Av-trees
are those where every edge can be replaced by an edge with a smaller label, without
creating a cycle. We construct such tree by leaving out the minimal edge in every
simple cycle and call it Tmax. We claim that Tmax is indeed an Av-tree. To see this,
first note that since there are no cut edges in G̃, for every e ∈ Tmax there is an edge
e∗ /∈ Tmax, so that Tmax \ {e} ∪ {e∗} is a spanning tree of G̃. Such e∗ must share a
simple cycle with e and since while constructing Tmax, we remove the minimal edges
from every simple cycle, the label of e must be larger than the label of e∗ and the
claim follows.

We know now that for every graph, there exists an Av-tree and also that there cannot
exist an Aj-tree with j > v, since the number of internally passive elements in a
tree cannot exceed the number of edges of this tree. However, we have not proved
that the construction above is the only way an Av-tree can be obtained and in fact,
there exist graphs where this is not the case, meaning that cv does not necessarily
equal 1, for instance for the complete graph K4, see Figure 3.2, cv = c4 = 6, since
there are six A4-trees of K4, illustrated in Figure 3.5 and Figure 3.6.

We still need to show that for any j < v, the j-th coefficient of the c-vector cj
is a positive integer. Luckily, a slight modification of the approach used to create
Tmax allows us to construct an Aj-tree T for any j < n. We proceed as follows:
we first add the maximal edge eα of G̃ and the maximal edge eβ of E(G̃) \ {eα}.
Then we add the maximal edge eγ of E(G̃) \ {eα, eβ} if it does not create a cycle,
otherwise we skipp eγ and add the maximal edge eδ of E(G̃) \ {eα, eβ, eγ} instead,
unless it creates a cycle and so on. We repeat this procedure until we collect j − 1
edges and denote the set containing them Emax. For the remaining v − i edges of
the tree, we use the analogous procedure, namely, first add the minimal edge fα
of E(G̃) \ Emax, provided it does not create a cycle, otherwise we add the minimal

16

1

2

3

4

5

6

1

2

3

Tmin

4

1

2

1

5

3

1

2

6

G

Figure 3.2: Graph G with its minimal spanning tree Tmin and all A2-trees. Dashed lines
represent the edges of Tmin, which have been replaced by spare edges 4,5 and 6 in order
to create the A2-trees of G.

17

2

1 3

4

1

2

3
5

6
31

2

Figure 3.3: A3-trees of graph G from Figure 3.2 with one spare edge each. Dashed lines
again represent the edges of Tmin, which have been replaced by spare edges 4,5 and 6.

1
5

4

2

6

4

1

6

5

Figure 3.4: A3-trees of graph G from Figure 3.2 with two spares edges and the remaining
edge chosen as small as possible.

edge fβ of E(G̃) \ Emax \ {fα} and so on, until we collect v − i of these. By this
construction, none of the v − i minimal edges can be replaced by any smaller edge,
since either they are the smallest, or replacing them by a smaller edge would lead
to a cycle. Thus, these are not internally passive. The only question is, how do we
know if the maximal j− 1 edges of T are internally passive? Let e ∈ Emax. Since G̃
has no cut-edges, there must be an edge e′ /∈ E(T) so that T \ e ∪ e′ is a spanning
tree. By construction e′ < e, because otherwise e′ would form a cycle with another
edges from Emax. Hence e is internally passive.

5. The sum of all entries of the c-vector equals the number of the spanning trees of G̃;
Since every cj counts the number of Aj-trees, by (3.2), the sum of all coefficients of
every c-vector must be the number of all spanning trees of G̃.

Remark.

1. One might guess that the number of Aj-trees is c2 +
(
c2
2

)
+ · · · +

(
c2
j−1

)
. However,

this fails already for j = 4. For example let s be a spare edge, so that there is
a 3-cycle C containing no spare edge other than s. Then we can only obtain a
spanning tree containing s and no other spare edge, if we exchange one of the edges
belonging to both C and the minimal spanning tree for s. Since we have only two
edges which could be replaced by s, we can only construct two spanning trees this
way. In particular, we get an A2-tree if we remove the maximal edge and an A3-tree
if we remove the minimal edge.

2. Since we are able to compute c1, c2 and c3 easily, knowing how many nonzero coeffi-
cient there are and what their sum is could help us to compute the remaining entries
of the c-vector.

18

The remaining question is: how to compute the coefficient cj for j > 3? In this section we
do not provide closed formula answering this question, but we show an example of how
this can be done. We finish computing the c-vector of the graph G = K4.

Example. (Computing the coefficients cj for j > 3 of the c-vector ofK4.) By Theorem 2.4
the maximal j so that cj > 0 is j = 4, which is the number of A4-trees, i.e., spanning
trees of K4 with three internally passive edges. By similar logic as before, we can obtain
such trees by adding a spare edge to Tmin which creates a cycle C and removing the third
largest edge of E(C) \ {s}. This is only possible if |E(C)| ≥ 4, which for K4 happens
exactly once, i.e., the cycle C, such that E(C) = {1, 2, 3, 4} and the edges of the resulting
A3-tree are {2, 3, 4} as presented in Figure 3.5.

2

3

4

Figure 3.5: The A4-tree of K4 with exactly one spare edge.

Now we consider the trees with exactly two spare edges. These are obtained, if to every
unordered pair of spare edges, we add a nonminimal edge. Precisely, for {4, 5} the only
choice is 2, the pair {4, 6} must be completed with the edge 3 and to {5, 6} we either add
2 or 3, see Figure 3.6.

2

5

4

3

4

6

5

6

2

5

6

3

Figure 3.6: The A4-trees of K4 with exactly two spare edges.

Finally, we get exactly one spanning tree consisting of all three spare edges, i.e., T with
E(T) = {4, 5, 6}. Altogether, these are six A4-trees, which means that c4 = 6. By
Theorem 2 we also know that c1 = 1, c2 = 3 and c3 = 6. Thus, the c-vector of K4 is
c = (1, 3, 6, 6).

19

6

4

5

Figure 3.7: The A4-tree of K4 with exactly three spare edges.

3.4 Computing the c-vector from the Ehrhart polynomial

In this section we show how to compute the c-vector of a graphical zonotope from its
Ehrhart polynomial. We recall that we defined the c-vector of a lattice polytope P as the
coefficients of its Ehrhart polynomial written in the following form

ehrP (t) =
d∑

j=0

cj+1t
j(t+ 1)d−j . (3.3)

If P is a graphical zonotope generated by a graph G, we can use Corollary 14 which says
that the c-vector of P is the same as the c-vector of ZG̃, the zonotope generated by the

reduced graph G̃ of G. Since G̃ is a connected graph, by Corollary 7, the dimension of ZG̃

is d = |V (G̃)| − 1. The only thing we need to know now is how to compute the Ehrhart
polynomial of ZG̃. For this we use the following corollary, stated in [4].

Corollary 17. Let G be a graph and v := |V (G)|. Then

ehrZG
(t) =

v−1∑
i=0

bi(G)ti, (3.4)

where bi(G) is the number of forests in G with i edges.

Remark. In Corollary 17 and later in this thesis by forests in G we actually mean forests
which are also subgraphs of G.

Notice that b0(G) = 1, since there is exactly one way to construct a forest with no edges.
Furthermore, b1(G) is the number of edges of G and b2(G) is the number of pairs of edges.
However, b3(G) is not the number of tripples of edges, since some tripples of edges can
form a 3-cycle, so for i ≥ 3, from all possible sets of i edges of G we need to subtract
those containing some cycles. Combining (3.3) and (3.4) together and applying it on G̃
yields

d∑
j=0

cj+1t
j(t+ 1)d−j =

d∑
i=0

bi(G̃)ti. (3.5)

We replaced v − 1 in (3.4) by d, since v − 1 is the dimension of the graphical zonotope
ZG̃. We rewrite the summands on the left side of (3.5) using the binomial expansion of
(t+ 1)d−j as follows,

cj+1t
j(t+ 1)d−j = cj+1

d−j∑
k=0

(
d− j

k

)
tk+j . (3.6)

20

A careful examination of (3.5) and (3.6) brings us to the conclusion that while the coeffi-
cient of ti on the right side of Equation (3.5) is bi(G̃), the coefficient of ti on the left side
is

i+1∑
j=1

cj

(
d− j + 1

i+ 1− j

)
.

Thus,

bi(G̃) =
i+1∑
j=1

cj

(
d− j + 1

i+ 1− j

)
=

i+1∑
j=1

cj

(
v − j

i+ 1− j

)
(3.7)

for i ∈ [0, v − 1].
Now we have all the tools needed to prove Theorem 2 algebraically.

Alternative proof of Theorem 2. Let ZG be the graphical zonotope generated by graph G
with a reduced graph G̃. Moreover, let e := |E(G̃)| and v := |V (G̃)|. Then

1. Setting i = 0 in (3.7) yields
1 = b0(G̃) = c1.

2. Since c1 = 1, if we set i = 1 in (3.7), then

e = b1(G̃) = c1(v − 1) + c2 = v − 1 + c2 =⇒ c2 = e− v + 1,

which is the number of spare edges of G.

3. Knowing what c1, c2 and b2(G̃) are, we can compute c3(
e

2

)
= b2(G̃) = c1

(
v − 1

2

)
+ c2(v − 2) + c3 =

(
v − 1

2

)
+ (e− v + 1)(v − 2) + c3

=⇒ c3 =

(
e

2

)
−
(
v − 1

2

)
− (e− v + 1)(v − 2)

=
e(e− 1)− (v − 1)(v − 2)− 2(ev − v2 + v − 2e+ 2v − 2)

2

=
e2 − e− v2 + 3v − 2− 2ev + 2v2 − 6v + 4e+ 4

2

=
e2 + 3e+ v2 − 3v − 2ev + 2

2

=
(e− v + 1)(e− v + 2)

2

=

(
e− v + 2

2

)
=

(
c2 + 1

2

)
= c2 +

(
c2
2

)
.

4. By (3.3), if j > d+ 1 = v, the j-th coefficient of the c-vector of G̃ must be cj = 0.
Recall that we also showed combinatorially that cj > 0 for j ∈ [d+ 1], however, we
did not come up with a fully algebraic way of proving this.

21

5. We observe that bv−1(G̃) is the number of spanning trees of G̃. Setting i = v− 1 in
(3.7),

bv−1(G̃) =
v∑

j=1

cj

(
v − j

v − j

)
=

v∑
j=1

cj

which proves the claim.

Remark. In order to compute any cj for j > 3 we need to know what bj−1(G̃) is. As
mentioned before, this gets more complicated, since counting the forests with more than
2 edges requires knowing which of the edges form cycles.

Our next goal is to express every coefficient cj as a linear combination of bi(G̃) using
(3.7). First we see how this can be done for j ∈ [4]. For sake of clarity, we write bi instead
of bi(G̃) in the following computations.

c1 = b0,

c2 = b1 −
(
v − 1

1

)
c1 = b1 −

(
v − 1

1

)
b0,

c3 = b2 −
(
v − 2

1

)
c2 −

(
v − 1

2

)
c1

= b2 −
(
v − 2

1

)(
b1 −

(
v − 1

1

)
b0

)
−
(
v − 1

2

)
b0

= b2 −
(
v − 2

1

)
b1 +

((v − 2

1

)(
v − 1

1

)
−
(
v − 1

2

))
b0

= b2 −
(
v − 2

1

)
b1 +

(
(v − 2)(v − 1)− (v − 2)(v − 1)

2

)
b0

= b2 −
(
v − 2

1

)
b1 +

(
v − 1

2

)
b0,

c4 = b3 −
(
v − 3

1

)
c3 −

(
v − 2

2

)
c2 −

(
v − 1

3

)
c1

= b3 −
(
v − 3

1

)(
b2 −

(
v − 2

1

)
b1 −

(
v − 1

2

)
b0

)
−
(
v − 2

2

)(
b1 +

(
v − 1

1

)
b0

)
−
(
v − 1

3

)
b0

= b3 −
(
v − 3

1

)
b2 +

((v − 3

1

)(
v − 2

1

)
−
(
v − 2

2

))
b1

+
((v − 3

1

)(
v − 1

2

)
−
(
v − 2

2

)(
v − 1

1

)
−
(
v − 1

3

))
b0

= b3 −
(
v − 3

1

)
b2 +

(
(v − 3)(v − 2)− (v − 3)(v − 2)

2

)
b1

+
((v − 3)(v − 2)(v − 1)

2
− (v − 3)(v − 2)(v − 1)

2
−
(
v − 1

3

))
b0

= b3 −
(
v − 3

1

)
b2 +

(
v − 2

2

)
b1 −

(
v − 1

3

)
b0.

Based on these results, we come up with the following proposition.

22

Proposition 18. The coefficient ci of a c-vector of a graph G can be expressed as the
following linear combination of bi(G̃)

cj =

j−1∑
i=0

(−1)j−1−i

(
v − i− 1

j − i− 1

)
bi(G̃). (3.8)

Proof. We prove Proposition 18 by induction on j. We already showed that (3.8) holds for
j = 1, 2, 3, 4, so we might treat these as base cases. Now we show that if for all coefficients
of the c-vector up to cj the equation (3.8) is true, it is also true for cj+1. By (3.7),

cj+1 = bj(G̃)−
j∑

k=0

ck

(
v − k

j + 1− k

)
.

Since k ≤ j, we can plug in our induction hypotesis

cj+1 = bj(G̃)−
j∑

k=1

(
v − k

j + 1− k

) k−1∑
i=0

(−1)k−1−i

(
v − i− 1

k − i− 1

)
bi(G̃). (3.9)

Observe that(
v − k

j + 1− k

)(
v − i− 1

k − i− 1

)
=

(v − k)!

(j + 1− k)!(v − j − 1)!
· (v − i− 1)!

(k − i− 1)!(v − k)!

=
(v − i− 1)!

(j + 1− k)!(v − j − 1)!(k − i− 1)!

=
(v − i− 1)!

(j − i)!(v − j − 1)!
· (j − i)!

(j + 1− k)!(k − i− 1)!

=

(
v − i− 1

j − i

)(
j − i

j + 1− k

)
.

Applying this result to (3.9) yields

cj+1 = bj(G̃)−
j∑

k=1

k−1∑
i=0

(−1)k−1−i

(
v − i− 1

j − i

)(
j − i

j + 1− k

)
bi(G̃). (3.10)

23

We rewrite the right side of (3.10), so that the outer sum runs over the indices of bi(G̃).

cj+1 = bj(G̃)−
j−1∑
i=0

bi(G̃)

j∑
k=i+1

(−1)k−1−i

(
v − i− 1

j − i

)(
j − i

j + 1− k

)

= bj(G̃)−
j−1∑
i=0

(
v − i− 1

j − i

)
bi(G̃)

j∑
k=i+1

(−1)k−1−i

(
j − i

j + 1− k

)

= bj(G̃)−
j−1∑
i=0

(
v − i− 1

j − i

)
bi(G̃)

j∑
k=i+1

(−1)k−1−i

(
j − i

k − i− 1

)

= bj(G̃)−
j−1∑
i=0

(
v − i− 1

j − i

)
bi(G̃)

j−i−1∑
k=0

(−1)k
(
j − i

k

)

= bj(G̃)−
j−1∑
i=0

(
v − i− 1

j − i

)
bi(G̃)

(
(1− 1)j−i − (−1)j−i

)
= bj(G̃)−

j−1∑
i=0

(
v − i− 1

j − i

)
bi(G̃)(−1)j−i+1

= (−1)j−j

(
v − j − 1

j − j

)
bj(G̃) +

j−1∑
i=0

(−1)j−i

(
v − i− 1

j − i

)
bi(G̃)

=

j∑
i=0

(−1)j−i

(
v − i− 1

j − i

)
bi(G̃).

Thus, Proposition 18 follows.

We can also prove Proposition 18 in a combinatorial manner, i.e., by showing that (3.8)
indeed counts the Aj-forests of a graph G. Since it is quite a complicated proof, it might
be helpful to see the example at the end of this section, where we compute the coefficient
c4 of the graph presented in Figure 3.8, in the spirit of our combinatorial interpretation
of (3.8).
Recall that computing the Aj-forests of a graph G is the same as computing the Aj-
trees of a graph G̃. We begin with introducing a few observations which are crucial for
understanding the equation (3.8).

1. For any forest F in G̃, there is a unique lexicographically minimal spanning tree
containing F , which we denote by TF .

2. It is not neccessarily true that the set of edges of F equals the set of internally
passive edges of TF , for instance, consider any forest F being a subgraph of Tmin, the
lexicographically minimal spanning tree of G̃. Then TF = Tmin and IP(Tmin) = ∅.

3. It is always true that IP(TF) ⊆ E(F), since the edges in the set E(TF) \ E(F) are
as minimal as possible.

Lemma 19. Let F be a forest in a graph G̃. Then E(F) is the set of internally passive
elements for a spanning tree T of G̃ if and only if TF = T and there is no F ′ ⊊ F , such
that T = TF ′.

Proof. If E(F) = IP(T), then the edges in E(T) \ E(F) must be minimal, so that there
are no more internally passive edges in T . Thus, TF = T . Furthermore, if there is a forest

24

F ′ ⊊ F , such that T = TF ′ , then, as observed in 3, IP(T) ⊆ E(F ′). Since E(F) contains
more elements than E(F ′), this is a contradiction to E(F) = IP(T). Conversely, consider
an arbitrary spanning tree T of G̃. Then T = TIP(T), because the non-internally passive

edges must be as minimal as possible. Now let F be a forest in G̃, such that TF = T .
Then again, by observation 3, we know that IP(T) ⊆ E(F). If additionally there is no
F ′ ⊊ F , such that T = TF ′ , the edges of the forest F must indeed be the internally passive
edges of the spanning tree T .

The idea of proving Proposition 18 is the following: we show that the right side of the
equation (3.8) counts the Aj-trees of G̃ by counting the sets of j−1 edges of G̃, which are
exactly the internally passive elements for a unique spanning tree of G̃. Precisely, from
all forests of G̃ with j − 1 edges, we subtract those, for which this is not the case, i.e., by
Lemma 19, we remove every set of j− 1 edges E, if for the forest F with E = E(F) there
is a subforest F ′ ⊊ F such that E(F ′) = IP(TF).
Notice that if we reverse the order of summation in (3.8), we first subtract bj−2(G̃)

(
v−j−1

1

)
from bj−1(G̃), which is the number of all forests of G̃ with j−1 edges. It seems reasonable
to interpret bj−2(G̃)

(
v−j−1

1

)
as the number of forests of G̃ with j−1 edges, constructed in

the following way: to every forest Fj−2 with j − 2 edges, we add an edge e, chosen from
the remaining edges of the corresponding lexicographically minimal spanning tree TFj−2 .

Let Fe be the forest in G̃, such that E(Fe) = E(Fj−2) ∪ {e}. Then TFe = TFj−2 and by
Lemma 19 and observation 3, e is not internally passive in TFe . Since we construct such
forests for all possible forests of G̃ on j − 2 edges, we remove all forest with at least one
edge that cannot be internally passive. However, the forests constructed this way are not
unique, i.e., some forests are subtracted more then once. This problem is solved by the
other summands of (3.8). Let us have a glimpse at the technical details.
Let Fi be a forest of G̃ with i edges and let TFi be the lexicographically minimal spanning
tree of G̃ containing the edges of Fi. Consider a multiset Mi of sets of edges of G̃, defined
as follows

Mi :=
⋃
Fi

{{E(Fi) ∪R}|R ⊆ E(TFi) \ E(Fi) ∧ |R| = j − 1− i}.

In particular, the sets in M0 contain only the edges of the lexicographically minimal
spanning tree Tmin and the elements of Mj−1 are sets of edges of all possible forests in G̃
with j − 1 edges. First we observe that the cardinality of Mi is

|Mi| = bi(G̃)

(
v − i− 1

j − i− 1

)
,

since there are bi(G̃) forests with i edges in G̃ and for every choice of such forest Fi, there
are

(
v−i−1
j−i−1

)
ways of choosing the j − 1− i edges of R from the v − i− 1 remaining edges

of E(TFi) \ E(Fi). This means that we can write (3.8) as

cj =

j−1∑
i=0

(−1)j−1−i|Mi|. (3.11)

Moreover, the multiplicity of a set {E(Fi) ∪R} in Mi is(
j − i− 1 + |E(Fi) \ E(F ′)|

j − i− 1

)
, (3.12)

25

where F ′ is a forest, such that E(F ′) = IP(TFi). Indeed, we can express {E(Fi) ∪ R}
as a disjoint union of sets E(F ′), R and E(Fi) \ E(F ′). Then for a forest F ∗

i and R∗ ⊆
E(TF ∗

i
), the set {E(F ∗

i) ∪ R∗} is equal to {E(Fi) ∪ R} if and only if TFi = TF ∗
i
and for

F ′ := IP(TFi) = IP(TF ∗
i
),

R∗ ∪ (E(F ∗
i) \ E(F ′)) = R ∪ (E(Fi) \ E(F ′)).

Since the number of possible choices for j−1− i edges of R from j− i−1+ |E(Fi)\E(F ′)|
edges of R∪ (E(Fi) \E(F ′)) is (3.12), so is the multiplicity of {E(Fi)∪R} in Mi. Notice
that each set of Mj−1 appears exactly once.
Furthermore, we observe that a set {E(Fi) ∪ R} can also appear in Mk for k ̸= i. The
next step needed for proving Proposition 18 combinatorially is checking how often a set
E of j − 1 acyclic edges of G̃, such that there is no spanning tree T with IP(T) = E, is
counted in (3.8) or equivalently in (3.11). Alternatively, by Lemma 19, if FE is the forest
such that E = E(FE), then these are exactly the sets for which there is a subset E′ ⊊ E
with IP(TFE

) = E′. Consequently, each set that we want to count is a disjoint union of
a set of all internally passive edges for some spanning tree with at most j − 2 internally
passive edges and a subset of non-spare edges of this spanning tree. A more mathematical
description of these sets can be found in the following lemma.

Lemma 20. Let Fk be a forest of G̃ with k ∈ {0, 1, . . . , j − 2} edges, such that E(Fk) =
IP(TFk

). Then the count of the set of edges {E(Fk) ∪R}, such that R ⊆ E(TFk
) \ E(Fk)

with |R| = j − 1− k in (3.11) sums up to zero.

Proof. Notice that for i ≥ k a set {E(Fk) ∪ R} is an element of the multiset Mi, since
we can express it as {E(Fi) ∪ R∗}, where R∗ ⊂ R with |R∗| = j − 1 − i and E(Fi) =
E(Fk) ∪ (R \R∗). Then by (3.12), the multiplicity of {E(Fk) ∪R} in Mi is(

j − 1− i+ |E(Fi) \ E(Fk)|
j − i− 1

)
=

(
j − i− 1 + i− k

j − i− 1

)
=

(
j − 1− k

j − i− 1

)
.

Summing over all i ∈ {k, k + 1, . . . , j − 1}, the number of times that {E(Fk) ∪ R} is
counted in (3.11) is

j−1∑
i=k

(−1)j−1−i

(
j − 1− k

j − 1− i

)
=

j−1−k∑
i=0

(−1)i
(
j − 1− k

i

)
= 0.

Now we are ready to prove Proposition 18.

Combinatorial proof of Proposition 18. Observe that all sets E of j − 1 edges, such that
there is a spanning tree T of G̃, with IP = E, are elements of Mi if and only if i = j − 1.
Indeed, if i < j− 1, then for every set E := {E(Fi)∪R} ∈ Mi, the set R, which does not
contain internally passive edges of TFi , is non-empty. Hence, if F is a forest of G̃ with
E(F) = E, then TF = TFi and by Lemma 19, the set E cannot be a set of internally
passive edges for any spanning tree of G̃. Moreover, as mentioned before, the multiplicity
of all elements of Mj−1 is 1. Given a set {E(Fj−1)} ∈ Mj−1, either E(Fj−1) = IP(TFj−1)
or there is a subforest F ′ ⊆ F , such that E(F ′) = IP(TFj−1). By Lemma 20, the sets
from the second case cancel out in (3.11) and consequently also in (3.8). Hence, (3.8)
only counts the sets of the first kind. For every such set {E(Fj−1)} there is a unique
spanning tree TFj−1 , with | IP(TFj−1)| = j − 1. Conversely, by construction of Mj−1, for
any spanning tree T with j − 1 internally passive edges, the set IP(T) ∈ Mj−1 with
multiplicity 1. Thus, (3.8) indeed counts the Aj-trees of G̃.

26

Example. (Computing the c-vector from the Ehrhart polynomial) Let G be a graph as
illustrated in Figure 3.8. Then G = G̃. We compute the c-vector of G using (3.8). First

1

2

3

4

5

Figure 3.8: Graph G with four vertices and five edges. Since G is connected and has no
cut-edges, the reduced graph of G is G itself. The graph G contains three cycles, a 4-cycle
with edges {1, 2, 3, 4} and two 3-cycles with edges {1, 4, 5} and {2, 3, 5}.

we need to know the value of bi(G) for i ∈ {0, 1, 2, 3}. As mentioned before,

b0(G) = 1, b1(G) = |E(G)| = 5, b2(G) =

(
|E(G)|

2

)
= 10

and if χ3(G) is the number of 3-cycles of G, then

b3(G) =

(
|E(G)|

3

)
− χ3(G) =

(
5

3

)
− 2 = 8.

Applying these results into (3.8), we get

c1 = 1,

c2 = 5−
(
3

1

)
= 2,

c3 = 10−
(
2

1

)
5 +

(
3

2

)
= 3 and

c4 = 8−
(
1

1

)
10 +

(
2

2

)
5−

(
3

3

)
= 2.

Notice that the results for c1, c2 and c3 agree with Theorem 2. Let us see how the
interpretation of (3.8) presented in the combinatorial proof of Proposition 18 works in
the case of c4. We determine the multisets Mi. For i = 3, the elements of Mi are simply
the sets of edges of all forests of G with 3 edges, which in this case are the spanning trees
of G. Explicitly,

M3 = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}}.

We construct the elements of M2. First, we pair every subforest of Tmin consisting of two
edges with the remaining edge of Tmin. This yields three sets {1, 2, 3}. Now we consider
the forests containing exactly one edge of Tmin. The corresponding sets of two edges are

{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}.

We complete each of these sets with the remaining edge of the lexicographically minimal
spanning tree containing them and obtain

{1, 2, 4}, {1, 2, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},

27

respectively. We observe that the sets {1, 2, 4}, {1, 2, 5} repeat each twice. The set of edges
of the only remaining forest with 2 edges is {4, 5} and the corresponding lexicographically
minimal spanning tree is {2, 4, 5}. This yields

M2 = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}, {1, 2, 4}, {1, 2, 4}, {1, 2, 5}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 4, 5}}.

Analogously,

M1 = {{{1} ∪ {2, 3}}, {{2} ∪ {1, 3}}, {{3} ∪ {1, 2}}, {{4} ∪ {1, 2}}, {{5} ∪ {1, 2}}}
= {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}}.

It is easy to see that

M0 = {{1, 2, 3}}.

To compute the number of occurences of each set of three acyclic edges of G in (3.8),
we need to add their multplicity in M3, subtract their multplicity in M2, add their
multplicity in M1 and subtract their multplicity in M0. The results are the following

#{1, 2, 3} = 1− 3 + 3− 1 = 0,

#{1, 2, 4} = 1− 2 + 1 = 0,

#{1, 2, 5} = 1− 2 + 1 = 0,

#{1, 3, 4} = 1− 1 = 0,

#{1, 3, 5} = 1− 1 = 0,

#{2, 3, 4} = 1,

#{2, 4, 5} = 1− 1 = 0,

#{3, 4, 5} = 1.

These results agree with our primar computation of c4. Moreover, the sets of edges
{2, 3, 4} and {3, 4, 5} are indeed the sets of edges of the only two A4-trees of G, since all
of their edges are internally passive, which is not true for any other spanning tree of G.

3.5 Combining the c-vectors

Recall that any two connected graphs G and G′ can be X-connected for X = {x1, x2},
where x1 ∈ V (G) and x2 ∈ V (G′), resulting in a graph GXG′ with

E(GXG′) = {e ∈ E(G)∪E(G′) : e∩X = ∅}∪{e\{xi}∪{x} : e ∈ E(G)∪E(G′)∧e∩X = {xi}}.

As mentioned before the c-vector of GXG′ is the same for any choice of X and hence in
this chapter, for convenience, we denote a graph obtained by X-connecting G and G′ for
any set X by G ◦G′. Moreover, if T and T ′ are spanning trees of G and G′, respectively,
then in this thesis, T ◦ T ′ means that T and T ′ are X-connected with the same set X as
G ◦G′.

Proposition 21. If c is the c-vector of G and c′ the c-vector of G′, then the entry j of
the c-vector of G ◦G′ is

c◦j =

j∑
i=1

ci · c′j−i+1.

28

Before we prove this proposition, we prove the following lemma.

Lemma 22. Let G and G′ be graphs with spanning trees T and T ′, respectively. Then if
T is an Ai-tree and T ′ an Aj-tree, T ◦ T ′ is an Ai+j−1-tree of G ◦G′.

Example. Consider two graphs G and G′ as presented in Figure 3.9 and a spanning
trees T of G and T ′ of G′, as in Figure 3.10. Then T is an A3-tree, since IP(T) = {4, 5}
and T ′ is an A2-tree, since IP(T ′) = {3′}. Then T ◦ T ′ is an A4-tree of G ◦ G′ with
IP(T ◦ T ′) = {4, 5, 3′} as depicted in Figure 3.11.

1

2

3

4

5
1′ 2′

3′

G G′

Figure 3.9: Graphs G and G′.

2

4

5
1′

3′

T T ′

Figure 3.10: An A3-tree T of graph G and an A2-tree T ′ of graph G′.

Proof. Let T be an Ai-tree of G and T ′ an Aj-tree of G′. In the proof of Proposition 12
we showed that T ◦ T ′ is a spanning tree of G ◦ G′. We still need to show that it is an
Ai+j−1-tree. For this, notice that | IP(T ◦T ′)| = | IP(T)|+| IP(T ′)| = i−1+j−1 = i+j−2
and hence T ◦ T ′ is indeed an Ai+j−1-tree of G ◦G′.

Proof of Proposition 21. We recall that the spanning trees of a graph G◦G′ are exactly all
possible results of connecting spanning trees of G and G′. Since c◦j counts the spanning
trees with j − 1 internally passive elements, by Lemma 22, we need to see how many
combinations of spanning trees of G with spanning trees of G′ give us an Aj-tree. To
compute this we sum up all products ca1 · c′a2 where a1, a2 are nonegative integers, such
that a1+a2 = j+1. All products satisfying these conditions are c1 · c′j , c2 · c′j−1, . . . , cj · c′1
and the claim follows.

Remark. Observe that we can use Proposition 21 to compute the c-vector of any discon-
nected graph, if we know the c-vectors of each of its components.

29

1

2

3

4

5
1′ 2′

3′

2

4

5
1′

3′

T ◦ T ′

G ◦G′

Figure 3.11: T ◦ T ′ is an A4-tree of G ◦G′.

The simplest class of a graphs on which Proposition 21 can be applied are cactus graphs,
introduced in Section 4.2.

30

4. Special cases

In Chapter 3, we conclude that computing the coefficient cj of the c-vector of a graph
G for j > 4 is challenging without knowledge of the number of forests of G with i edges
for i ∈ {0, 1, . . . , j − 1}. However, there are certain kinds of graphs, for which this task
is simpler, than for the others. In this chapter we introduce three of them and derive
methods for computing all entries of their c-vectors.

4.1 Graphs with a single cycle

First we take a look at the easiest case: graphs with a single cycle. Notice that the cycle
in such graph must be simple, because if there was a node repeating itself, we could tile
this cycle into at least two cycles.

Proposition 23. Let G be a graph containing exactly one cycle. Then the c-vector of ZG

is 1∈ Nv, where v is the number of nodes in this cycle.

Proof. Notice that the reduced graph G̃ of G is a simple cycle. Hence, for every edge e of
G̃ there is exactly one spanning tree Te which does not contain e and conversely, for any
spanning tree T there is exactly one edge eT not contained in T . Let Te be a spanning
tree not containg the edge e and me the number of edges with higher labels than e. Then
Te has me internally passive elements, since all the edges with labels bigger than e can be
replaced with e in order to get a lexicographically smaller spanning tree. Furthermore,
consider the largest edge smaller than e, say e∗. Then there are exactly me + 1 edges
with labels larger than e∗. We can repeat this until we arrive at the smallest edge emin,
which has |E(G̃)| − 1 = v − 1 edges larger than itself. Since the largest edge of G̃ has no
edges bigger than itself, we conclude that for every number of internally passive elements
m ∈ [0, v − 1] there is a unique edge em, so that there are exactly m edges with larger
label than em and automatically exactly one spanning tree Tem , which is an Am+1-tree.
Hence, c1 = c2 = · · · = cv = 1, which proves the proposition.

4.2 Cactus graphs

We now progress to the next level of difficulty: cactus forests defined as follows.

Definition. A cactus forest is a graph where any two cycles have at most one node in
common. If the graph is connected, we call it simply a cactus graph. We refer to the
simple cycles of such graphs as sections.

Since the reduced graph of any cactus forest is a cactus graph, we consider only the latter.
An example of a cactus graph with sections s1, s2 and s3 is depicted in Figure 4.1.
It turns out that determining the c-vector of a cactus graph can be interpreted as a slight
modification of a famous distribution problem weak composition, described with more
detail in [6].

Definition. A sequence (a1, a2, . . . , at) of integers fulfilling aj ≥ 0 for all j and
a1 + a2 + · · ·+ at = b is called a weak composition of b into t parts.

Proposition 24. Let G be a cactus graph with sections s1, s2, . . . , sn. Then cj is the
number of weak compositions of j−1 into n parts m1,m2, . . . ,mn, so that mi ≤ |E(si)−1)|.

31

s1 s3

s2

1

2

3

4

5

6

7

8

910

Figure 4.1: Cactus graph with three sections.

Example. Let G be a cactus graph as depicted in Figure 4.1. Table 4.1 presents all A4-
trees of G and corresponding weak compositions (m1,m2,m3), such thatm1+m2+m3 = 3
and 0 ≤ mi ≤ |E(si)− 1)|.

A4-tree of G internally passive internally passive internally passive corresponding
edges from s1 edges from s2 edges from s3 weak composition

1 2 3 5 7 9 10 - 7 9,10 (0,1,2)

1 2 3 6 7 8 10 - 6,7 10 (0,2,1)

1 2 4 5 6 9 10 4 - 9,10 (1,0,2)

1 2 4 5 7 8 10 4 7 10 (1,1,1)

1 2 4 6 7 8 9 4 6,7 - (1,2,0)

1 3 4 5 6 8 10 3,4 - 10 (2,0,1)

1 3 4 5 7 8 9 3,4 7 - (2,1,0)

2 3 4 5 6 8 9 2,3,4 - - (3,0,0)

Table 4.1: The A4-trees of the cactus graph G and the corresponding weak compositions.

Remark. The weak compositions satisfying the conditions of Proposition 24 are a special
case of second-order restricted weak compositions described in [14].

Proof. When we construct a tree in a cactus graph, for every section si we remove exactly
one edge ei. Similarly as in the proof of Proposition 23, for every edge ei ∈ si, if there
are mi edges in si with larger label then ei, all these edges can be exchanged for ei in
order to get a lexicographically smaller spanning tree and hence the number of internally
passive elements in a spanning tree is m1 +m2 + · · · +mn. Now if we choose a natural
number j and want to know how many Aj-trees there are, we have to count how many
possible solutions there are for

m1 +m2 + · · ·+mn = j − 1,

with 0 ≤ mi ≤ |E(si)| − 1.

32

Applying the algorithm presented in [14] to our case, we obtain the list of all weak
compositions of j−1 restricted in terms of Proposition 24. Then cj is the length of the list.
According to [14], the worst-case time-complexity of the algorithm is O((j − 1)

(
n+j−2
n−1

)
).

The coefficient cj can also be computed recursively using depth-first-search, for example
by implementing the pseudocode Algorithm 4.1. This approach is not as efficient as the
algorithm from [14], but provides intuitive insights. It can be optimized using dynamic
programming, i.e. by memorizing solutions to sub-problems.

1 Input: an integer j and an integer list s.

2 Function weakCompositions(j-1,s)

3 Set n = len(s), c=0

4 Function dfs(p,currentSum)

5 I f currentSum ==j-1 Then
6 Increment c

7 Return
8 Endif
9 I f p==n Or currentSum >j-1 Then

10 Return
11 Endif
12 For i=0 To s[p]-1 Do
13 Call dfs(p+1, currentSum+i)

14 Endfor
15 Endfunction
16 Call dfs(0,0)

17 Output: c

18 Endfunction

Algorithm 4.1: A pseudo code which computes the coefficient cj of the c-vector of a cactus
graph.

Here is a step-by-step explanation of how the code in the Algorithm 4.1 works:

1. weakCompositions(j−1, s) is the main function that calculates the number of valid
weak compositions of j − 1 using non-negative integers m1,m2, . . . ,mn, so that mk

is smaller than the entry k of s. In the cactus graph world, s is a list of the sizes of
sections of the cactus graph G and the function weakCompositions(j− 1, s) counts
the Aj-trees of G.

2. c is initialized to 0. This variable stores the count of valid compositions. At the end
c is the value of cj .

3. The dfs function is defined within weakCompositions. It takes two arguments: p
and currentSum. The variable p ∈ [n] represents the current position in the list s,
and currentSum represents the running sum of integers chosen so far.

4. Inside the dfs function: “If currentSum == j − 1”: checks if the current running
sum equals the target j− 1. If it does, it means we have found a valid composition,
so we increment the result by 1.“If p == n Or currentSum > j − 1 :” checks if we
have reached the end of the list s or if the current running sum has exceeded j − 1.
If either condition is met, we return from the function, as further exploration of this
branch cannot lead to a valid composition. The loop “For i ∈ [0, s[p]− 1] :” iterates
through all possible values of mp from 0 to s[p]− 1.

5. Inside the loop, dfs(j + 1, currentSum+ i) is called recursively to explore compos-
itions that include the current value i from the list s. The index j is incremented
to consider the next integer from s, and the currentSum is updated by adding i.

33

6. Finally, the main function weakCompositions initiates the depth-first-search by
calling dfs(0, 0) with the initial index j and currentSum set to zero. The function
returns the value of result, which represents the total number of valid compositions.

It is also possible to compute the c-vector of a cactus graph without linking this problem
to restricted weak compositions. Namely, we can use the method described in Section 3.5.
We present an example illustrating how combining the c-vectors can be used to compute
the c-vector of a cactus graph.

Example. Let G be a graph, as presented in Figure 4.1 . Then G is a possible outcome
of connecting three cycle graphs, C∗, C∗∗, C∗∗∗, such that C∗ has four edges, and C∗∗

and C∗∗∗ have three edges each, in an arbitrary order, for example: (C∗ ◦ C∗∗) ◦ C∗∗∗

By Proposition 23, the c-vector of C∗, denoted by c∗, is 1∈ N4, and the c-vectors of C∗∗

and C∗∗∗, denoted by c∗∗ and c∗∗∗, respectively, are both 1∈ N3. First we compute the
c-vector of C∗ ◦ C∗∗, denoted by c◦, using Proposition 21.

c◦1 = 1,

c◦2 =
2∑

i=1

c∗i · c∗∗j−i+1 = c∗1 · c∗∗2 + c∗2 · c∗∗1 = 1 + 1 = 2,

c◦3 =
3∑

i=1

c∗i · c∗∗j−i+1 = c∗1 · c∗∗3 + c∗2 · c∗∗2 + c∗3 · c∗∗1 = 1 + 1 + 1 = 3,

c◦4 =

4∑
i=1

c∗i · c∗∗j−i+1 = c∗1 · c∗∗4 + c∗2 · c∗∗3 + c∗3 · c∗∗2 + c∗4 · c∗∗1 = 0 + 1 + 1 + 1 = 3,

c◦5 =

5∑
i=1

c∗i · c∗∗j−i+1 = c∗3 · c∗∗3 + c∗4 · c∗∗2 = 1 + 1 = 2,

c◦6 =

6∑
i=1

c∗i · c∗∗j−i+1 = c∗4 · c∗∗3 = 1.

Now we compute the c-vextor of (C∗ ◦ C∗∗) ◦ C∗∗∗, denoted by c◦◦,

c◦◦1 = 1,

c◦◦2 = c◦1 · c∗∗∗2 + c◦2 · c∗∗∗1 = 1 + 2 = 3,

c◦◦3 = c◦1 · c∗∗∗3 + c◦2 · c∗∗∗2 + c◦3 · c∗∗∗1 = 1 + 2 + 3 = 6,

c◦◦4 = c◦1 · c∗∗∗4 + c◦2 · c∗∗∗3 + c◦3 · c∗∗∗2 + c◦4 · c∗∗∗1 = 0 + 2 + 3 + 3 = 8,

c◦◦5 = c◦3 · c∗∗∗3 + c◦4 · c∗∗∗2 + c◦5 · c∗∗∗1 = 3 + 3 + 2 = 8,

c◦◦6 = c◦4 · c∗∗∗3 + c◦5 · c∗∗∗2 + c◦6 · c∗∗∗1 = 3 + 2 + 1 = 6,

c◦◦7 = c◦5 · c∗∗∗3 + c◦6 · c∗∗∗2 = 2 + 1 = 3,

c◦◦8 = c◦6 · c∗∗∗3 = 1.

4.3 Fan graphs

In this section we present fan graphs, the simplest class of graphs among the graphs
with edges belonging to more than one cycle.

Definition. A fan graph Fk is the join of a single vertex o and a path with k+1 vertices
where k ≥ 1.

34

Remark. In the literature we can find a more general definition of a fan graph where the
single vertex o is replaced by an empty graph on n ∈ N nodes.

For this work we fix an embedding of a fan graph where the path lies horizontally above
the vertex o as presented in Figure 4.2.

o

Figure 4.2: Fan graph F4.

Since the c-vector does not depend on the labeling of the edges of a graph, we label
the edges containing o with numbers from 1 to k + 1 from left to right and the edges
not containing o with numbers from k + 2 to 2k + 2 also from left to right as presented
in Figure 4.3. With this labeling, the edges from 1 to k + 1 form the lexicographically
minimal spanning tree of a fan graph Fk, denoted as before by Tmin, and the edges from
k + 2 to 2k + 2 are the spare edges of Fk.

o

1

2
3 k

k + 1

k + 2
k + 3

2k + 2

Figure 4.3: Labeling of Fk.

Definition. For j ∈ [k], we call the 3-cycle ∆j ⊆ Fk with edges j, j + 1, k + j + 1 a
triangle of Fk. Moreover, if j + 1 ∈ [k], we say that ∆j and ∆j+1 are neighbouring.

Definition. We call a subgraph B ⊆ Fk a block of Fk of size i, if there exist i consecutive
triangles ∆j , . . . ,∆j+i−1 of Fk such that B =

⋃i−1
ℓ=0∆j+ℓ.

See Figure 4.4 for an example of a block.

Figure 4.4: The shaded area represents a block of F6 which is the union of triangles ∆2

and ∆3.

If the triangles are not necessarily consecutive arrive at the following more general defin-
ition.

35

Definition. We call a subgraph K ⊆ Fk a cluster of Fk, if K is a union of triangles of
Fk. Moreover, we call a block B ⊆ K of Fk a maximal block of K if there is no block
B′ ⊆ K such that B ⊆ B′.

Remark. In the following subsections we think of clusters rather as unions of their maximal
blocks. For convenience we refer to the maxmimal blocks simply as blocks.

See Figure 4.5 to understand the concept of a cluster and the difference between a block
and a maximal block. Other examples of clusters are presented in Figure 4.6 and Figures
4.11-4.16.

Figure 4.5: The shaded area represents a cluster K of F6. There are two maximal blocks
of K, namely B1, which is the union of triangles ∆1,∆2,∆3 and ∆4 and B2, which is just
the triangle ∆6. The union of triangles ∆1 and ∆2, shaded with a brighter colour, is a
block of F6, but not a maximal block of the cluster K, since it is contained in the block
B1 ⊂ K.

We recall the definition of an Aj-tree, which is a spanning tree T of a graph G such that T
has i−1 internally passive edges, where an edge e is called internally passive if there exists
an edge e′ /∈ T so that replacing e by e′ results in a lexicographically smaller spanning
tree. Moreover the entry cj of the c-vector of any graph is the number of Aj-trees of this
graph. Since the goal of this section is to determine the c-vector of a fan graph Fk, we
need to investigate its spanning trees. First we consider an interesting relation between
the clusters and the spanning trees of Fk.

4.3.1 Trees from a cluster

Observe that any cluster K of Fk is uniquely determined by a subset of the spare edges
and vice versa. Indeed, for any subset Es of spare edges we can construct a cluster K
containing exactly these spare edges by taking the join of the graph induced by Es and the
vertex o. Conversely, any cluster K of Fk is the union of triangles, each of which uniquely
determines the corresponding spare edge, i.e., the spare edge k+ j+1 corresponds to the
the triangle ∆j . Thus, there is a bijection between the subsets of spare edges and the
clusters of Fk.

Definition. We say that a spanning tree T of Fk is produced from a cluster K if it
contains all spare edges belonging to K and no other spare edge of Fk.

Remark. It is important to notice that a spanning tree produced from a cluster K is not
unique. Moreover, every edge e ∈ Tmin \K must be in all spanning trees produced from
K, since this is the only way to reach the vertices of Fk \K without using the spare edges
that are not in K.

Before we show an example ilustrating the above definition, we state Proposition 25.

Proposition 25. Let K be a cluster of a fan Fk with blocks B1, B2, . . . , Bm. Let tℓ denote
the number of triangles of Bℓ and t :=

∑m
ℓ=1 ti the total number of triangles in K. Then,

for 0 ≤ x ≤ m, the number of At+x+1-trees produced from K is

36

∑
M∈([m]

x)

∏
j∈M

tj . (4.1)

Moreover, the number of At+x+1-trees produced from K is zero if x > m.

In the following example we consider a cluster K of F6, construct all possible spanning
trees produced from K and show that Proposition 25 holds for K.

Example. Let K be a cluster of F6 with two blocks B1 and B2 as presented in Figure 4.6.
Note that here t1 = 2 and t2 = 1.

8

9
10 11 12

13

1

2
3

4 5 6

7

Figure 4.6: The shaded triangles represent cluster K with two blocks: B1 consisting of
triangles ∆1 and ∆2 and B2 consisting of a single triangle ∆5. The set of spare edges
corresponding to this cluster is {8, 9, 12}.

By definition, every spanning tree produced from K contains the edges 8,9 and 12. Hence,
every spanning tree produced from K has at least three internally passive elements. This
means that the lexicographically minimal spanning tree of F6 that can be produced from
K is an A4-tree and besides 8,9 and 12 contains only minimal edges of the blocks of K,
which are 1 for B1 and 5 for B2, and the edges of Tmin \K, which are 4 and 7. This tree
is presented in Figure 4.7.

1

5

12
9

8

4

7

Figure 4.7: The only A4-tree produced from K.

An A5-tree must have four internally passive edges. Since three of them are the spare
edges 8,9 and 12, we must replace either 1 or 5 by some larger edge from the same block.
There are three possibilities to do this, i.e., we can replace 1 with 2 or 3, or 5 with 6.
This gives us three different A5-trees as ilustrated in Figure 4.8.
Finally, we consider all A6-trees that can be produced from K. These cannot contain
the minimal edge of neither of blocks. This leaves edge 2 or 3 as the choice for block B1

and edge 6 as the only choice for block B2. The two resulting A6-trees are depicted in
Figure 4.9.
Notice that the trees described in this example are the only spanning trees of F6 containing
exactly the spare edges 8,9, and 12 and hence for i > 6 there are no Aj-trees produced
from K.

37

8

9 12 12

5

2

5

9

8
3

9

8

1

6

12

4

7

4

7

4

7

Figure 4.8: Three A5-trees produced from K.

8

9 12 12

2

9

8
36 6

4

7 7

4

Figure 4.9: Two A6-trees produced from K.

Now we are ready to prove Proposition 25.

Proof. We count the number of At+x+1-trees produced from a cluster K. By definition an
At+x+1-tree contains t+x internally passive edges. Notice that the spare edges are always
internally passive and there are t of them. Hence, the remaining x internally passive edges
are non-spare edges. Note that any spanning tree produced from K contains exactly one
non-spare edge from each block of K. Otherwise there would be a cycle. Thus, to obtain
a total of x internally passive non-spare edges, we choose exactly x blocks from each of
which we choose one edge. Since any block Bi contains ti triangles, it has ti+1 non-spare
edges, one of which is minimal and hence cannot be internally passive. Replacing any of
the other ti edges by the minimal edge results in a lexicographically smaller spanning tree
of Fk and therefore yields a valid choice for an internally passive edge. Consequently, for
any choice of x blocks Bj1 , . . . , Bjx , we have tj1· · · tjx possible Al+x+1-trees. Summing
this up for any x-element subset of blocks, we obtain (4.1).

Knowing Proposition 25, a natural question is how many such clusters there are.

4.3.2 Types of clusters

This subsection is devoted to categorising the clusters of a given fan graph. For this we
define types of clusters.

Definition. Let K be a cluster with blocks B1, B2, . . . , Bm of sizes t1, t2, . . . , tm, respect-
ively. We say that K is of type tσ(1)tσ(2) . . . tσ(m), where σ is a permutation of [m], such
that tσ(1) ≥ tσ(2) ≥ . . . ≥ tσ(m).

See an example of two different clusters of the same type in Figure 4.10.

38

Figure 4.10: Both of these clusters are of type 2 1 1.

Remark. By this definition, if two distinct clusters K and K ′ are of the same type, they
consist of the same number of triangles t and the same number of blocks m. Moreover,
there is a bijection f between K and K ′, such that

B′
j = f(Bi) =⇒ t′j = ti,

where Bi is a block of K of size ti and B′
j is a block of K ′ of size t′j for i, j ∈ [m]. Thus, by

Proposition 25, K and K ′ produce the same amount of At+x+1 trees, for 0 ≤ x ≤ m. Since
K and K ′ are distinct, they must contain different triangles and consequently different
spare edges. Hence, there is no spanning tree which can be produced from both of them.

We want to know how many clusters of a given type there are in a fan Fk. To address
this question it seems natural to think about recursions: whenever we choose the leftmost
block of a cluster K, a smaller fan remains, from which we pick the other blocks of K.
First we consider the special cases, which are easier to compute and at the end of this
subsection we derive a formula for all possible clusters.

1. One-block clusters

Figure 4.11: The shaded area represents a one-block cluster of F6 of size 4.

Firstly, we consider the one-block clusters of size t in Fk, as presented in Figure 4.11.
To investigate how many such clusters there are, we simply count how many choices
of the leftmost triangle, i.e., the triangle with the lowest index, of the block there
are. It is easy to see that this number is k − t+ 1, since all but last t− 1 triangles
can be chosen for this purpose.

2. Same-sized blocks

(a) One-triangle blocks
Let Sk

m be the number of clusters of a fan Fk with m one-triangle blocks, i.e.,
m non-neighbouring triangles, as shown in Figure 4.12. We claim that

Sk
m =

k−2∑
j=1

Sj
m−1. (4.2)

Indeed, if a cluster contains ∆1, we can choose the remaining m− 1 triangles
from Fk−2, since ∆1 is already taken and choosing ∆2 results in a block of size

39

Figure 4.12: The shaded area represents a cluster of F6 with three one-triangle blocks.

2. This yields Sk−2
m−1 different clusters. By the same logic, if the first block is ∆2

we have Sk−3
m−1 possibilities of choosing the other triangles, see an example in

Figure 4.13. We repeat this procedure until the leftmost triangle of the cluster
is ∆k−2m+2 and we have exactly one possibility of placing the remaining m−1
triangles in F2m−3. Since Sj

m−1 = 0 for j < 2m− 3, the equation (4.2) holds.

Note that for m = 1 and m = 2 the computations are quite simple, namely,
case 1 implies Sk

1 = k and consequently, Sk
2 is the triangular number Tk−2:

Sk
2 =

k−2∑
j=1

Sj
1 = 1 + 2 + · · ·+ (k − 2) =

(
k − 1

2

)
.

F3

Figure 4.13: The shaded triangle is the already chosen triangle of the cluster. The re-
maining triangles must be chosen from the fan F3.

(b) Multiple-triangle blocks

We can derive an analogous recursion for clusters with blocks containing more
than one triangle. Let Sk

t,m be the number of clusters with m blocks of size t.
Thus, the case 2a is a special case where t = 1. Then

Figure 4.14: The shaded area represents a cluster of F6 with two blocks of size 2 each.

Sk
t,m =

k−t−1∑
j=1

Sj
t,m−1. (4.3)

40

In contrary to the case 2a, now the leftmost block is of size t. Consequently,
the largest fan graph, from which we choose the remaining blocks is Fk−t−1

and therefore the largest index j in the sum of (4.3) is k − t− 1. Notice that
in order to construct a cluster with m− 1 blocks each of size t, the fan graph
must consist of at least t(m − 1) + m − 2 triangles. Thus, the summands of
(4.3)
for j < t(m− 1) +m− 2 are 0. Besides (4.3), we can express Sk

t,m in terms of
the case 2a. Namely

Sk
t,m = Sk−m(t−1)

m . (4.4)

Indeed, from every one-triangle-block cluster we can build exactly one t-triangle
block cluster by adding t− 1 triangles to each of its blocks. This increases the
number of triangles of the fan by m(t− 1). Conversely, from every cluster of a
fan Fk with m blocks of size t each, we can obtain a unique one-triangle-block
cluster of the fan Fk−m(t−1), by removing t − 1 triangles from each block as
presented in Figure 4.15.

Figure 4.15: The shaded area of the left figure represents a cluster of type 2 2 of F6, with
triangles ∆1 and ∆2 forming one block and triangles ∆4 and ∆5 forming the other. The
triangles ∆2 and ∆5 are marked with X, since they are being removed in order to obtain
the 1 1 cluster of F4 with triangles ∆1 and ∆3 shaded in the right figure.

3. Two blocks of different sizes
Let Mk

t1,t2 be the number of two-block clusters, where one block is of size t1 and the

Figure 4.16: The shaded area represents a cluster of F6 of type 3 2.

other is of size t2, so that t1 ̸= t2. First we count the clusters where the block with t1
triangles is on the left and the one with t2 triangles is on the right. If the left block
consists of the triangles ∆1, . . . ,∆t1 , there are k − (t1 + 1)− (t2 − 1) = k − t1 − t2
possible ways of picking the leftmost triangle of the right block, since we cannot
take the triangles ∆1, . . . ,∆t1+1, nor the triangles ∆k−t2+1, . . . ,∆k. Every shift of
the left block by one triangle to the right, decreases the number of possibilities of
building the right block by one. Hence, altogether we get

(
k−t1−t2+1

2

)
clusters with

left block of size t1 and right block of size t2. Analogously, there are k − t2 − t1

41

clusters with the block of size t2 on the left and the block of size t1 on the right.
Thus,

Mk
t1,t2 = 2

(
k − t1 − t2 + 1

2

)
.

Observe that Mk
t1,t2 = Mk

t2,t1 .

While the above methods might be convenient to apply for some cases, we need a general
formula which can be used for an arbitrary cluster.

Proposition 26. Let Mk
(t1,m1),...,(tp,mp)

be the number of clusters of Fk with mi blocks of

size ti for i ∈ [p], so that t1 > · · · > tp. Then, for m := m1 + · · ·+mp,

Mk
(t1,m1),...,(tp,mp)

=

(
m

m1, . . . ,mp

)
S
k−

∑p
j=1 mi(ti−1)

m . (4.5)

Proof. Note that similarly to (4.4), we reduce Mk
(t1,m1),...,(tp,mp)

to the case 2a of clusters
consisting of m one-triangle blocks. To that end, let K be a cluster of Fk−

∑p
j=1 mi(ti−1)

consisting of m one-triangle blocks. Analogously to case 2a, we choose m1 of these blocks
and add t1 − 1 triangles to each of them. Then we choose m2 of the remaining m −m1

one-triangle blocks and add t2 − 1 triangles to each of them and so on, until we obtain
a cluster of Fk with mi blocks of size ti for all i ∈ [p]. Thereby, we construct

(
m

m1,...,mp

)
different clusters.
Moreover, every cluster of Fk with mi blocks of size ti is constructed this way and (4.5)
follows.

4.3.3 Which cluster types for which k?

The main concept of this subsection is the concept of integer partition. For more details
and examples see [6].

Definition. Let t1 ≥ t2 ≥ · · · ≥ tm ≥ 1 be integers so that t1 + t2 + · · ·+ tm = t. Then
the sequence (t1, t2, . . . , tm) is called a partition of the integer t.

Given a fan Fk we would like to know which types of clusters can be constructed within
Fk, since with this information, using the methods introduced before, we can compute
how many clusters of each of these types there are and which trees can be produced from
them which is necessary to determine the c-vector of Fk.

Proposition 27. The types of clusters that can be built within a fan Fk are in bijection
with the partitions of integers from m to k −m+ 1 into m parts for m ∈ [⌈k2⌉].

Proof. We can think of the cluster types as integer partitions: Consider the cluster type
t1 t2 . . . tm and let t := t1 + t2 + · · ·+ tm be the total number of triangles in any cluster
of this type. Then t1 ≥ t2 ≥ · · · ≥ tm ≥ 1 and hence (t1, t2, . . . , tm) is a partition of t into
m parts. Analogously, any partition (t1, t2, . . . , tm) corresponds to a unique cluster type
t1 t2 . . . tm. Furthermore we observe that a cluster of Fk with m blocks can have at most
k− (m− 1) = k−m+ 1 triangles, since between every two blocks there must be at least
one triangle separating them. We conclude that the maximal number of blocks a cluster
of Fk can have is ⌈k2⌉. Also it is clear that t must be at least as large as m, since we need
to have at least one triangle in each block.

42

This means that given a fan graph Fk, we need to list all the partitions satisfying the
conditions from Proposition 27 in order to compute its c-vector. As in Section 4.2 we
can use a recursive approach to determine the desired restricted integer partitions, which
again is not the optimal solution. Faster algorithms are the subject of [18].

1 Input: an integer t and an integer m.

2 Function generate_partitions(t, m)

3 Set partitions = []

4 Function dfs(remaining , parts)

5 I f remaining ==0 And length of parts ==m Then
6 Append parts To partitions

7 Return
8 Endif
9 I f remaining <0 Or length of parts ==m Then

10 Return
11 Endif
12 I f parts Is Empty
13 Set start=1

14 Else
15 Return parts [-1]

16 Endif
17 For i=start To remaining Do
18 Call dfs(remaining - i, parts + [i])

19 Endfor
20 Endfunction
21 Call dfs(t,[])

22 Output: partitions

23 Endfunction

Algorithm 4.2: Partitions of t into m parts.

Here is a step by step description of the algorithm.

1. Initialization: We initialize an empty list called partitions. This list will store all
valid partitions of the integer t into exactly m parts.

2. dfs Function: We define a recursive function called dfs that takes two parameters:
remaining and parts. remaining represents the remaining value of the integer to
be partitioned. parts represents the current partition being constructed.

3. Base Cases: If remaining equals 0 and the length of parts equals m, it means
we have found a valid partition of t into m parts. We add this partition to the
partitions list and return. If remaining becomes negative or the length of parts
exceeds m, we terminate the current path of the recursion as it leads to invalid
partitions. We return without making any changes.

4. Recursive Exploration: We iterate over possible values for the next part of the
partition. We start the iteration from either 1 (if parts is empty) or the last element
of parts. This ensures that the next part is always greater than or equal to the
previous part, avoiding duplicate partitions. For each possible next part value, we
recursively call the dfs function with the updated remaining value (reduced by the
chosen part) and parts list (appended with the chosen part).

5. Generating Partitions: By recursively exploring all possible paths, the dfs function
generates all valid partitions of t into m parts.

6. Return: Once all valid partitions have been generated, we return the partitions list
containing all partitions.

43

Overall, this algorithm uses a recursive approach to systematically explore all possible
partitions of the integer t into exactly m parts, ensuring that each generated partition is
valid and appears exactly once.

4.3.4 The c-vector of a fan graph

In this subsection we put the methods from subsections 4.3.1, 4.3.2 and 4.3.3 together
and show how these can be used to compute the c-vector of a fan graph.

Proposition 28. The collection of the spanning trees produced by all clusters of Fk to-
gether with Tmin is the collection of all spanning trees of Fk.

Proof. Let C be the collection of the spanning trees produced by all clusters of Fk and S
the collection of all spanning trees of Fk. We want to show that

C ∪ {Tmin} = S.

It is clear that
C ∪ {Tmin} ⊆ S.

It remains to show that
T ∈ S =⇒ T ∈ C ∪ {Tmin}.

For this purpose let T ∈ S. Then either T = Tmin or the set Es(T) of all spare edges of T
is nonempty. At the beginning of the subsection 4.3.1 we argued that there is a bijection
between the subsets of spare edges and the clusters of Fk. Thus, there is a cluster K
containing exactly the spare edges of T . Then, by the definition, T is produced from K
and we are done.

We compute the c-vector of a fan graph Fk in 4 steps:

1. We list all integer partitions satisfying conditions of Proposition 27, in order to get
all cluster types that can be built within Fk.

2. For each cluster type, we compute how many spanning trees of each kind are pro-
duced from a cluster of this type.

3. We count how many clusters of each type there are.

4. We multiply the number of spanning trees produced from one cluster by the number
of clusters of the same type, to obtain the total number of trees produced from every
cluster. We determine every entry cj of the c-vector of Fk, which is the total number
of the Ai trees produced from all clusters of Fk.

Example. (The c-vector of F5)

1. Valid partitions
Inserting k = 5 into Proposition 27, we see that in order to obtain all types of
clusters of F5, we need to consider partitions of the integers from m to 5 −m + 1
into m parts for m ∈ [⌈52⌉] = [3]. These are precisely the partitions of the integers
1, 2, 3, 4, 5 into one part, of 2,3,4 into two parts and of 3 into three parts. All these
are presented in Table 4.2.

44

integer
parts

1 2 3

1 (1) - -

2 (2) (1,1) -

3 (3) (2,1) (1,1,1)

4 (4) (2,2),(3,1) -

5 (5) - -

Table 4.2: The partitions corresponding to the cluster types of F5.

2. Trees produced from each type of cluster
By Proposition 27, every partition from Table 4.2 corresponds to exactly one cluster
type. For example partition (3,1) corresponds to cluster type 3 1. Now, for all cluster
types of F5, we use Proposition 25 to compute how many spanning trees of each kind
can be produced from clusters of this type. We observe that the maximal number
of blocks in the clusters of F5 is 3. To avoid unneccessary computations, we observe
that for x = 0, x = 1 and x = m, (4.1) can be simplified.

(a) Inserting x = 0 into (4.1) yields∑
M∈([m]

0)

∏
j∈M

tj =
∏
j∈∅

tj = 1, (4.6)

since this is the empty product. Consequently, for every cluster with t triangles
there is exactly one At+1-tree. We apply (4.6) to the cluster types of F5. The
results are listed in Table 4.3.

cluster type t At+1-trees produced per cluster

1 1 1A2

2 2 1A3

3 3 1A4

4 4 1A5

5 5 1A6

1 1 1+1=2 1A3

2 1 2+1=3 1A4

2 2 2+2=4 1A5

3 1 3+1=4 1A5

1 1 1 1+1+1=3 1A4

Table 4.3: The table illustrates the results of inserting x = 0 into (4.1), i.e., the number
of At+1-trees produced by a single cluster of each cluster type.

(b) We insert x = 1 into (4.1):∑
M∈([m]

1)

∏
j∈M

tj =
∏

j∈{1}

tj +
∏

j∈{2}

tj + · · ·+
∏

j∈{m}

tj =
m∑
j=1

tj = t. (4.7)

Thus, every cluster with t triangles produces t At+2-trees. See Table 4.4 for
the results of applying (4.7) to the cluster types of F5.

45

cluster type t At+2-trees produced per cluster

1 1 1A3

2 2 2A4

3 3 3A5

4 4 4A6

5 5 5A7

1 1 2 2A4

2 1 3 3A5

2 2 4 4A6

3 1 4 4A6

1 1 1 3 3A5

Table 4.4: The table illustrates the results of inserting x = 1 into (4.1), i.e., the number
of At+2-trees produced by one cluster of each cluster type.

(c) For x = m, we get ∑
M∈([m]

m)

∏
j∈M

tj =
∏
j∈[m]

tj . (4.8)

Notice that if m = 1, there is only one factor in the above product, namely t1.
Since in this case t1 = t, we get the same result as in (b). Applying (4.8) on
the cluster types of F5 yields trees as presented in Table 4.5.

cluster type t m
∏m

j=1 tj At+m+1-trees produced per cluster

1 1 1 1 1A3

2 2 1 2 2A4

3 3 1 3 3A5

4 4 1 4 4A6

5 5 1 5 5A7

1 1 2 2 1 · 1 = 1 1A5

2 1 3 2 2 · 1 = 2 2A6

2 2 4 2 2 · 2 = 4 4A7

3 1 4 2 3 · 1 = 3 3A7

1 1 1 3 3 1 · 1 · 1 = 1 1A7

Table 4.5: The table illustrates the results of inserting x = m into (4.1), i.e., the number
of At+m+1-trees produced by a cluster of each cluster type.

The only cluster type of F5 for which the above cases are not sufficient is 1 1 1, since
we also have to consider x = 2 ̸= m. We compute how many A6-trees are produced
by any cluster of type 1 1 1 :∑
M∈([3]2)

∏
j∈M

tj =
∏

j∈{1,2}

tj +
∏

j∈{1,3}

tj +
∏

j∈{2,3}

tj = t1t2 + t1t3 + t2t3 = 1 + 1 + 1 = 3.

The final results of the computations of step 2 are presented in Table 4.6.

46

cluster type all Aj-trees produced per cluster

1 1A2, 1A3

2 1A3, 2A4

3 1A4, 3A5

4 1A5, 4A6

5 1A6, 5A7

1 1 1A3, 2A4, 1A5

2 1 1A4, 3A5, 2A6

2 2 1A5, 4A6, 4A7

3 1 1A5, 4A6, 3A7

1 1 1 1A4, 3A5, 3A6, 1A7

Table 4.6: All spanning trees produced by each cluster type.

cluster type special case # clusters

1 1 S5
1 = 5− 1 + 1 = 5

2 1 S5
2,1 = 5− 2 + 1 = 4

3 1 S5
3,1 = 5− 3 + 1 = 3

4 1 S5
4,1 = 5− 4 + 1 = 2

5 1 S5
5,1 = 5− 5 + 1 = 1

1 1 2a S5
2 =

(
5−1
2

)
= 6

2 1 3 M5
2,1 = 2

(
5−2−1+1

2

)
= 6

2 2 2b S5
2,2 = S3

2 =
(
2
2

)
3 1 3 M5

3,1 = 2
(
5−3−1+1

2

)
= 2

1 1 1 2a S5
3 =

∑3
j=1B

j
2 = 0 + 0 +

(
2
2

)
= 1

Table 4.7: The table lists the number of clusters in each of the cluster types and the
method used to compute this number.

3. Counting how many clusters of each type there are

To compute how many clusters of each type there are we use the methods from
subsection 4.3.2. Notice that all cluster types of F5 are special cases from subsection
4.3.2. Table 4.7 shows for every cluster type of F5 the special case that concerns
it and how to compute the number of clusters of this type. For any of this cluster
types we can also use Proposition 26 instead. As an example we apply (4.5) to the
cluster type 2 1:

M5
(2,1),(1,1) =

(
2

1, 1

)
S
5−(2−1)−(1−1)
2 = 2S4

2 = 2

(
3

2

)
= 6.

4. Summary
We summarise the results from steps 1-3 in Table 4.8 and compute the entries cj
of the c-vector of F5. Notice that every fan graph has exactly one A1-tree, namely
the lexicographically minimal spanning tree Tmin, which cannot be produced from
a cluster, since it does not contain any spare edges. Thus c1 = 1. We compute
the remaining entries of the c-vector of F5 by adding all the coefficients of the
corresponding Aj-trees from the last column of Table 4.8.

47

cluster type trees produced per cluster # clusters total # trees

1 1A2, 1A3 5 5A2, 5A3

2 1A3, 2A4 4 4A3, 8A4

3 1A4, 3A5 3 3A4, 9A5

4 1A5, 4A6 2 2A5, 8A6

5 1A6, 5A7 1 1A6, 5A7

1 1 1A3, 2A4, 1A5 6 6A3, 12A4, 6A5

2 1 1A4, 3A5, 2A6 6 6A4, 18A5, 12A6

2 2 1A5, 4A6, 4A7 1 1A5, 4A6, 4A7

3 1 1A5, 4A6, 3A7 2 2A5, 8A6, 6A7

1 1 1 1A4, 3A5, 3A6, 1A7 1 1A4, 3A5, 3A6, 1A7

Table 4.8: The table shows the total number of spanning trees produced from every cluster
type.

The entries of the c-vector of F5 are

c1 = 1,

c2 = 5,

c3 = 5 + 4 + 6 = 15,

c4 = 8 + 3 + 12 + 6 + 1 = 30,

c5 = 9 + 2 + 6 + 18 + 1 + 2 + 3 = 41,

c6 = 8 + 1 + 12 + 4 + 8 + 3 = 36,

c7 = 5 + 4 + 6 + 1 = 16.

We see that already for a very small k we need many computations to determine the c-
vector of a fan graph Fk. For large k these become much more, since, as mentioned before,
computing the partitions of large integers is a difficult problem. Moreover, solving the
recurrence relations from subsection 4.3.2 is challenging for clusters consisting of many
blocks of different, partially large, sizes.

48

5. Open problems

In this thesis we developed a closed formula for computing the j-th coefficient of the
c-vector in dependence of the bi(G), which themselves are difficult to determine. Thus,
the answer to the following question would be desirable.

Problem 29. Is there a closed formula for computing the c-vector directly from the graph
which does not depend on the bi(G)?

Seeing how complicated computing the c-vector is for the simplest types of graphs it seems
unlikely that this problem can be solved with our methods. Maybe a good approach would
be to answer the following question first.

Problem 30. Is there a closed formula for computing the coefficients c4 and cv directly
from the graph which does not depend on the bi(G)?

Here v denotes again the number of vertices of the reduced graph of G. The reason for
choosing these two coefficients is simple: c4 is the coefficient with the lowest index, for
which we still do not have a closed formula and cv is special, since its index is the largest.
A good start of analysing cv could be to determine when cv = 1 and when it is larger.
Our guess is that cv = 1, if there are no cycles with common edges, i.e., for graphs whose
reduced graph is a cactus graph.

For the next problem consider the following example.

1

2

3

4

5

6

7

8

x

Figure 5.1: A graph G constructed by adding a vertex x to the complete graph K4 and
connecting x with the two vertices of the edge 5 of K4. Notice that every spanning tree
of G contains at least one of the edges 7 and 8.

Example. Let G be a graph as presented in Figure 5.1. Recall that the c-vector of K4

is c = (1, 3, 6, 6). Since all spanning trees of G must contain at least one of the edges 7
and 8, we consider the following three cases.

1. The spanning trees of G containing the edge 7 but not 8.

2. The spanning trees of G containing the edge 8 but not 7.

3. The spanning trees of G containing both the edge 7 and 8.

The spanning trees from the first two cases are simply the results of adding 7 or 8 to all
spanning trees of K4. Specifically, every Aj-tree of K4 becomes an Aj-tree of K4 if we
add the edge 7 to it and an Aj+1-tree if we add the edge 8. The spanning trees from the

49

third case can be obtained from any spanning tree of K4 which contains the edge 5, by
replacing 5 by 7 and 8. In the labelling presented in Figure 5.1, the edge 5 is an internally
passive edge for all spanning trees of K4 and hence every Aj-tree containing it becomes
an Aj+1-tree of G after replacing 5 by 7 and 8.

This example brings us to the following problem.

Problem 31. Let G1 be a graph, c1 its c-vector, e an arbitrary edge of G1 and x a vertex
with x /∈ V (G1). Consider the graph G2 = G1 ∪ (e∇x). Is there a method of computing
the c-vector of G2 using c1?

By the expression (e∇x), we mean the join of the graph containing only edge e and its
vertices with the empty graph containing only vertex x. The difficulty of this problem
might be determining the number of the spanning trees of G1 containing e and for each
such tree, the number of its internally passive edges.

To understand the next problem we need the following definition.

Definition. A wheel graph Wk is the join of a cycle graph Ck with a one vertex graph.

See an example of a wheel graph in Figure 5.2.

Figure 5.2: Wheel graph W4.

Problem 32. Is it possible to compute the c-vector of a wheel graph in a similar manner
as for the fan graph?

We observe that the c-vector of a fan graph Fk and the c-vector of a wheel graph Wk

are very similar for k = 3 and k = 4. Indeed, the c-vector of F3 is (1, 3, 6, 7, 4) and the
c-vector of W3 is (1, 3, 6, 6), while the c-vector of F4 is (1, 4, 10, 16, 16, 6) and the c-vector
of W4 is (1, 4, 10, 16, 14).
This is not surprising, since Wk and Fk contain the same number of triangles, but the
wheel graph has one vertex and one edge less. Consequently, the coefficients c1, c2 and
c3 are the same for both Fk and Wk, and Wk has k + 1 non-zero coefficients, while for
Fk this number is k + 2. Even though Wk has the same number of triangles as Fk, not
all of the clusters of Fk are clusters of Wk and the number of clusters is not always the
same. However, we believe that it is possible to derive a similar method of determining
the types of clusters that are subsets of Wk and count how many of each types are there,
so that Proposition 25 can be applied.
The next question concerns the impact of modifications of the graph on its c-vector.

Problem 33. How do deletion and contraction of an edge change the c-vector?

50

To solve this problem we would definitely need a case distinction, since these two oper-
ations on graphs have different results depending on the kind of edge they are applied
on. Proposition 13 already tells us that the contraction of a cut-edge does not change the
c-vector and a similar argument can be used for proving that neither does the deletion.
Next case could be an edge from a simple cycle of a graph, such that this cycle does not
share an edge with any other cycle. Deleting any edge of such a cycle breaks the cycle,
and we might be able to compute the c-vector if we could somehow reverse the method
from Proposition 21. On the other hand, contracting such an edge yields the same result
only if the cycle contains exactly three edges. If this is not the case, the cycle does not
disappear in the reduced graph; it only gets smaller. We again believe that studying Pro-
position 21 could result in an elegant solution. Another case which seems worth analysing
is deleting or contracting the edges containing x from Problem 31. It is quite likely that
there are other cases for which we could obtain a closed formula. At the moment we do
not see any pattern that could lead us to a general solution to this problem.

51

Bibliography

[1] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Including illus-
trations by Karl H. Hofmann. Berlin: Springer, revised and enlarged 6th edition,
2018.

[2] Matthias Beck, Katharina Jochemko, and Emily McCullough. h∗-polynomials of
zonotopes. Trans. Am. Math. Soc., 371(3):2021–2042, 2019.

[3] Matthias Beck and Sinai Robins. Computing the continuous discretely. Integer-point
enumeration in polyhedra. With illustrations by David Austin. Undergraduate Texts
Math. New York, NY: Springer, 2nd edition, 2015.

[4] Matthias Beck and Raman Sanyal. Combinatorial reciprocity theorems. An invitation
to enumerative geometric combinatorics, volume 195 of Grad. Stud. Math. Provid-
ence, RI: American Mathematical Society (AMS), 2018.

[5] E. D. Bolker. A class of convex bodies. Trans. Am. Math. Soc., 145:323–345, 1969.

[6] Miklós Bóna. A walk through combinatorics. An introduction to enumeration and
graph theory. Hackensack, NJ: World Scientific, 2nd edition, 2006.

[7] Francesco Brenti and Volkmar Welker. f -vectors of barycentric subdivisions. Math.
Z., 259(4):849–865, 2008.

[8] Aaron Matthew Dall. Matroids : h-vectors, zonotopes, and Lawrence polytopes. PhD
thesis, Universitat Politècnica de Catalunya, 2015.

[9] R. Ehrenborg and M. Readdy. Mixed volumes and slices of the cube. J. Comb.
Theory, Ser. A, 81(1):121–126, 1998.

[10] Eugène Ehrhart. Sur les polyèdres rationnels homothétiques à n dimensions. C. R.
Acad. Sci., Paris, 254:616–618, 1962.

[11] Gary Gordon and Jennifer McNulty. Matroids. A geometric introduction. Cambridge:
Cambridge University Press, 2012.

[12] Gustav R. Kirchhoff. Über die auflösung der gleichungen, auf welche man bei der
untersuchung der linearen vertheilung galvanischer ströme geführt wird. Annalen der
Physik, 148:497–508.

[13] Luca Moci. A Tutte polynomial for toric arrangements. Trans. Am. Math. Soc.,
364(2):1067–1088, 2012.

[14] Daniel R. Page. Generalized algorithm for restricted weak composition generation.
J. Math. Model. Algorithms Oper. Res., 12(4):345–372, 2013.

[15] Richard P. Stanley. Decompositions of rational convex polytopes. Ann. Discrete
Math. 6, 333-342 (1980)., 1980.

[16] Richard P. Stanley. Two combinatorial applications of the Aleksandrov-Fenchel in-
equalities. J. Comb. Theory, Ser. A, 31:56–65, 1981.

[17] Hassler Whitney. On the abstract properties of linear dependence. Am. J. Math.,
57:509–533, 1935.

52

[18] Antoine Zoghbi and Ivan Stojmenović. Fast algorithms for generating integer parti-
tions. Int. J. Comput. Math., 70(2):319–332, 1998.

53

	Introduction
	Background
	Lattice polytopes and their Ehrhart polynomials in different bases
	Descent statistics
	Graphs
	Graphical zonotopes
	Matroids
	h*- polynomials of zonotopes

	Universal methods
	Change of basis
	Simplifying a graph
	Determining the c-vector
	Computing the c-vector from the Ehrhart polynomial
	Combining the c-vectors

	Special cases
	Graphs with a single cycle
	Cactus graphs
	Fan graphs
	Trees from a cluster
	Types of clusters
	Which cluster types for which k?
	The c-vector of a fan graph

	Open problems
	Bibliography

