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1 Introduction

In this thesis we introduce a new concrete constructing of the normal vectors
of the cographic hyperplane arrangement associated with the cographic matroid
for simple, connected and bridgeless graphs. Furthermore, we introduce the flow
zonotope, which is the zonotope associated with the cographic hyperplane ar-
rangement, and determine its Ehrhart polynomial. Before we take a closer look
at these results, we first want to provide background information and give some
motivation why it might be interesting to study cographic hyperplane arrange-
ments and flow zonotopes.

Because of its remarkable arithmetic behaviour, the graphic zonotope leads to a
famous example for applying Ehrhart theory. Zonotopes, in general, are poly-
topes defined as the Minkowski sums of finitely many line segments. The first
systematic investigation on zonotopes was given in 1969 by Bolker in [5]. Zono-
topes include many familiar polytopes including cubes, truncated octahedra, and
rhombic dodecahedra. A remarkable aspect of zonotopes is that they allow a
natural tiling into half-open parallelepipeds as we will see in Lemma 3.1. We will
exploit this special natural tiling to deduce a formula for the Ehrhart polynomial
of general zonotopes in Theorem 3.3 which is due to Richard Stanley [15].

In 1962 Ehrhart proved in [6] that, for a lattice d-polytope P , the lattice point
enumerator Lp(t) := #(tP ∩Zd) is a polynomial in t of degree d. This polynomial
is called the Ehrhart polynomial and can be written as LP (t) =

∑d
i=0 ci(P )ti

where the coefficients ci(P ), 0 ≤ i ≤ d depend only on P . More about Ehrhart
theory is explained in Chapter 3.

The remarkable behaviour mentioned in the first sentence of the second paragraph
of this thesis is that the k-th coefficient of the Ehrhart polynomial of the graphic
zonotope of a simple graph G, which we will define in a second, is just the number
of forests of size k in G as shown by Example 3.5. Thus, it depends only on the
independent sets of size k of the graphic matroid induced by G, see Definition
2.21.

Throughout this thesis we assume all graphs to be simple.

Definition 1.1. Let G = (V,E) be a graph. We define the graphic zonotope of
G as

ZG :=
∑

e∈E
ue

where ue := [0, xe] and xe is the column vector of the signed vertex-edge incidence
matrix M of G corresponding to the edge e ∈ E.

To each graphic zonotope there is an associated hyperplane arrangement, the
so-called graphic hyperplane arrangement, whose normal vectors are the xe for
e ∈ E of Definition 1.1. As we will discover in Chapter 3, in a sense hyperplane
arrangement and zonotopes can be considered equivalent. So, there is a bunch
of properties that can be stated for both of them. Furthermore, the theory of
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zonotopes and hyperplane arrangements was generalized to the theory of oriented
matroids, see [23, Chapter 7]. A motivation to study the graphic zonotope resp.
the graphic hyperplane arrangement is that they carry quite a trove of information
about the underlying graph, as we will encounter.

In 1975, Thomas Zaslavsky started with his Ph.D. thesis [21] the modern theory
of hyperplane arrangements. He studied not only properties of general hyperplane
arrangements, but in [8] together with Curtis Greene also properties of graphic hy-
perplane arrangements (for its definition see Example 3.2). Greene and Zaslavsky
showed in [8, Lemma 7.1] that the regions of the graphic hyperplane arrangement
of a graph G are in one-to-one correspondence with the acyclic orientations of G.
Another important property of the graphic hyperplane arrangement of a graph
G stemming from the underlying graphic matroid is that its normal vectors are
linearly independent if and only if they induce a forest on G, see Proposition 3.1.

Studying the graphic hyperplane arrangement, the question arises if there is also
such an arithmetically nice behaviour for the dual case, i.e., the zonotope associ-
ated with the cographic hyperplane arrangement. So, these zonotopes, which we
call flow zonotopes, are the Minkowski sums of line segments starting at 0 and
ending with the normal vectors of the cographic hyperplane arrangement. An
associated question is, in what way we can understand the cographic hyperplane
arrangement to be the arrangement dual to the graphic hyperplane arrangement.
Answering these questions are goals of this thesis.

First defined by Greene and Zaslavsky in [8, Chapter 8], it was left unclear how
the normal vectors of the cographic hyperplane arrangement look arithmetically.
Thus, a first step of answering the first question is to concretely construct the
normal vectors of the cographic hyperplane arrangement. Therefore, we use an
ansatz differing from the one Greene and Zaslavsky gave.

Beyond Greene and Zaslavsky’s result stating that the regions of the cographic
hyperplane arrangement are in one-to-one correspondence with the totally cyclic
orientations on G, we show that the normal vectors of the cographic hyperplane
arrangement, which we constructed, are linearly independent if and only if they in-
duce a complement of a spanning set on G. This relates on the theory of matroids
since it shows that the independent sets of the normal vectors of the cographic hy-
perplane arrangement are exactly the independent sets of the dual of the graphic
matroid, the so-called cographic matroid, see Definition 2.22. This completes the
picture on the relations between the graphic/cographic zonotopes/hyperplane ar-
rangements and their corresponding matroids. Thus, our answer to the second
question is that the cographic hyperplane arrangement can be seen as dual from
a matroid resp. graph theoretical perspective; furthermore, we generalize the
duality correspondence between acyclic and totally cyclic orientations that was
known for planar graphs before. There is a deep relation between the flows on G
and its cographic hyperplane arrangement. As we will show, its normal vectors
give a basis of the flow space of G with respect to a given orientation on G, i.e.,
the affine vector space of all functionals satisfying the flow-equations on G, see
Definition 2.10. This relation also explains why we assume G to be bridgeless, see
Definition 2.5, when we want to construct the cographic hyperplane arrangement
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resp. the flow zonotope as we will see in Chapter 4. These deep relations also
explain why we call the flow zonotope this way.

The main results of Chapter 4.2 are that in the case that G is Steinitz, i.e., simple,
planar and 3-connected, the cographic hyperplane arrangement and thus also the
flow zonotope, are the graphic hyperplane arrangement resp. the graphic zonotope
of the dual graph of G. For general simple and connected graphs, the construction
and results are quite different since we do not have an easy notion of the dual
of a general simple and connected graph. We cannot use the convenient way of
generalizing the notion of the dual of a graph which is embedding the graph into a
two dimensional manifold. The problems of this approach are that if the genus of
the manifold does not equal zero, the complement of the dual of a spanning tree
is not a spanning tree (see [7]) and that totally cyclic orientations on the primal
graph do, in general, not induce acyclic orientations on the dual graph and vice
versa. Thus, we cannot use this construction to obtain the desired properties.
Instead, in Chapter 4, we construct the cographic hyperplane arrangement using
polytopal duality, also known as polarity, see Definition 2.36. We show that the
normal vectors of the cographic hyperplane arrangement are the column vectors of
a boundary map stemming from the cellular chain complex associated to the CW-
complex given by the face-structure of a special polytope satisfying all required
properties.

Eventually, we determine the Ehrhart polynomial of flow zonotopes using the
knowledge and techniques from Chapter 3 and come to the following main result
of this thesis.

Theorem 1.1. Let G = (V,E) be a simple graph. Then the Ehrhart polynomial
LCG of CG is given by

LCG(t) =

|E|−|V |+1∑

k=0

dkt
k

where the coefficient dk is the number of (labeled) complements of (labeled) span-
ning sets of size k.

Thus, the Ehrhart polynomial of flow zonotopes perfectly fits into the drawn
picture: Its coefficients are given by the number of independent sets of size k of
the cographic matroid. Thus, they give the information that is, on the level of
matroid duality, dual to the information given by the graphic zonotope.
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2 Preliminaries

2.1 Graphs and flows

This chapter serves as a source of definitions, examples and motivations for the
theorems to come and the tools to be developed. Throughout this chapter we
follow the notations of [3] and [14].

Definition 2.1. A simple graph G = (V,E) is a discrete structure composed of
a finite set V of vertices and a collection E ⊆

(
V
2

)
of unordered pairs of vertices,

called edges. This defines a simple graph as it excludes the existence of multiple
edges between vertices and, in particular, edges with equal endpoints, i.e., loops.

In this thesis we assume all graphs to be simple. Therefore, we will abbreviate
the notation and will just write graph whenever we mean simple graphs.

Definition 2.2. Let G = (V,E) be a graph. A vertex v is incident to an edge e
if and only if e contains v as vertex. Two vertices of G are called adjacent if and
only if they are incident to some common edge.

Example 2.1. A common example of graphs are the complete graphs. Complete
graphs Kn are the graphs on n ∈ N vertices which satisfy E =

(
V
2

)
, i.e., every two

vertices are adjacent. Figure 1 shows the complete graph K4 on four vertices.

1

2

3

4

Figure 1: The complete graph K4.

Definition 2.3. A graph H = (V ′, E ′) is called a subgraph of a graph G = (V,E)
if V ′ ⊆ V and E ′ ⊆ E ∩

(
V ′

2

)
. If H is a subgraph of G, we say that G contains H.

Definition 2.4. A graph G = (V,E) is called planar if and only if there exists
an embedding of G into the real plane R2 such that edges do not cross except
possibly at vertices. Such an embedding is called planar embedding.

Example 2.2. As we can see in Figure 1, there exists a planar embedding for
the complete graph K4 and therefore, K4 is a planar graph.

An important definition when dealing with flows, which we will define below, is
the following:
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Definition 2.5. Let G = (V,E) be a graph. A bridge or isthmus is an edge of
G whose removal would increase the number of connected components of G. A
graph is called bridgeless if it does not contain any bridge.

Thus, by definition, a bridge is an edge connecting two connected components,
call them A and B, as illustrated by Figure 2.

A

B

e

Figure 2: The edge e is a bridge.

Definition 2.6. Let G = (V,E) be a graph. We denote the vertices of G by
v1, v2, ..., vn. An orientation on the set of edges of G with respect to vertices is a
subset ρ ⊆ E such that for an edge e = vivj ∈ E with i < j, we direct e from
vi to vj if e ∈ ρ and from vj to vi otherwise. Then e is called a directed edge.
Besides, vi is called the tail of e and vj is called the head of e if vivj is directed
from vi to vj and the other way around if vivj is directed from vj to vi.

Definition 2.7. Let G be an oriented graph. A directed path in G is a sequence
v1, v2, ..., vs of distinct vertices such that vj−1vj is a directed edge in G for all
j ∈ {2, ..., s}. If vsv1 is also a directed edge, then v1, v2, ..., vs, vs+1 := v1 is called
a directed cycle.

An orientation ρ of G is called acyclic if and only if there are no directed cycles
in G.

An orientation ρ of G is called totally cyclic if and only if every directed edge of
G is contained in a directed cycle.

Example 2.3. Figure 3 shows an acyclic orientation of a triangle (left) and also
a totally cyclic orientation (right). The right shows us a directed cycle whereas
the left does not contain any directed cycle.

1

2

3 4

5

6

Figure 3: An acyclic orientation (left) and a totally cyclic orientation (right).

Definition 2.8. An (undirected) trail P in G is a sequence v1, v2, ..., vs of vertices
such that vj−1vj is an edge in G for all j ∈ {2, ..., s}. If vsv1 is also an edge,
then v1, v2, ..., vs, vs+1 := v1 is called an (undirected) circuit. If all vertices of
P are distinct, P is called an (undirected) path. Then, if vsv1 is also an edge,
v1, v2, ..., vs, vs+1 := v1 is called an (undirected) cycle.
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Definition 2.9. Let G = (V,E) be a graph. The degree deg(v) of a vertex v ∈ V
is the number of edges incident to v. If G is oriented, the indegree indeg(v) of
a vertex v ∈ V is the number of (directed) edges with head v and the outdegree
outdeg(v) the number of (directed) edges with tail v.

Example 2.4. If we look back at Figure 3, we see, for example, that the indegree
of vertex 1 is zero and its outdegree is two. For vertex 3 it is the other way around.
Vertex 2, 4, 5 and 6 each has in- and outdegree one.

Definition 2.10. Given a graph G = (V,E) together with an orientation ρ, a
flow on G is a map f : E → R that assigns a value f(e) ∈ R to each edge e ∈ E
such that there is a conservation of flow at every vertex v:

∑

{e∈E | v is the head of e }
f(e) =

∑

{e∈E | v is the tail of e }
f(e). (1)

That is, what "flows" into the vertex v is precisely what "flows" out of v. The
flow space FG ⊆ RE of G with orientation ρ is defined as the affine subspace
of all f ∈ RE satisfying condition (1). The flow space depends on the chosen
orientation ρ.

Example 2.5. Figure 4 shows a flow on the two triangles that we have encoun-
tered in Example 2.3 with the orientations that we have seen in that example.

1

2

3 4

5

6

1 1
−1

5 5
5

Figure 4: Flows on a triangle.

The flow space FT of the left triangle T is given by

FT = {f ∈ R3 | − f13 − f12 = 0 and f12 − f23 = 0 and f23 + f13 = 0}

where fij denotes the flow value on the edge ij.

Remark 2.1. If a graph G has a bridge, then G will not have any nowhere-zero
flow or any totally cyclic orientation.

Definition 2.11. A forest is a graph that has no cycles. A tree is a connected
forest. A spanning forest is an inclusion-maximal cycle-free subgraph of G, i.e.,
an inclusion-maximal forest.

The next definition explains why spanning forests are called spanning.
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Definition 2.12. Let G = (V,E) be a graph. A subset S ⊆ E of the set of edges
of G is called spanning if and only if for every vertex v ∈ V there exists an edge
e ∈ S that is incident to v.

Remark 2.2. The definition of spanning in the context of graphs corresponds
to the definition of spanning which we will see in Chapter 2.2 in the context of
matroids since every spanning set S of a graph G contains as a subset a spanning
forest which gives us a basis of the graphic matroid of G.

Definition 2.13. Let G = (V,E) be a graph. A leaf is a vertex whose degree is
one.

In the proof of the following proposition we will construct the most popular basis
of the flow space, the cycle basis, to obtain the following result:

Proposition 2.1. (See, for example, [3, Proposition 7.6.1]). Let G = (V,E) be a
graph with a fixed, but arbitrary orientation. Then dimFG = ξ(G) := |E|−|V |+c
where c denotes the number of connected components of G.

Proof. We will construct a basis of FG with ξ(G) elements. We first observe
that, if G is the disjoint union of G1 and G2, then FG = FG1 × FG2 and hence
dimFG = dimFG1 +dimFG2. We will therefore assume that G is connected. Let
T ⊆ G be a spanning tree, i.e., T = (V,E0) for some E0 ⊆ E, that is connected
and without cycles. Let e = uv ∈ E \ E0 be oriented from u to v. Since T is
connected, there is a path v =: v0, v1, ..., vk := u in T that connects v to u. In
particular, v = v0, v1, ..., vk = u, v is a directed cycle Ce in T ∪ e ⊆ G, called the
fundamental cycle with respect to T and e.

For a cycle C ⊆ E define a function fC : E → Z through

fC(ẽ) :=

{
1 if ẽ = vi−1vi is oriented from vi−1 to vi,
−1 if ẽ = vivi−1 is oriented from vi to vi−1,

(2)

for an edge ẽ ∈ C and fC(ẽ) = 0 for ẽ ∈ E \ C. The function fC defined by (2)
is a nonzero element of FG.

We claim that {fCe | e ∈ E \E0} is a basis of FG. Note that the elements in this
collection are linearly independent since for each edge e ∈ E \ E0, there is just
exactly one fCe with a non-zero entry at position e. Hence, we only need to show
that they are spanning. For a given f ∈ FG, we can add suitable scalar multiples
of the fCe ’s, e ∈ E \ E0, to it and can assume that f(e′) = 0 for all e′ ∈ E \ E0.

Arguing by contradiction, let us assume that f 6= 0. Then

Ef := {e′ ∈ E | f(e′) 6= 0}

is a subset of E0. However, for (1) to be satisfied at a node v, there have to
be either zero or at least two edges in Ef incident to w. Therefore, the graph
(V,Ef ) ⊆ T contains a cycle which contradicts our assumption on T . Since T is
a spanning tree, |E0| = |V | − 1 and so FG is of dimension |E \ E0| = ξ(G).
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Figure 5: Caption

is a subset of E0. However, for 1 to be satisfied at a node v, there have to be either
zero or at least two edges in Ef incident to w. Therefore, the graph (V,Ef ) ⊆ T
contains a cycle which contradicts our assumption on T . Since T is a spanning
tree, |E0| = |V | − 1 and so FG is of dimension |E \ E0| = ξ(G).

Example 2.7. The flow values for each edge that we assigned in Example 2.6 to
the left triangle T give us a basis for its flow space F(T ) by Proposition 2.1. The
flow values that we assigned to the left triangle also give us a basis over R.

Definition 2.16. We assume that G is a planar bridgeless graph with a given
embedding into the plane. The drawing of G subdivides the plane into connected
regions in which two points lie in the same region whenever they can be joined
by a path in R2 that does not meet G. Two such regions are neighboring if their
topological closures share a proper (i.e., 1−dimensional) part of their boundaries.
This induces a graph structure on the subdivision of the plane: for the given
embedding of G, we define the dual graph G4 as the graph with vertices corre-
sponding to the regions and two regions C1, C2 share an edge e4 if an original
edge e is properly contained in both their boundaries. Given an orientation on
G, an orientation on G4 is induced by rotating the edge clockwise. That is, the
dual edge will "point" east assuming that the primal edge "points" north.

The dual graph G4 is typically not simple, but it has parallel edges or loops. If
G had bridges, G4 would have loops.

2.2 Matroids

[12], Chapter 39.

7

Figure 5: The graph K4 (fat) and its dual graph (light).

Example 2.6. The flow values for each edge that we assigned in Example 2.5 to
the left triangle T give us a cycle basis for its flow space FT by Proposition 2.1.
The flow values that we assigned to the left triangle also give us a cycle basis over
R since we can use multiplicative inverses over R.

Definition 2.14. We assume that G is a planar bridgeless graph with a given
embedding into the plane. The drawing of G subdivides the plane into connected
regions in which two points lie in the same region whenever they can be joined
by a path in R2 that does not meet G. Two such regions are neighboring if their
topological closures share a proper (i.e., 1-dimensional) part of their boundaries.
This induces a graph structure on the subdivision of the plane: for the given
embedding of G, we define the dual graph G4 as the graph with vertices corre-
sponding to the regions and two regions C1, C2 share an edge e4 if an original
edge e is properly contained in both their boundaries. Given an orientation on
G, an orientation on G4 is induced by rotating the edge clockwise. That is, the
dual edge will "point" east assuming that the primal edge "points" north.

The dual graph G4 is typically not simple, but it has parallel edges or loops. If
G had bridges, G4 would have loops.

Example 2.7. Figure 5 shows us the complete graph K4 (fat) and its dual graph
(light) as defined in Definition 2.14. We can observe that the dual of K4 is again
K4, i.e., that K4 is self-dual.

2.2 Matroids

In 1935, matroids were introduced by Whitney in [20] in order to abstract notions
of linear algebra and graph theory. Whitney also introduced the notion of matroid
duality in the same paper. In the following we want to use this way of abstraction
to set up the theory that leads us to our definition of the cographic hyperplane
arrangement and also of the flow zonotope. Thus, we will need basic concepts
concerning matroids that we will introduce in this chapter following [13, Chapter
39]. In particular, we will give the definitions of the graphic and the cographic
matroid.
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Definition 2.15. A pair M = (S, I) is called a matroid if S is a finite set and I
is a nonempty collection of subsets of S satisfying:

∅ ∈ I, (3)

if I ∈ I and J ⊆ I, then J ∈ I (4)

and

if I, J ∈ I and |I| < |J |, then there exists z ∈ J \ I such that I ∪ z ∈ I. (5)

The set S is called the ground set of M .

Definition 2.16. Given a matroid M = (S, I), a subset I of S is called indepen-
dent if I belongs to I, and dependent otherwise.

Definition 2.17. For U ⊆ S, a subset B of U is called a basis of U if B is an
inclusion-wise maximal independent subset of U .

Under condition (4), condition (5) is equivalent to the fact that for any subset U
of S, any two bases of U have the same size.

Definition 2.18. A subset of S is called spanning if it contains a basis as a
subset.

Definition 2.19. Two matroids M1 = (S1, I1) and M2 = (S2, I2) are called
isomorphic if and only if there exists a bijection Φ : S1 → S2 such that X is
contained in the independence set of M1 if and only if Φ(X) is contained in the
independence set of M2 for all X ⊆ S1.

Now, we define dual matroids: Let M = (S, I) be a matroid, define

I4 := {I ⊆ S | S \ I is a spanning set of M}. (6)

That this definition is stated in a way such that we obtain again a matroid, is
ensured by the following theorem.

Theorem 2.1. (See, for example, [13, Theorem 39.2.]). M4 := (S, I4) is a
matroid.

Definition 2.20. The matroid M4 is called the dual matroid of M .

The bases of M4 are the complements of the bases of M . This implies (M4)4 =
M which justifies the name dual.

Lemma 2.1. (See, for example, [13, p. 657]). Let G = (V,E) be a graph and let
I be the collection of all subsets of E that form a forest. Then M(G) = (E, I) is
a matroid.
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Famous examples of matroids are the graphic and cographic matroid. First,
Whitney pointed out in [20] that the circuits of any graph G define a matroid.
Tutte called in [17] this matroid the circuit-matroid and its dual the bond-matroid
of G. Furthermore, Tutte determined in [17] a necessary and sufficient condition,
in terms of matroid structure, for a given matroidM to be graphic (cographic). In
[17] Tutte uses a reversed terminology, in which he called bond matroids "graphic"
and cycle matroids "cographic", but this has not been followed by later authors.

Definition 2.21. The matroid M(G) = (E, I) built in the way described in
Lemma 2.1 is called the cycle matroid of G. Any matroid obtained this way, or
isomorphic to such a matroid, is called a graphic matroid.

Definition 2.22. Let G = (V,E) be a graph and M(G) = (E, I) its induced
graphic matroid. Then we call its dual M4(G) = (E, I4) the cocycle (bond)
matroid of G. Every matroid obtained this way, or isomorphic to such a matroid,
is called a cographic matroid.

Thus, the bases of M4(G) are exactly the complements of spanning forests of G.
Hence, the independent sets of M4(G) are those edge sets F for which E \ F
contains a spanning set of G, i.e., (V,E \F ) has the same number of components
as G.

2.3 Polytopes, polyhedra and cones

Needing the machinery to handle pointed cones, polyhedra and polytopes, we will
introduce the main notion concerning pointed cones, polyhedra and polytopes in
this chapter. We will define these objects in a way such that they are convex.
We will mostly follow [2, Chapter 2.1 and Chapter 3.2], [14] and [23].

Definition 2.23. A subset L ⊆ Rd is called an affine halfspace if L = {x | ax ≤
b} for some a ∈ (Rd)∗ with a 6= 0 and some b ∈ R. If b = 0, then L is called a
linear halfspace. Here (Rd)∗ denotes the vector space dual to Rd.

Definition 2.24. A subset H ⊆ Rd is called an affine hyperplane if

H = {x | cx = b}

for some c ∈ (Rd)∗ with c 6= 0 and some b ∈ R. If b = 0, then H is called a linear
hyperplane.

Definition 2.25. A pointed cone K ⊆ Rd is a set of the form

K = {w + λ1v1 + λ2v2 + · · ·+ λmvm | λ1, λ2, ..., λm ≥ 0}

where w, v1, v2, ..., vm ∈ Rd are such that there exists an affine hyperplane H for
which H ∩ K = {w}. The vector w is called the apex of K and the vk’s are the
generators of K. In this thesis every cone is assumed to be pointed. Therefore,
we will abbreviate notation and just write cone instead of pointed cone.

12
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Example 2.13. Consider the tetrahedron T that we have seen in Example 2.12.
For each vertex v of T the face of T4 dual to v is a facet of T4 since this facet f
is the inclusion-wise maximal face satisfying the condition vT z = 1 for all z ∈ f .
So, also the vertices and edges of f satisfy the above condition,but they are not
inclusion-wise maximal satisfying it. The faces dual to the edges of T are the
edges of T4 and the vertices of T4 are dual to the facets of T .

Definition 2.39. [3, p.5] Let P ∈ Rd be a polytope whose vertices are labeled
1, ..., n. An orientation on the set of edges E of P is given by a subset O ⊆ E
such that for an edge e = ij ∈ E with i < j, we direct e from i to j if e ∈ O and
from j to i otherwise.

Example 2.14. Consider again the tetrahedron from Example 2.12. Let O

Definition 2.40. If two orientations of adjacent i−faces are the same, then they
are oriented in the same direction.

Definition 2.41. Let P be a 4-polytope whose facets are labeled f1, ..., fm. An
orientation on the set of ridges R of P is a subset ρ ⊆ R such that for an ridge
r = fi ∩ fj with i < j, we direct r in mathematically positive direction from the
relative exterior of fi if r ∈ ρ and in mathematically positive direction from the
relative exterior of fj otherwise.

Definition 2.42. Let P ⊆ Rd be a d-polytope with 0 in its interior. Let Cd−2
be the collection of all d − 2−dimensional faces of P4 and orient them by an
orientation O4. Then O4 induces an orientation O on P satisfying the following
property: For a d − 2face e4 of P4, and its dual, the edge e, project both to a
hyperplane supporting e4 but no higher dimensional face of P4. Then we obtain
the dual orientation of e by orienting e such that each selection of two directions
of the directed ordered pair (e, e4) is always a left turn.

12

Figure 6: A tetrahedron on the vertex set {1, 2, 3, 4}.

Definition 2.26. A subset P ∈ Rd is called a polyhedron if and only if there
exists a matrix A ∈ Rm×d and a vector b ∈ Rm such that

P = {x | Ax ≤ b}.

Thus, P is a polyhedron if and only if it is the intersection of finitely many affine
halfspaces.

Definition 2.27. For a finite point set {v1, v2, ..., vn} ⊆ Rd, a polytope P is the
smallest convex set containing these points; that is

P = {λ1v1 + λ2v2 + · · ·+ λnvn | λ1, λ2, ..., λn ≥ 0 and λ1 + λ2 + · · ·+ λn = 1}.

This definition is called the vertex description of P , and we use the notation
P = conv{v1, v2, ..., vn}.

Example 2.8. The simplest example for a polytope is the d-simplex, i.e., the
convex hull of d+1 affinely independent points. A 3-simplex is called tetrahedron.
Figure 6 shows a tetrahedron on the vertex set {1, 2, 3, 4}.

The theory of polytopes would not be so rich if there were not the following
fundamental result (Minkowski[1896], Steinitz[1916] and Weyl[1935]):

Theorem 2.2. (See, for example, [23, Chapter 1]). A subset P ⊆ Rd is a polytope
if and only if P is a bounded polyhedron.

A bunch of different proofs for this theorem and proofs of generalisations con-
cerning, among others, cones, can be found in [23, Chapter 1].

Definition 2.28. Let P be a polyhedron or cone. A hyperplane Q is called
a supporting hyperplane if and only if P is contained in one of the two closed
halfspaces bounded by Q, and the intersection of Q and the boundary of P is
nonempty.

Definition 2.29. Let P ⊆ Rd be a polyhedron or cone. A face of P is an in-
tersection of P with a supporting hyperplane. The dimension of a face F ⊆ P ,
also for P itself, is the dimension of its affine hull. A polyhedron resp. cone of
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dimension d is called a d-polyhedron resp. d-cone. For any k-dimensional poly-
hedron resp. k-dimensional cone, for 0 ≤ k ≤ d, a 0-dimensional face is called a
vertex, a 1-dimensional face is called an edge, a (k− 2)-dimensional face is called
a ridge and a (k − 1)-dimensional face is called a facet. We define the empty set
to be the (−1)-dimensional face and the polyhedron resp. the cone itself to be
the k-dimensional face.

For a given polytope P , we are going to denote the set of facets of P by F , its
set of ridges by R, its set of edges by E and its set of vertices by V .

Definition 2.30. The face lattice of a polyhedron or cone P is the poset L(P )
of all faces of P , partially ordered by inclusion.

Definition 2.31. The f -vector of a d-polytope P is the vector

(f−1, f0, f1, ..., fd) ∈ Nd+2,

where fk = fk(P ) denotes the number of k-dimensional faces of P .

As in all geometric disciplines, a fundamental invariant of an object is its dimen-
sion.

Definition 2.32. Let P be a d-polytope. Two i-dimensional faces F1 and F2,
i ∈ {1, ..., d−1}, are called adjacent if and only if F1∩F2 is an (i−1)-dimensional
face of P .

Example 2.9. A famous example with rich structure are zonotopes. They nat-
urally appear in many disciplines; see [5, Theorem 3.3] for references.

Suppose we have given n line segments in Rd, such that each line segment has one
endpoint at the origin and the other endpoint is located at the vector uj ∈ Rd,
for j ∈ [n]. Then, the zonotope Z(u1, ..., un) of these line segments is defined as
their Minkowski sum, i.e.,

Z(u1, u2, ..., un) := {x1 + x2 + · · ·+ xn | xj = λjuj with λj ∈ [0, 1]}.

An equivalent definition of d-dimensional zonotopes is the image of a cube under
an affine projection, i.e.,

Z = Z(V ) :=

{
x ∈ Rd | x = y +

p∑

i=1

αivi, −1 ≤ αi ≤ 1

}

for some y ∈ Rd and some matrix (vector configuration) V = (v1, ..., vp) ∈ Rd×p.

A famous zonotope that we will use later is the permutahedron Pd defined as

Pd := Z(x2 − x1, x3 − x1, ..., xd − xd−1),

where x1, ..., xd ∈ Rd are the unit vectors in Rd. It is more common to define the
permuathedron Pd as the convex hull of all permutations of the numbers 1, ..., d.
This definition and a proof of the equivalence of both definitions can be found in
[2, Chapter 9.3].

14



Definition 2.33. A d-cone is said to be simplicial if and only if it is generated
by exactly d linearly independent generators.

Definition 2.34. A d-polytope P is said to be simplicial if and only if its facets
are simplices.

There are several equivalent conditions for a polytope to be simplicial, which we
will not state in this thesis to prevent loosing track. However, these conditions
can be found in [23, Proposition 2.16].

Theorem 2.3. (See, for example, [23, p. 253]). Let P be a simplicial d-polytope.
Then for any k ∈ {−1, 0, 1, ..., d− 2} the Dehn-Sommerville equations

(−1)d−1fk =
d−1∑

i=k

(−1)i
(
i+ 1

k + 1

)
fi

hold.

Theorem 2.4. (See, for example, [23, Chapter 8.2]). Let P be a polytope. We
have the Euler-Poincaré formula

dim(P )∑

k=0

(−1)kfk(P ) = 1.

Definition 2.35. Let P be a polytope. The graph whose vertex set is the set of
vertices of P and whose edge set is the set of edges of P is called the graph of the
polytope P . We will denote the graph of a polytope P by G(P ).

Example 2.10. The graph given in Figure 1 can be seen as the graph of the
tetrahedron which is the 3-simplex.

Definition 2.36. Let P ⊆ Rd be a d-polytope with 0 in its interior. Its dual
polytope P4 is defined as

P4 := {z ∈ Rd | xT z ≤ 1 for all x ∈ P}.

Example 2.11. Figure 7 shows the tetrahedron (light) (we assume the tetrahe-
dron contains 0 in its interior) with its dual (fat) which is also a tetrahedron, i.e.,
the tetrahedron is self-dual. In Example 2.7 we have observed the same behaviour
for their graphs.

C2
∂2−−−−−−−−−−−−−−−−−−−→ C1

∂1−−−−−−−−−−−−−−−−−−−−−−−→ C0

123 124 134 234
12
13
14
23
24
34




−1 1 0 0
−1 0 1 0
0 −1 1 0
−1 0 0 1
0 −1 0 1
0 0 −1 1




12 13 14 23 24 34
1
2
3
4




−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1




C△0
∂△
1←−−−−−−−−−−−−−−−−−−−−−−−− C△1

∂△
2←−−−−−−−−−−−−−−−−−−−− C△2

12 13 14 23 24 34
123
124
134
234




−1 −1 0 −1 0 0
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1




1 2 3 4
12
13
14
23
24
34




−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1



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Figure 7: A tetrahedron (light) and its dual (fat).
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Definition 2.37. Let P ⊆ Rd be a d-polytope with 0 in its interior. For a face A
of P we call the inclusion-wise maximal face A4 satisfying xT z = 1 for all x ∈ A
and z ∈ A4 the face dual to A.

Example 2.12. Consider the tetrahedron T that we have seen in Example 2.11.
For each vertex v of T , the face of T4 dual to v is a facet of T4 since this facet f
is the inclusion-wise maximal face satisfying the condition vT z = 1 for all z ∈ f .
The vertices and edges of f also satisfy the above condition, but they are not
inclusion-wise maximal satisfying it. The faces dual to the edges of T are the
edges of T4 and the facets of T are dual to the vertices of T4.
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3 The Ehrhart polynomial of the graphic
zonotope

3.1 Hyperplane arrangements and zonotopes

We are interested in the relations between the graphic, resp. cographic hyperplane
arrangements and their corresponding zonotopes since these relations are the rea-
son we construct both the graphic and the flow zonotope. In this chapter we want
to point out the relations that we have for general hyperplane arrangements.
Therefore, we want to introduce some notions about hyperplane arrangements
and zonotopes so that we can arrive at Theorem 3.1. We partly see in what sense
zonotopes and hyperplane arrangements can be considered equivalent. Through-
out this chapter we mostly follow [23, Chapter 7] and add some details from [2].
The relation between zonotopes and hyperplane arrangements marks only the
beginning of the deep theory of oriented matroids; see [23, Chapter 7] and [22].

Definition 3.1. A fan in Rd is a family C = {C1, ..., Cn} of non-empty polyhedral
cones with the following two properties:

i) Every non-empty face of a cone in C is also a cone in C.
ii) The intersection of any two cones in C is a face of both.

A fan C is called complete if
n⋃
i=1

Ci = Rd. We will consider only complete fans

here. Thus, we will omit the word complete.

Definition 3.2. Let P ⊆ Rd be a non-empty d-polytope. The normal fan N (P )
of P is defined as

N (P ) := {NF | F ∈ L(P ) \ ∅}
where

NF := {c ∈ (Rd)∗ | F ⊆ {x ∈ P | cx = argmax
y∈P

cy}},

i.e., we take the cones of those linear functions that are maximal on a fixed face
of P .

Definition 3.3. A (linear) hyperplane arrangement H := {H1, ..., Hp} is a finite
set of (linear) hyperplanes in Rd.

In this thesis we always refer to linear hyperplane arrangements. Therefore, we
will leave out the word linear.

Definition 3.4. Let H be a hyperplane arrangement in Rd. A region of H is a
connected component of Rd \ H.

Example 3.1. To each zonotope Z := Z(u1, u2, ..., un) there is an associated
hyperplane arrangement H(Z) = {H1, ..., Hn} whose hyperplanes H1, ..., Hn have
as normal vectors the vectors u1, ..., un.
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Example 3.2. Our motivating and governing example is an arrangement stem-
ming from a given simple graph G = (V,E) with |V | = d. To an edge ij ∈ E we
associate the hyperplane

Hij := {x ∈ RV | xi = xj}.
The graphic hyperplane arrangement of G is then

HG := {Hij | ij ∈ E}.
For this definition we do not have to choose any orientation on G.

Conversely, to a subset

S ⊆ {x2 − x1, x3 − x1, ..., xd − xd−1},
where x1, ..., xd ∈ Rd are the d unit vectors in Rd, we associate the graph GS with
node set V := [d] and edge set

E := {ij | xj − xi ∈ S}.
For the converse direction we have chosen an orientation from the smaller to
greater endpoint of an edge by just allowing vectors satisfied this condition.

Remark 3.1. Consider the set {x2−x1, x3−x1, ..., xd−xd−1}, where x1, ..., xd ∈
Rd, that we have seen in Example 3.2. This set induces a matrix M ∈ Rd×E

whose columns are given by the elements of {x2 − x1, x3 − x1, ..., xd − xd−1} by
writing a 1 for xi, i ∈ [d]. This matrix is also known as the signed vertex-edge
incidence matrix of G.

Our main motivation for considering this special class of hyperplane arrangements
is that they geometrically carry quite a trove of information about the underlying
graph as we will see in Chapter 3.2.

Example 3.3. Let H := {H1, ..., Hp} be a finite set of hyperplanes in Rd. The
arrangement H dissects Rd into regions which are cones. The set of regions of H
and all their faces (considering the regions as cones) is a complete fan FH since
all regions are non-empty polyhedral cones whose union is the whole space Rd

and the intersection of any two regions is a face of both. The cones of the fan are
also referred to as the faces of the hyperplane arrangement H. Thus, we can also
consider their face lattice L(H).

The following two theorems give us important relations between hyperplane ar-
rangements and zonotopes and show why they are interesting from both a geo-
metrical and combinatorial point of view.

Theorem 3.1. (See, for example, [23, Chapter 7]). Let Z = Z(V ) ⊆ Rd be a
zonotope given by a vector configuration V = (v1, ..., vp) ∈ Rd×p. Then the normal
fan N (Z) of Z is the fan FH of the hyperplane arrangement HV := {H1, ..., Hp}
in Rd given by Hi := {c ∈ (Rd)∗ | cvi = 0}.

Theorem 3.2. (See, for example, [3, Theorem 7.5.5.]). Let Z be a zonotope
with associated hyperplane arrangement H(Z). Then the face lattices L(Z) and
L(H(Z)) are anti-isomorphic.
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3.2 Graphic hyperplane arrangements and graphic
zonotopes

As mentioned in Chapter 3.1, a graphic hyperplane arrangement geometrically
carries a trove of information about the underlying simple graph. In this chapter
we want to open this trove and discuss the properties that are important for us.
We already came across the definition of the graphic hyperplane arrangement in
Chapter 3.1.

The first property that we want to consider is given by the following proposition.
It gives the connection between the graphic matroid and the graphic hyperplane
arrangement and explains why we call this hyperplane arrangement "graphic":

Proposition 3.1. The graph GS is a forest if and only if the corresponding subset
S ⊆ {x2−x1, x3−x1, ..., xd−xd−1}, where x1, ..., xd ∈ Rd, is linearly independent.

Proof. 1 Suppose G contains a cycle C. Consider the matrix representation of S.
Then there is a reorientation making C a directed cycle. For our vectors in S,
reorientation just means multiplying by ±1, i.e., an operation conserving linear
independency. If we consider this directed cycle C, we can observe that for each
vertex v contained in C, there is one edge contained in C whose tail is v, so,
giving a −1 entry, and one whose head is also v, giving a +1 entry. The rest of
the entries are zero. Now consider the submatrix S ′ obtained from the vectors
of S corresponding to the edges of C. We observe that in each row of S ′ there
is exactly one −1 for the tail and one +1 entry for the head and the rest of the
entries is zero. Since each vertex in C is both a tail for one of its two incident
edges which are also in C, and a head for the other, we obtain zero by adding up
the columns of S ′. Thus, these vectors are linearly dependent.

We use induction on the number of edges for the converse direction. For one edge
the statement is easily true. So, suppose we have n ∈ N many edges. Every forest
contains a leaf v. Now, the induction step is to remove the edge e incident to v.
The vector corresponding to e was linearly independent from the others since it
was the only vector with a non-zero entry at position v. So, removing e and its
corresponding vector keeps the other vectors linearly independent.

The second important property of the graphic hyperplane arrangement is given
by the following:

Proposition 3.2. (See, for example, [8, p.112-113]). There is a one-to-one cor-
respondence between the acyclic orientations of G and the regions of HG given
by

R(O) := {x ∈ RV | xi < xj if ij is oriented (i, j) in O} (7)

1Thanks to Sophie Rehberg, Freie Universität Berlin, who has shown the second direction of
this proof during the course Discrete Geometry 2 at FU Berlin, Summer 2021
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238 7. Hyperplane Arrangements

3

1 2

x2 = x3

x1 = x2

x1 = x3

Figure 7.5. The regions ofHK3 (projected to the plane x1+x2+x3 = 0)
and their corresponding acyclic orientations.

an edge so that the edge ij ∈ E is oriented towards the node having the
larger of the two distinct values pi and pj . In this way, each region of HG
gives rise to an orientation of G; see Figure 7.5 for an illustration in the
case G = K3, the complete graph on three nodes. The orientations that
we can associate with the regions of HG are precisely the acyclic ones—a
directed circle would correspond to a sequence of the nonsensical inequalities
xi1 > xi2 > · · · > xik > xi1 . We summarize:

Lemma 7.2.4. Let G = (V,E) be a graph. The regions of HG are in one-to-
one correspondence with the acyclic orientations of G. Moreover, for any flat
S ⊆ E of G with corresponding flat F ∈ L(HG), the region count r(HG|F )
equals the number of acyclic orientations of G/S.

Proof. We still need to argue that every acyclic orientation actually deter-
mines a region of HG. Let ρ be an acyclic orientation of G. A source of ρG
is a node v with no oriented edges entering v. Pick M > 1 and define p ∈ RV
iteratively as follows. Set pv = M if v is a source of ρG. As the next step,
we remove all sources from G, which leaves us with a subgraph G′ = (V ′, E′)
with V ′ ⊂ V , and G′ still carries an induced acyclic orientation. We now
repeat the procedure with M2 instead of M , etc. At some point, when we
removed the last node, we are left with a well-defined point p ∈ RV . If ρ
orients an edge ij ∈ E from i to j, then i was removed before j and hence
pj ≥M · pi > pi, which proves the first claim.

For the second claim, we simply appeal to Proposition 7.2.3. �

Figure 8: The regions of HK3 (projected to the plane x1 + x2 + x3 = 0) and their
corresponding acyclic orientations. Source: [2, p.238]

for each acyclic orientation O on G, where we denote by (i, j) the edge ij oriented
from i to j. Conversely,

O(R) := {(i, j)| ij ∈ E and xi < xj if x ∈ R} (8)

for each region R.

Proof. For each non-empty region R, any x ∈ R defines an orientation O(x) by
(8). Suppose that O is not acyclic. Then there exists a cycle giving a chain of
strict inequalities given by the orienting vertices, w.l.o.g. v1 < v2 < · · · < vn−1 <
vn < v1 and consequently, R is empty. Thus, O is acyclic. This property holds
for all x ∈ R. If we consider any y ∈ R then we obtain y from x by moving in R
without crossing any hyperplane of the graphic hyperplane arrangement. Thus,
no constraint defining O gets changed for any point in R and therefore, O is an
acyclic orientation well-defined on R.

Conversely, given any acyclic orientation O on G, we will show that R(O) is non-
empty. If follows from the previous direction that R(O) is a well-defined region
of our hyperplane arrangement. We define a partial ordering on N by xi ≤O xj
if and only if (i, j) ∈ O (extended by transitivity). In the next step, we extend
this partial ordering to a total ordering xi <O xj if and only if (i, j) ∈ O and see
that any x ∈ RV , whose coordinates get ordered by this total ordering, belongs
to R(O). Eventually, we have shown R(O(R)) = R and O(R(O)) = O.

Example 3.4. The one-to-one correspondence between the acyclic orientations
on a graph G and the regions of HG is illustrated by Figure 8 by using as ex-
ample the triangle K3. For each region of HK3 there is an acyclic orientation on
K3 corresponding to it. For each edge we have one corresponding hyperplane.
Crossing a hyperplane means to flip the orientation of the corresponding edge to
obtain the acyclic orientation corresponding to the next region.

Definition 3.5. Let G = (V,E) be a graph. We define the graphic zonotope of
G as

ZG :=
∑

e∈E
ue
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where ue := [0, xe] and xe is the column vector of the signed vertex-edge incidence
matrix M of G corresponding to the edge e ∈ E.

We have seen three properties of the graphic hyperplane arrangement so far. The
next proposition states that at least one of these properties passes on to the
graphic zonotope and this motivates a closer look at these special zonotopes.

Proposition 3.3. (See, for example, [3, Proposition 7.5.3.]). Let G be a graph.
The vertices of ZG are in one-to-one correspondence with the acyclic orientations
on G. Consequently, the vertices of ZG are in one-to-one correspondence with the
regions of the graphic hyperplane arrangement of G.

One goal of this work is to construct a hyperplane arrangement for the cographic
matroid that has exactly the properties dual to the properties of the graphic
hyperplane arrangement:

i) A subset of the normal vectors of that hyperplane arrangement is linearly
independent if and only if it induces a complement of a spanning set of G as
these sets are exactly the independent sets of the cographic matroid of G.

ii) The regions of that hyperplane arrangement are in one-to-one correspon-
dence with the totally cyclic orientations of G, as this is dual to the state-
ment that the acyclic orientations of G are in a one-to-one correspondence
with the regions of the graphic hyperplane arrangement.

Definition 3.6. We call a hyperplane arrangement satisfying the conditions
above a cographic hyperplane arrangement.

For condition ii) it is natural to just consider graphs without bridges because
graphs containing bridges do not have any totally cyclic orientations.

3.3 Zonotopal tilings

Another remarkable behaviour of zonotopes is that zonotopes can be decomposed
into a disjoint union of half-open parallelepipeds as Lemma 3.1 will show. So, the
natural decomposition of zonotopes is into parallelepipeds. In the next chapters
we will use this behaviour to first find remarkable formulas for the Ehrhart poly-
nomials of graphic zonotopes and later those of flow zonotopes. We will follow
[2, Chapter 9] and [3, Chapter 7.5].

We suppose that w1, w2, ..., wm ∈ Rd are linearly independent, and we require
σ1, σ2, ..., σm ∈ {±1}. Then we define

Πσ1,σ2,...,σm
w1,w2,...,wm

:= {λ1w1 + λ2w2 + · · ·+ λmwm | 0 ≤ λj ≤ 1 if σj = −1 and
0 < λj ≤ 1 if σj = 1 for j ∈ [m]}.

So, Πσ1,σ2,...,σm
w1,w2,...,wm

is a half-open parallelepiped for a proper choice of σ1, σ2, ..., σm
generated by w1, w2, ..., wm. The signs σ1, σ2, ..., σm keep track of those facets of
the parallelepiped that are included or excluded from the closure of the paral-
lelepiped.
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9.2 Paving a Zonotope 171

Lemma 9.1. The zonotope Z(u1,u2, . . .un) can be written as a disjoint union
of translates of Πσ1,σ2,...,σm

w1,w2,...,wm , where {w1,w2, . . . ,wm} ranges over all linearly
independent subsets of {u1,u2, . . .un}, each equipped with an appropriate
choice of signs σ1, σ2, . . . , σm.

Figure 9.5 illustrates the decomposition of a zonotope as suggested by
Lemma 9.1.

Fig. 9.5 A zonotopal decomposition of Z
((

0
4

)
,
(
3
3

)
,
(
4
1

))
.

Proof of Lemma 9.1. We proceed by induction on n. If n = 1, Z(u1) is a line
segment and 0 ∪ (0,u1] is a desired decomposition.

For general n > 1, we have by induction the decomposition

Z(u1,u2, . . . ,un−1) = Π1 ∪Π2 ∪ · · · ∪Πk

into half-open parallelepipeds of the form given in the statement of Lemma 9.1.
Now we define the hyperplane H := {x ∈ Rd : x ·un = 0} and let π : Rd → H
denote the orthogonal projection onto H. Then π(u1), π(u2), . . . , π(un−1) are
line segments or points, and thus Z(π(u1), π(u2), . . . , π(un−1)) is a zonotope
living in H. Once more by induction, we can decompose

Z(π(u1), π(u2), . . . , π(un−1)) = Φ1 ∪ Φ2 ∪ · · · ∪ Φm

into half-open parallelepipeds of the form given in Lemma 9.1. Each Φj is a
half-open parallelepiped generated by some of the vectors π(u1), π(u2), . . . ,

π(un−1); let Φ̃j denote the corresponding parallelepiped generated by their
unprojected counterparts. Then (Exercise 9.5) the desired disjoint union of
Z(u1,u2, . . . ,un) is given by Π1 ∪Π2 ∪ · · · ∪Πk ∪ P1 ∪ P2 ∪ · · · ∪ Pm, where

Figure 9: A zonotopal decomposition of Z((0, 4)T , (3, 3)T , (4, 1)T ). Source: [2,
p.171]

Lemma 3.1. (See, for example, [2, pp. 171-172]). The zonotope Z(u1, u2, ..., un)
can be written as a disjoint union of translates of Πσ1,σ2,...,σm

w1,w2,...,wm
, where {w1, w2, ..., wm}

ranges over all linearly independent subsets of {u1, u2, ..., un}, each equipped with
an appropriate choice of signs σ1, σ2, ..., σm.

Figure 9 illustrates the decomposition of a zonotope as suggested by Lemma 3.1.

3.4 Ehrhart polynomials of (graphic) zonotopes

Definition 3.7. A lattice polytope is a polytope P ⊆ Rd whose vertices are all
lattice points of a chosen lattice.

We will work with the lattice Zd ⊆ Rd.

Let P ⊆ Rd be a polytope that spans a subspace S ⊆ Rd. We denote by volP
the (relative) volume of P , normalized with respect to S ∩ Zd; that is, we take
the volume of a fundamental domain of the integer lattice in S to be 1. To
explain this last, we note that S ∩ Zd is linearly equivalent to ZdimS ⊆ RdimS ;
a fundamental domain is a domain in S that corresponds to the unit hypercube
[0, 1]dimS ⊆ RdimS , under some invertible linear transformation that carries S∩Zd
to ZdimS . When S = Rd this is the ordinary volume, see [4, Chapter 2.1] or
[2, Chapter 5.4].

Ehrhart proved in [6] that, for a lattice d-polytope P , the lattice point enumer-
ator Lp(t) := #(tP ∩ Zd) is a polynomial in t of degree d. This polynomial is
called Ehrhart polynomial and can be written as LP (t) =

∑d
i=0 ci(P )ti where

the coefficients ci(P ), 0 ≤ i ≤ d depend only on P . If P is a rational poly-
tope, i.e., a polytope whose vertices are all in Qd, the lattice point enumerator
LP is a quasipolynomial. Ehrhart showed that the leading term of the Ehrhart
polynomial is (volP )tdimP .

In this thesis we want to apply Ehrhart theory only to lattice polytopes, to
be precise, to zonotopes generated by integer vectors. Therefore, we will not
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give further details on Ehrhart theory for rational polytopes. For example, [2]
can be recommended for the reader interested in this topic, an introduction to
quasipolynomials or a more detailed introduction to Ehrhart theory.

Theorem 3.3, which is due to Richard Stanley (see [15]), will give us a remarkable
formula for the Ehrhart polynomials of zonotopes generated by integer vectors.
To prepare for this theorem, we will first point out how to compute the relative
volume of a half-open parallelepiped.

Lemma 3.2. (See, for example, [2, Lemma 9.8]). Suppose w1, w2, ..., wn ∈ Zd are
linearly independent, let

Π := {λ1w1 + λ2w2 + · · ·+ λnwn | 0 ≤ λ1, λ2, ..., λn < 1},

and let V be the greatest common divisor of all n×n minors of the matrix formed
by the column vectors w1, w2, ..., wn. Then the relative volume of Π equals V .
Furthermore,

#(Π ∩ Zd) = V,

and for every positive integer t,

#(tΠ ∩ Zd) = V tn.

In other words, for the half-open parallelepiped Π, the discrete relative volume
#(tΠ ∩ Zd) coincides with the continuous relative volume (vol Π)tn.

Corollary 3.1. (See, for example, [2, Corollary 9.3]). Decompose the zonotope
Z ⊆ Rd into half-open parallelepipeds according to Lemma 3.1. Then the coef-
ficient ck, for 0 ≤ k ≤ d, of the Ehrhart polynomial

LZ(t) = cdtd + cd−1td−1 + · · ·+ c0

equals the sum of the (relative) volumes of the k-dimensional parallelepipeds in
the decomposition of Z.

Now, we are finally prepared for Theorem 3.3.

Theorem 3.3. (See, for example, [2, Theorem 9.9]). Let Z := Z(u1, ..., un) be a
zonotope generated by the integer vectors u1, ..., un. Then the Ehrhart polynomial
of Z is given by

LZ(t) =
∑

S

m(S)t|S|,

where S ranges over all linearly independent subsets of {u1, ..., un}, and m(S) is
the greatest common divisor of all minors of size |S| of the matrix whose columns
are the elements of S.
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Example 3.5. We apply Theorem 3.3 to compute the Ehrhart polynomial of the
graphic zonotope of a (simple and) connected graph G = (V,E). By Definition
3.5 the graphic zonotope is the Minkowski sum of the line segments ue := [0, xe]
where xe is are the column vector of the signed vertex-edge incidence matrix M
of G corresponding to the edge e ∈ E. We know or can easily show by induction
that the signed incidence matrix, also known as the incidence matrix of a directed
graph, is totally unimodular, i.e., every minor is 0 or ±1, see, for example, [19].
Thus, the greatest common divisor of each minor m(S) is 1, where again S ranges
over all linearly independent subsets of {u1, ..., un}. So, using Corollary 3.1, the
Ehrhart polynomial of Z is given by

LZ(t) =
∑

S

1 · t|S| =
∑

T a forest of size k

1 · tk =

|V |−1∑

k=0

ckt
k

where the coefficients ck are the numbers of labeled forests on G of size k.

We obtain a remarkably easy result for the Ehrhart polynomial of the graphic
zonotope bringing together the independent sets of the graphic matroid of G
and the volume of its graphic zonotope. This result was shown, for example, by
Postnikov (see [12, Proposition 2.4]) and is going back to an Exercise given by
Stanley in [16, Exercise 4.32]. It motivated this thesis which started with the
question if there is a similar nice arithmetic behaviour for the flow zonotope,
which will be introduced in Chapter 4.6.
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4 Cographic hyperplane arrangements and
zonotopes

4.1 Further definitions

In this chapter we give definitions that partially generalize those of Chapter 2.3
and that are essential for the construction of the cographic hyperplane arrange-
ment.

Definition 4.1. Let P ⊆ Rd be a d-polytope with 0 in its interior. Let Ci be the
set of all i-faces of P , i ∈ {1, ..., d− 1}. An orientation of the set of i-faces Ci is
a sign vector ε ∈ {±1}Ci that labels each face A of Ci with a positive or negative
sign.

Definition 4.2. Let P be a d-polytope whose vertices are labeled 1, ..., n. An
orientation on the set of edges E of P with respect to vertices is given by a subset
O ⊆ E such that for an edge e = ij ∈ E with i < j, we direct e from i to j if
e ∈ O and from j to i otherwise. The oriented vertex-edge-incidence-matrix is a
matrix whose entries are determined by the vertex-edge incidences, i.e., we have
a row for each vertex and a column for each edge. If an edge ij is oriented from
i to j, the entry determined by i and ij is −1, the entry determined by j and ij
is +1 and if a vertex k is not contained in an edge ij, the entry determined by k
and ij is 0.

Remark 4.1. The definition of an orientation on the set of edges E of a polytope
P with respect to vertices coincides with the definition of an orientation on the
set of edges with respect to vertices on the graph of P . Therefore, we can use all
notions defined on the set of edges of a graph, e.g., acyclic orientations, directed
paths, etc., also on the set of edges of a polytope by considering them as defined
on the set of edges of the graph of P .

Example 4.1. Consider the tetrahedron T from Example 2.8 one more time.
Let O = {13, 23, 34} be a subset of the set of edges of T giving us the orientation
O that can be seen in Figure 10 where we denote that an edge is oriented from
vertex i to vertex j by drawing an arrow from i to j.

C2
∂2−−−−−−−−−−−−−−−−−−−→ C1

∂1−−−−−−−−−−−−−−−−−−−−−−−→ C0

123 124 134 234
12
13
14
23
24
34




−1 1 0 0
−1 0 1 0
0 −1 1 0
−1 0 0 1
0 −1 0 1
0 0 −1 1




12 13 14 23 24 34
1
2
3
4




−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1




C△0
∂△
1←−−−−−−−−−−−−−−−−−−−−−−−− C△1

∂△
2←−−−−−−−−−−−−−−−−−−−− C△2

12 13 14 23 24 34
123
124
134
234




−1 −1 0 −1 0 0
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1




1 2 3 4
12
13
14
23
24
34




−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1




13

Figure 7: A tetrahedron (light) and its dual (fat).
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Figure 8: Caption

Definition 2.39. [3, p.5] Let P ∈ Rd be a polytope whose vertices are labeled
1, ..., n. An orientation on the set of edges E of P is given by a subset O ⊆ E
such that for an edge e = ij ∈ E with i < j, we direct e from i to j if e ∈ O and
from j to i otherwise.

Example 2.14. Consider again the tetrahedron T from Example 2.9. Let O =
{12, 14, 23, 34} is a subset of the set of edges of T giving us the orientation O
that can be seen in Figure where we denote that an edge is oriented from vertex
i to vertex j by drawing an arrow from i to j.

Definition 2.40. If two orientations of adjacent i−faces are the same, then they
are oriented in the same direction.

Definition 2.41. Let P be a 4-polytope whose facets are labeled f1, ..., fm. An
orientation on the set of ridges R of P is a subset ρ ⊆ R such that for an ridge
r = fi ∩ fj with i < j, we direct r in mathematically positive direction from the
relative exterior of fi if r ∈ ρ and in mathematically positive direction from the
relative exterior of fj otherwise.

Definition 2.42. Let P ⊆ Rd be a d-polytope with 0 in its interior. Let Cd−2
be the collection of all d − 2−dimensional faces of P4 and orient them by an

12

Figure 10: An orientation on the set of edges with respect to vertices.
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Definition 4.3. Let P be a d-polytope. If the orientations of two adjacent i-faces
of P are the same, then they are oriented in the same direction.

Example 4.2. Consider the orientation shown in Figure 10. We see that the
orientations of the edges 23 and 34 are the same since they are both oriented
from the smaller to the greater endpoint. Thus, 23 and 34 are oriented in the
same direction.

Definition 4.4. Let P be a d-polytope whose facets are labeled f1, ..., fm. An
orientation O on the set of ridges R with respect to facets is given by a subset
O ⊆ R such that for a ridge r = fi∩fj with i < j, we direct r from fi to fj if r ∈ O
and the other way around if r /∈ O. The notation is assigning −1 for fi and +1 for
fj if r ∈ O and vise versa if r /∈ O. If P is a 4-polytope, this means geometrically
that all edges of a ridge r are oriented in mathematically positive direction going
around the boundary of r seen from the facet with smaller label if r ∈ O and
the other way around otherwise. The oriented ridge-facet-incidence-matrix is a
matrix whose entries are determined by the ridge-facet incidences, i.e., we have a
row for each ridge and a column for each facet. If a ridge r = fk ∩ fl is oriented
from fk to fl, the entry determined by fk and r is −1, the entry determined by
fl and r is +1 and if a ridge r is not contained in a facet f , the entry determined
by r and f is 0.

Definition 4.5. Let P be a 4-polytope. Let the ridges be oriented with respect
to facets and the edges with respect to vertices. We denote the orientation of
an edge e of P with respect to a ridge r by 0 if e is not contained in r, by +1
if the orientation of e given by the orientation of r is the same as the one e has
with respect to vertices and by −1 otherwise. That means that for the oriented
edge-ridge-incidence-matrix, we have for the entry determined by an edge e and
a ridge r, a +1 if the orientation of e given by the orientation of r is the same
as the one e has with respect to vertices, a 0 if e is not contained in r and a −1
otherwise.

Example 4.3. Consider again the tetrahedron from Example 2.11. Label the
facets with the letters a, b, c, d and not by numbers to prevent having the same
labels twice.

Let an orientation of the edges with respect to facets given by O = {ac, ad, bd}
where an edge ij, i, j ∈ {a, b, c, d} is the intersection of the facets i and j. Now
we can orient the edges with respect to facets as defined by Definition 4.4. We
denote an edge oriented from lexicographic smaller to greater facet by green color
and with orange for the other case as it can be seen in Figure 11. Facet a is the
bottom facet, facet c the back one, facet d the left and facet b the right one.
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c

b

a

d

Figure 9: Edges oriented w.r.t. facets

Definition 2.41. Let P ⊆ Rd be a d-polytope with 0 in its interior. Let Cd−2
be the collection of all d − 2−dimensional faces of P4 and orient them by an
orientation O4. Then O4 induces an orientation O on P satisfying the following
property: For a d − 2face e4 of P4, and its dual, the edge e, project both to a
hyperplane supporting e4 but no higher dimensional face of P4. Then we obtain
the dual orientation of e by orienting e such that each selection of two directions
of the directed ordered pair (e, e4) is always a left turn.

Example 2.17.

13

Figure 11: Edges oriented with respect to facets.

Definition 4.6. Let P4 be a 4-polytope. A nonempty sequence S of ridges
is called a ridge cycle R4 if and only if it separates the boundary of P4 into
two connected pieces each of which contains at least one facet of P4. If R4
additionally satisfies that each sequence of adjacent ridges of R4 is directed in
the same direction, then R4 is called an oriented ridge cycle.

Remark 4.2. The definition of a ridge cycle implies that for its dual there exists
a cut set between the vertices dual to the facets belonging to the first piece of
the boundary and the vertices belonging to the second, i.e., the complement of
the dual of a ridge cycle is not a spanning edge set.

Example 4.4. Figure 12 shows a ridge cycle on a Schlegel-diagram of a 4-simplex
with vertex set {1, 2, 3, 4, 5}. The ridge cycle contains the ridges 123, 125, 235,
145, 134 and 345, which are all drawn blue. We see that every edge is contained
in exactly two ridges of the ridge cycle.

3

5

4

1

2

Figure 12: A ridge cycle (blue) on a 4-simplex.

Definition 4.7. Let P4 be a 4-polytope. An orientation O4 on the set of ridges
of P4 is called totally cyclic if and only if every ridge is contained in at least
one oriented ridge cycle.
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Definition 4.8. Let P4 be a 4-polytope. An orientation O4 on the set of ridges
of P4 is called acyclic if there does not exist any oriented ridge cycle.

Definition 4.9. A collection of ridges R4 of a 4-polytope P4 is called a ridge
forest if and only if it does not contain any ridge cycle. A ridge forest is called a
spanning ridge forest if and only if it is a ridge forest of maximal cardinality.

Remark 4.3. The definition of a spanning ridge forest implies that for the bound-
ary of every facet F4 ⊆ P4 there is at least one not chosen ridge. Therefore, we
know that the dual of the complement of a spanning ridge forest is a spanning
subset of the set of edges of P .

Remark 4.4. The previous remark implies that the cardinality of a maximal
spanning ridge forest for a polytope P4 is smaller than or equal

|R4| − |F4|+ 1 = |E| − |V |+ 1.

Definition 4.10. Let P4 be a 4-polytope and let R4 be a spanning ridge forest.
An edge e4 is called a ridge leaf of R4 if and only if e4 is contained in exactly
one ridge of R4.

Example 4.5. Figure 13 shows a ridge forest on a Schlegel-diagram of a 4-simplex
with vertex set {1, 2, 3, 4, 5}. The ridge forest contains the ridges 134 (blue), 145
(black), 124 (red), 123 (yellow), 345 (orange) and 245 (green). For example, the
only ridge of the ridge forest containing the edge 23 is 123. Therefore, 23 is a
ridge leaf.

3

5

4

1

2

Figure 13: A ridge forest on a 4-simplex.

Let P be a d-polytope, d = 3 or d = 4, with 0 in its interior. For the construction
of the cographic hyperplane arrangement we need the concept of cellular chain
complexes. Because of the deep and huge theoretical background needed to set
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up cellular chain complexes, we will explain only the notions that are important
for us and refer to [10] for the reader interested in the background. The cellular
chain complex associated to the CW-complex given by the face-structure of P , is
of the form

Cd−1 Cd−2 ... C2 C1 C0
∂d−1 ∂d−2 ∂3 ∂2 ∂1

The Ci’s are free modules whose generators are the i-faces of P for i ∈ {0, ..., d−1}.
The matrix representations of the maps ∂j for j ∈ {1, ..., d− 1}, called boundary
maps, are the oriented (j − 1)-face-j-face incidence matrices, see [1, Chapter 2].
These matrices encode the orientations of (j − 1)-faces with respect to j-faces
or the orientation of j-faces with respect to (j − 1)-faces that we have seen in
the Definitions 4.2, 4.4 and 4.5 in the way described within these definitions. So,
we assume that we have given a base orientation, i.e., a labeling of the set of
vertices and a labeling of the set of facets required by the Definitions 4.2, 4.4 and
4.5. An advantage of orienting the faces of P by a base orientation is that by
re-orientations we can obtain all possible orientations on P . These orientations
are encoded by the boundary maps, which are, as said, the oriented (k− 1)-face-
k-face incidence matrices of P for k ∈ {1, 2, ..., d − 1}, i.e., they are encoded by
a linear algebra tool. Thus, re-orienting just means multiplying subsets of the
columns by −1.

We use the above orientations that are different from the convenient orientations,
e.g. see [1, p.4] to obtain our desired properties. For example, using the orien-
tations from [1], we would not have the property that the columns of ∂41 are the
normal vectors of the graphic hyperplane arrangement of P4.

In the following we do not want to consider only the cellular chain complex
associated to the CW-complex given by the face-structure of P , but also the one
of its dual P4 and the corresponding chain maps fi : Ci → C((d−1)−i) that map
a face A, which is a generator of Ci, to its dual face A4, which is a generator
of C4((d−1)−i). Of course, there is a map in the other direction, which is induced
by duality, too. Thus, the matrix representations of the boundary maps of the
cellular chain complex associated to the CW-complex given by the face-structure
of P4 are exactly the corresponding transposed of the matrix representations
of the cellular chain complex associated to the CW-complex given by the face-
structure of P as shown below:

Cd−1 Cd−2 ... C2 C1 C0

C40 C41 ... C4d−3 C4d−2 C4d−1

∂d−1

fd−1

∂d−2

fd−2

∂3 ∂2

f2

∂1

f1 f0

∂Td−1=∂
4
1 ∂Td−2=∂

4
2 ∂T3 =∂4d−3 ∂T2 =∂4d−2 ∂T1 =∂4d−1

So, we can define the dual orientation for a given orientation by using this method-
ology as follows.
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Definition 4.11. Let P be a d-polytope with 0 in its interior and let P4 be
its dual polytope. For the following we assume that i ∈ {1, 2, ..., d − 2} and
j ∈ {0, 1, 2, ..., d − 1} such that j is either i + 1 or i − 1. The orientation of the
set of i-faces with respect to the j-faces of P4, also called the dual orientation
of the i-faces with respect to the j-faces of P4 is given by the signs of the
corresponding oriented i-face-j-face incidence matrix ∂4max{i,j} = ∂Td−max{i,j} of P

4

which is induced by duality.

Remark 4.5. The columns of ∂1 are exactly the normal vectors of the graphic
hyperplane arrangement.

Remark 4.6. The column vectors of ∂Td−1 = ∂41 are, particularly because of
the way we have chosen the base orientation, the normal vectors of the graphic
hyperplane arrangement of G(P4).

4.2 Cographic hyperplane arrangements for graphs that are
Steinitz

Our first step for constructing the cographic hyperplane arrangement is to en-
counter the construction for the special case that G = (V,E) is Steinitz, i.e.,
that it is 3-connected, planar and simple. Therefore, we assume throughout this
chapter that G is Steinitz.

This assumption gives us the following property that we are going to exploit
throughout this chapter:

Theorem 4.1. (Steinitz’ Theorem for 3-polytopes, see, for example, [23, Chap-
ter 4]). G is the graph of a 3-polytope if and only if it is simple, planar and
3-connected.

Thus, it follows that G is the graph of a 3-polytope P .

Fact 4.1. By construction, G(P4) is the graph dual to G.

Now, we want to use the construction of the cellular chain complex associated to
the CW-complex given by the face structure of P . By labeling the facets of P by
1, ...,m and the vertices of P by 1, ..., n we obtain a base orientation that induces
an orientation of the set of edges of P with respect to vertices resp. with respect
to facets. Then, the cellular chain complexes associated to the CW-complex given
by the face-structure of P and P4 are of the following form (see Chapter 4.1).

C2 C1 C0

C40 C41 C42

∂2

f2

∂1

f1 f0

∂T2 =∂41 ∂T1 =∂42
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Because P is a 3-polytope, the edges of P4 are dual to the edges of P .

Theorem 4.2. The columns of the matrix representation of ∂41 = ∂T2 are the
normal vectors of the cographic hyperplane arrangement of G.

To prove this theorem, we need the following two Lemmas, which enable us to
prove the two defining properties of the cographic hyperplane arrangement.

Lemma 4.1. (See, for example, [18, p.289]). A subset T of the set of edges
of P4 is a forest if and only if the set of the edges dual to the edges of T are
complements of spanning sets in P .

This lemma actually holds in greater generality. It is true for all simple and
planar, but not necessarily 3-connected, graphs.

Example 4.6. Figure 14 shows a tetrahedron T on the vertex set {1, 2, 3, 4} and
its dual T4 which is also a tetrahedron. W.l.o.g. we assume that 0 is contained
in the interior of T . This example illustrates Lemma 4.1, showing a forest on the
set of edges of G(T4) (green) inducing a complement of a spanning set on the
set of edges of G(T ) (orange).

1

2

3

4

12

23
34

14
13

24

14

Figure 14: A forest on the set of edges of the dual of a polytope induces a com-
plement of a spanning set on the set of edges of the primal polytope.

Furthermore, an orientation O on G(P ) induces an orientation O4 on G(P4)
given by Definition 4.11. O4 and O have the following property.

Lemma 4.2. (See, for example, [11]). An orientation O on G(P ) is totally cyclic
if and only if O4 is acyclic on G(P4).

This lemma actually holds in greater generality. It is true for all simple and
planar, but not necessarily 3-connected, graphs.

Example 4.7. Figure 15 illustrates Lemma 4.2, again using a tetrahedron. The
acyclic orientation on G(T4) induces by duality a totally cyclic orientation on
G(T ).
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Figure 15: An acyclic orientation on the set of edges of the dual of a polytope
induces by duality a totally cyclic orientation on the set of edges of its
primal polytope.

The first defining property of the cographic hyperplane arrangement is restated
in the following lemma.

Lemma 4.3. The regions of the hyperplane arrangement whose normal vectors
are the column vectors of ∂T2 are in one-to-one correspondence with the totally
cyclic orientations of G(P ).

Proof. The columns of ∂T2 = ∂41 are the normal vectors of the graphic hyperplane
arrangement of G(P4). Consider an acyclic orientation O4 on G(P4). It is in
one-to-one correspondence with a region of the graphic hyperplane arrangement
of G(P4). Now, by Lemma 4.2, O4 induces a totally cyclic orientation O on
G(P ). ∂T2 tells us how this dual construction is set up. If we go from one region
of the graphic hyperplane arrangement on G(P4) to another, we have a flip of
the orientation of the corresponding edge and obtain a new orientation (O4)′.

This induces a flip of the orientation of its dual edge in G(P ). This way we
obtain a new orientation O′ on G(P ) which is also totally cyclic since (O4)′ is
still an acyclic orientation on G(P4), and an orientation on G(P4) is acyclic
if and only if it induces a totally cyclic orientation on G(P ) by Lemma 4.2.
By considering all regions of this hyperplane arrangement, we obtain all acyclic
orientations on G(P4). Thus, the regions of this hyperplane arrangement are in
one-to-one correspondence with the totally cyclic orientations on G(P ).

This is demonstrated by the example shown in Figure 16. On the left side of
Figure 16 there are a tetrahedron T on the vertex set {1, 2, 3, 4} with a totally
cyclic orientation on its set of edges and its dual T4 with an acyclic orientation
on its set of edges E4 (orange). On the right side there is the same ensemble with
the difference that we obtained a new acyclic orientation on E4 by flipping the
orientation of the edge 144 ∈ E4. As described before, flipping the orientation
of the edge 14 ∈ E, which is dual to 144, induces, by duality, a new totally cyclic
orientation on G(T ).

The following lemma gives us the second defining property of the cographic hy-
perplane arrangement.
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Figure 16: Flipping the orientation of an edge.

Lemma 4.4. A subset of the set of columns of ∂41 = ∂T2 is linearly independent
if and only if it induces a complement of a spanning set on G(P ).

Proof. Choose a subset S of the columns of ∂41 . By Remark 4.6 and Proposition
3.1 the columns of S are linearly independent if and only if they induce a forest
on G(P4). By Lemma 4.1, forests on G(P4) induce complements of spanning
sets on G(P ) and vice versa.

Thus, the columns of ∂41 = ∂T2 satisfy exactly the desired properties. Therefore,
the columns of ∂T2 are exactly the normal vectors of the cographic hyperplane
arrangement of G(P ).

Example 4.8. Consider again the tetrahedron T and its dual T4 of Example
4.6, which are shown by Figure 14.

Orient its faces by the base orientation induced by the labelings shown in Figure
14. Then we obtain the cellular chain complex

C2
∂2−−−−−−−−−−−−−−−−−−→ C1

∂1−−−−−−−−−−−−−−−−−−−−−→ C0

123 124 134 234
12
13
14
23
24
34




1 −1 0 0
−1 0 1 0

0 1 −1 0
1 0 0 −1
0 −1 0 1
0 0 1 −1




12 13 14 23 24 34
1
2
3
4




−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1




for T and for its dual T4 we obtain

C40
∂41←−−−−−−−−−−−−−−−−−−−−−− C41

∂42←−−−−−−−−−−−−−−−−−− C42

12 13 14 23 24 34
123
124
134
234




1 −1 0 1 0 0
−1 0 1 0 −1 0

0 1 −1 0 0 1
0 0 0 −1 1 −1




1 2 3 4
12
13
14
23
24
34




−1 1 0 0
−1 0 1 0
−1 0 0 1

0 −1 1 0
0 −1 0 1
0 0 −1 1



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as its cellular chain complex.

The matrix ∂T2 = ∂41 is the vertex-edge incidence matrix of G(T4). Thus, the
columns of ∂T2 = ∂41 are not only the normal vectors of the cographic hyperplane
arrangement of G(T ), but also the normal vectors of the graphic hyperplane
arrangement of G(T4), i.e., the cographic hyperplane arrangement of G(T ) is
the graphic hyperplane arrangement of G(T4). We observe that, as expected, a
subset of the set of column vectors of ∂T2 = ∂41 is linearly independent if and only
if it induces a complement of a spanning set of G(T ) resp. a forest on G(T4). For
example, consider the linearly independent columns of ∂T2 = ∂41 corresponding to
the edges 23, 24 and 34 of G(T ) resp. of G(T4). They induce the complement of
a spanning forest in G(T ) drawn orange resp. a spanning forest on G(T4) drawn
green in Figure 17.

1

2

3

4

12

23
34

14
13

24

14

Figure 17: The columns corresponding to the edges 23, 24 and 34 induce a com-
plement of a spanning forest in G(T ).

4.3 Cyclic polytopes

What do we do if our graph G is not Steinitz? Can we extend the above approach
to general simple, connected and bridgeless graphs? In the following chapters we
are going to develop methods to generalize the construction that we have seen for
the case that G is Steinitz. Therefore, we will use cyclic polytopes. The aim of
this chapter is to introduce cyclic polytopes and discuss some of their properties,
which we will need later in order to construct cographic hyperplane arrangements
of those graphs and to compute their Ehrhart polynomials. In particular, we are
interested in the properties of cyclic 4-polytopes. The following and other facts
about cyclic polytopes can be found, e.g., in [9] or [23].

Definition 4.12. The moment curve in Rd is defined by

x : R→ Rd, t 7→ x(t) :=




t
t2

...
td


 ∈ Rd.

The cyclic polytope Cd(t1, ..., tn) is the convex hull

Cd(t1, ..., tn) := conv{x(t1), x(t2), ..., x(tn)}
of n > d distinct points x(ti), with t1 < t2 < · · · < tn, on the moment curve.
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Remark 4.7. The combinatorics of the cyclic polytope Cd(t1, ..., tn) does not
depend on the specific choice of the parameters ti. This justifies denoting the
polytope by Cd(n) and calling it "the" cyclic d-polytope with n vertices.

Example 4.9. Figure 18 shows how the cyclic polytope C3(6) arises from six
points t1, ..., t6 plugged into the moment curve.

0. Introduction and Examples 11

Example 0.6. The moment curve in Rd is defined by

x : R −→ Rd, t 7−→ x(t) :=




t
t2
...
td


 ∈ Rd.

The cyclic polytope Cd(t1, . . . , tn) is the convex hull

Cd(t1, . . . , tn) := conv {x(t1),x(t2), . . . ,x(tn)}
of n > d distinct points x(ti), with t1 < t2 . . . < tn, on the moment
curve. We will see from “Gale’s evenness condition” ahead that the points
x(ti) are vertices, and the combinatorial equivalence class of the polytope
does not depend on the specific choice of the parameters ti. This justifies
denoting the polytope by Cd(n) and calling it “the” cyclic d-polytope with
n vertices. Our drawing shows C3(6).

x(t1)

x(t2)

x(t3)
x(t4)

x(t5)

x(t6)

The problem is that in dimension 3 we cannot really see why cyclic
polytopes are so interesting. They are. Before we prove a few things about
them, let’s do some “experiments.”

We use the program “PORTA” by Thomas Christof [150, 151], which
produces a complete system of facet-defining inequalities from the list of
vertices. Let’s do the 4-dimensional cyclic polytope C4(8). We use param-
eters ti = i− 1 for 1 ≤ i ≤ 8. The input file for PORTA is

DIM = 4

CONV_SECTION

0 0 0 0

1 1 1 1

2 4 8 16

3 9 27 81

4 16 64 256

5 25 125 625

6 36 216 1296

7 49 343 2401

END

Figure 18: The cyclic polytope C3(6). Source: [23, p.11]

Definition 4.13. A d-polytope is said to be k-neighborly if and only if any subset
of k or less vertices forms a face of P .

Theorem 4.3. (See, for example, [23, Theorem 0.7]). Let n > d ≥ 2. Choose
real parameters t1 < t2 < · · · < tn. Then Cd(n) := conv{x(t1), ..., x(tn)} is a
simplicial d-polytope. A d-subset S ⊆ [n] forms a facet of Cd(n) if and only if the
following "evenness condition", known as Gale’s evenness condition, is satisfied.
If i < j are not in S, then the number of k ∈ S between i and j is even:

2 | #{k ∈ S | i < k < j for i, j /∈ S}.

Remark 4.8. It follows from Gale’s evenness criterion that cyclic polytopes are⌊
d
2

⌋
-neighborly.

Therefore, cyclic polytopes give examples for 2-neighborly 4-polytopes with any
number n ∈ N of vertices. With Gale’s evenness criterion we can determine the
whole combinatorics of cyclic polytopes.

Remark 4.9. The number f1(C4(n)) of edges of the cyclic polytope C4(n) is

f1(C4(n)) =

(
n

2

)

since C4(n) is 2-neighborly, i.e., every vertex is adjacent to every other vertex.

Proposition 4.1. The f-vector of C4(n) is (1, n,
(
n
2

)
, 2(
(
n
2

)
− n),

(
n
2

)
− n, 1).
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Proof. By Remark 4.9, the number of edges of C4(n) is
(
n
2

)
. Denote the number

of ridges and facets of C4(n) by f2 resp. f3. The Dehn-Sommerville equations 2.3
give us the following relation:

3∑

j=2

(
j + 1

d− 2 + 1

)
fj = (−1)3f2.

This is equivalent to

f2 = 2f3.

Using the Euler-Poincaré equation, we obtain

n−
(
n

2

)
+ f2 − f3 = n−

(
n

2

)
+ 2f3 − f3 = 0,

which finally gives us the desired result.

Remark 4.10. Since cyclic polytopes are simplicial, their duals are simple poly-
topes.

Remark 4.11. Since cyclic polytopes are simplicial by Theorem 4.3, their ridges
are triangles, i.e., every ridge contains exactly three edges. That implies that
the signed edge-ridge incidence matrices of cyclic polytopes have three non-zero
entries per column that are either 1 or −1.

In the following chapters we will study the cographic hyperplane arrangement of a
complete graph using the signed edge-ridge incidence matrices of cyclic polytopes.
In this chapter we want to investigate, how, in general, the signed edge-ridge inci-
dence matrices of cyclic 4-polytopes look like. Therefore, we use Gale’s evenness
criterion as it determines the combinatorics of cyclic polytopes.2

Label the vertices of C4(n) for n ≥ 6. Consider the vertex figure of any chosen
vertex. W.l.o.g. choose vertex 1 since the vertex figures are all the same up to
symmetry. Now determine how many facets are containing any edge incident
to 1. The edges 12 and 1n are contained in (n − 2) many facets by Gale’s
evenness criterion. These are all facets with the vertices 1, 2, i, j resp. 1, k, l, n
where 2 < i, j ≤ n and 1 < k, l < n where i, j resp. k, l are consecutive numbers
since these are exactly the cases for which Gale’s criterion is satisfied. Thus, 12
and 1n are dual to two (n − 2)-gons, and these two (n − 2)-gons both share a
common edge since 12 and 1n are both contained in the triangle 12n.

The edges 13 and 1(n− 1) are both contained only in the three facets 1, 3, 4, n or
1, 2, 3, n or 1, 2, 3, 4 resp. 1, (n−2), (n−1), n or 1, 2, (n−1), n or 1, 2, (n−2), (n−1).
Thus, they are dual to triangles. All other edges 1l, l ∈ {4, ..., n−2} are contained
in exactly four facets that are of the forms 1, (l − 1), l, n or 1, l, (l + 1), n or
1, 2, (l − 1), l or 1, 2, l, (l + 1). Thus, they are all dual to quadrilaterals. In
total, we know that each facet of C4(n)4 has as facets two (n− 2)-gons, (n− 5)

2For the following I would like to thank Prof. Dr. Florian Frick (CMU) for his help.
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quadrilaterals and two triangles. Applying duality, we obtain that for each vertex
of C4(n) there are two incident edges contained in exactly (n− 2) ridges, (n− 5)
incident edges contained in exactly four ridges and two incident edges contained
in exactly three ridges.

Thus, the transpose ∂T2 of the matrix representation of the second boundary map
of the cellular chain complex associated to the CW-complex given by the face-
structure of C4(n) has n columns with (n − 2) ±1 entries and the rest of the
entries are zero, n(n−5)

2
columns with four ±1 and rest zero and n columns with

three ±1 and rest zero. Besides, every row of ∂T2 has three non-zero entries which
are ±1 since every ridge is a triangle.

For n = 5 we have the 4-simplex whose edges are all contained in exactly three
ridges. Thus, all rows and columns of the matrix representation of ∂T2 each have
three ±1 entries and the rest is 0.

4.4 Cographic hyperplane arrangements for graphs of
4-polytopes

In this chapter we want to construct the cographic hyperplane arrangement for
the graph of a given 4-polytope P . We assume throughout this chapter that P
is a 4-polytope with 0 in its interior.

Consider the cellular chain complexes associated to the CW-complex given by
the face-structure of P and P4. By labeling the facets of P by 1, ...,m and the
vertices of P by 1, ..., n we obtain a base orientation that induces the orientations
given by the Definitions 4.2, 4.4 and 4.5. Then, the cellular chain complexes
associated to the CW-complex given by the face-structures of P and P4 are of
the following form (see Chapter 4.1).

C3 C2 C1 C0

C40 C41 C42 C43

∂3

f3

∂2

f2

∂1

f1 f0

∂T3 =∂41 ∂T2 =∂42 ∂T1 =∂43

Lemma 4.5. The rank of ∂2, and thus the rank of ∂42 = ∂T2 , is |E| − |V |+ 1.

Proof. Since the row rank of a matrix equals its column rank, the rank of ∂42 = ∂T2
equals the rank of ∂2. The kernel of ∂1 gives exactly the relations of the hyperplane
description of the flow space FG(P ) of the graph G(P ) of P . Thus, the dimension
of the kernel of ∂1 equals |E| − |V | + 1. Since we have a cellular chain complex,
we know that im(∂2) ⊆ ker(∂1) and thus rank(∂2) ≤ |E| − |V |+ 1. On the other
hand, we obtain the cycle basis of G(P ) by the ridges of P as follows: Select a
subset S of ξ(G(P )) =

(|V |
2

)
− |V | + 1 ridges from the 2(

(|V |
2

)
− |V |) ridges of P

such that each vertex is contained in at least one ridge. Choose a spanning forest
T of G(P ) out of the edges of the ridges contained in S. We can choose such a
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spanning forest since we have chosen S in such a way that for each vertex v of
P there are edges incident to v and contained in S. Then the rows of ∂42 = ∂T2
corresponding to the ridges in S are exactly the vectors of the fundamental cycles
of G(P ) with respect to T since for each fundamental cycle/ ridge r they have
the entry 1 for an edge that is contained in r and oriented from the smaller to
the greater endpoint, −1 for an edge that is contained in r and oriented from
the greater to the smaller endpoint and 0 for an edge not contained in r. This is
exactly how we constructed the cycle basis of G(P ) with respect to a spanning
forest T in the proof of Proposition 2.

Corollary 4.1. By Lemma 4.5, the rows of ∂42 = ∂T2 are an alternative generating
system of the flow space where we have given a vector for each edge of G(P ). Thus,
the columns of ∂42 = ∂T2 are the normal vectors of the hyperplane arrangement
F ∩A where A is the arrangement of coordinate hyperplanes in RE.

Corollary 4.2. Corollary 4.1 implies the Euler-Poincaré formula (2.4) for 4-
polytopes.

Proof. Corollary 4.1 implies that

dim(im(∂2)) = dim(ker(∂1)) = |E| − |V |+ 1.

On the other hand, we have the same statement for its dual:

dim(im(∂42 )) = dim(ker(∂41 )) = |E4| − |V 4|+ 1 = |R| − |F |+ 1.

Now it follows from the fact that the row rank of a matrix equals the column
rank of a matrix that

|E| − |V |+ 1 = |R| − |F |+ 1.

This equals
|V | − |E|+ |R| − |F | = 0 = 1− (−1)4,

the well-known form of the Euler-Poincaré formula for 4-polytopes.

The main goal of this chapter is to prove the following theorem.

Theorem 4.4. The hyperplane arrangement whose normal vectors are the column
vectors of ∂T2 = ∂42 is the cographic hyperplane arrangement of G(P ).

For the proof of Theorem 4.4, we need the following Lemmas.

Lemma 4.6. Let R4 be a subset of the set of ridges of P4. Then R4 is a ridge
forest on P4 if and only if it induces by duality a complement of a spanning set
T on the set of edges of P .
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Proof. Suppose R4 contains a ridge cycle C4. Then, by definition, the ridge
cycle separates the boundary of P4 into two connected pieces each of which
contains at least one facet of P4. Thus, C4 induces a cut set on the set of edges
of P since the facets of P4 correspond to vertices of P and the ridges of P4 to
edges of P . Therefore, its complement cannot be spanning.

Suppose T is not a complement of a spanning set on G(P ). Consider the com-
plement S := E \ T , which is by definition not a spanning set on G(P ). Then
there exists a vertex v ∈ V that is not incident to any edge of S. This implies
that all ridges of the facet dual to v are contained in R4. Thus, R4 contains a
ridge cycle.

Lemma 4.7. A selection of the columns of ∂42 is linearly independent if and only
if the corresponding set of ridges R4 of P4 is a ridge forest on P4.

Proof. Suppose R4 contains an oriented ridge cycle C. By reorientation we can
assume that each closed sequence of ridges of C, i.e., a sequence of ridges without
ridge repetition and beginning and ending with the same ridge, is oriented in the
same direction.

Then for each edge contained in C, there is an even number of ridges of C
containing this edge. Furthermore, by the definition of a ridge cycle, these ridges
are contained in a closed sequence of ridges that are oriented in the same direction.
Consider such a sequence S and an edge e4 that is the intersection of two ridges
contained in S.

We observe that for the position e4 in the column vectors of ∂42 corresponding to
S there is one non-zero entry each for the two ridges that are both containing e4
and that are contained in S. All other entries for the position e4 are zero. Thus,
by adding up all column vectors of ∂42 corresponding to S, for each entry e4 the
two non-zero entries add up to zero since one entry is one and the other minus
one, because both ridges are oriented in the same direction. Since this happens
to all entries of all vectors corresponding to the whole ridge cycle by adding up
in all directions, eventually we obtain the zero vector.

For the other direction, we argue by induction. For a single ridge the statement
is clear. By Remark 4.14 there always exists a ridge leaf. Now we delete the
ridge r4 incident to the ridge leaf e4 and apply the induction hypothesis. The
edge-ridge incidence vector of r4 was linearly independent to the other vectors
since it was the only vector having a non-zero entry for e4. We can proceed by
induction since by deleting r4 we do not create a new cycle and, therefore, there
has to exist a further ridge leaf. Furthermore, we are decreasing for some edges
the number of ridges containing them.

Corollary 4.3. A subset of the set of columns of ∂42 = ∂T2 is linearly independent
if and only if it induces a complement of a spanning set on the set of edges of P .

Proof. A subset of column vectors of ∂42 = ∂T2 is by Lemma 4.7 linearly indepen-
dent if and only if it induces a ridge forest on P4. By Lemma 4.6, a set of ridges
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of P4 is a ridge forest on P4 if and only if it induces by duality a complement
of a spanning set T on the set of edges of P .

Lemma 4.8. An orientation O on the set of edges of P is totally cyclic if and
only if O4 is acyclic on the set of ridges of P4.

Proof. Suppose first that O4 induces an oriented ridge cycle C4 consisting of
the ridges A41 , ..., A4m. Then they are either all oriented in one of the two possible
directions or in the other. By definition, the edges dual to A41 , ..., A

4
m are all

oriented towards the vertices dual to the facets contained in the oriented ridge
cycle or they are all oriented away from these vertices. In either case, they cannot
belong to an oriented cycle of G(P ) because the edges dual to the oriented ridge
cycle are an oriented cut set. Therefore, O is not totally cyclic.

Conversely, suppose O4 is acyclic and let A be an edge of P . Let F4 be one
of the two facets of P4 containing the ridge A4. We can choose F4 this way
since each ridge of P4 is contained in exactly two facets because this is the dual
translation of the fact that each edge contains exactly two vertices. Since O4
is acyclic, there must be some edge B4 of P4 whose direction is opposite to
that of A4 along F4. This implies that A and B have the same direction. This
is the case since, by definition of the dual orientation, either both of them are
oriented towards the interior or towards the exterior. Furthermore, both A and
B are adjacent since they are both incident to the vertex dual to F4. In the
same way, considering, e.g., the facet to the "right" of B4 we can find an edge
D such that A, B and D are all oriented in the same direction and so on for all
directions. Continuing this process, eventually we find a directed cycle C in O
containing A. This process can be applied to each ridge and its dual edge since
the directions are induced by duality in each step. Eventually, we obtain a totally
cyclic orientation on the set of edges of P .

Lemma 4.9. The column vectors of ∂42 = ∂T2 are the normal vectors of a hy-
perplane arrangement whose regions are in one-to-one correspondence with the
acyclic orientations on the set of ridges of P4.

Proof. There is a natural association of an acyclic orientation on the set of ridges
of P4 with a particular region of the described arrangement. The hyperplane
associated with the ridge r4 of P4 breaks up the ambient space into two open
half-spaces defined by r4 being oriented positively, i.e., in mathematically pos-
itive direction from the facet with smaller label to the one with greater label
or negatively, i.e., the other way around. Thus, orienting a ridge selects a half-
space, and an orientation on the set of ridges of P4 can be associated with the
intersection of this collection of half-spaces. The orientation of each ridge gives a
labeling e4i , e

4
j , e

4
k , i < j < k, along its edges in direction of the orientation. We

are labeling along those sequences S defined by the proof of Lemma 4.7. Every
ridge gets labeled this way since every ridge is contained in an oriented ridge
cycle. Whenever an edge was already labeled, we keep this labeling and use it
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to determine the others. Thus, we choose only one edge with which the labeling
starts. Then the one-to-one correspondence is given by

R(O4) := {x ∈ RE4 | xi < xj < xk if r4 is (9)

oriented from e4i to e4j to e4k in O4}

for each acyclic orientation O4 on the set of ridges of P4 and conversely,

O4(R) := {r4 is oriented from e4i to e4j to e4k | r4 ∈ R (10)

and xi < xj < xk if x ∈ R}
for each regionR. For each non-empty regionR, any x ∈ R defines an orientation
O4(x) by (10). Suppose that O4 is not acyclic. Then there exists an oriented
ridge cycle C giving a chain of strict inequalities via the orienting edges of E4
contained in C, w.l.o.g. x1 < x2 < · · · < xl−1 < xl < x1 since, by the definition
of an oriented ridge cycle, each sequence of ridges of C is oriented in the same
direction. Consequently, R is empty. Thus, O4 is acyclic. This property holds
for all x ∈ R: If we consider any y ∈ R, we obtain y from x by moving in
R without crossing any hyperplane of our hyperplane arrangement. Thus, no
constraint defining O4 gets changed for any point in R and therefore, O4 is a
well-defined acyclic orientation on R.

Conversely, given any acyclic orientation O4 on the set of ridges of P4, we
will show that R(O4) is non-empty. If follows from the previous direction that
R(O4) is a well-defined region of our hyperplane arrangement. We define a
partial ordering by xi ≤O4 xj if and only if r4 has the orientation from ei to ej
in O4 (extended by transitivity). In the next step, we extend this partial ordering
to a total ordering xi <O4 xj if and only if r4 has the orientation from ei to ej
in O4. Then any x ∈ RE4 whose coordinates get ordered by this total ordering
belongs to R(O4). We have shown R(O4(R)) = R and O4(R(O4)) = O4.

Corollary 4.4. The regions of the hyperplane arrangement whose normal vectors
are the column vectors of ∂T2 are in one-to-one correspondence with the totally
cyclic orientations on P .

Proof. By Lemma 4.9, every acyclic orientation O4 on the set of ridges of P4 is
in one-to-one correspondence with a region of the hyperplane arrangement whose
normal vectors are the column vectors of ∂42 .

Now, by Lemma 4.8, O4 induces a totally cyclic orientation O on the set of edges
of P . Summarizing, the construction is set up as follows. For a ridge r4 ∈ P4
take the edge e dual to r4 in P and orient e as the edge dual to r4. If we go
from one region of the hyperplane arrangement to another, we have to flip the
orientation of r4.

This induces to flip the orientation of its dual edge e in P and we still have
a totally cyclic orientation O′ in P since the new orientation (O4)′ is still an
acyclic orientation by Lemma 4.9. This way, we obtain a one-to-one correspon-
dence between all acyclic orientations on the ridges of P4 and all totally cyclic
orientations on the edges of P .
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Finally, Theorem 4.4 follows from Corollary 4.4 and Corollary 4.3.

4.5 Cographic hyperplane arrangements for general simple
and bridgeless graphs

In the previous chapters we discussed how to set up the cographic hyperplane
arrangement for the graph of a given 3- or 4-polytope. Now we want to turn
around this construction. For a given simple and bridgeless graph G = (V,E) we
want to use a polytope P , whose graph is G, to set up the cographic hyperplane
arrangement of G. If G is not connected, we can set up the following construction
for each of its components to obtain the cographic hyperplane arrangement for
the whole graph since the edge sets of the components of G are each disjoint.

So, we can, for simplicity, assume that G = (V,E) is connected and, as said
before, bridgeless. However, a problem that arises is that there are graphs G for
which there does not exist any polytope whose graph is G, e.g., graphs that are
not 3-connected. Another problem is the following.

Remark 4.12. There is in general not a unique polytope whose graph is that of
a given polytope whenever there is such a polytope at all. For example, we could
choose Cd(n) for any d ≥ 5 to be a polytope whose graph is the complete graph
Kn. This behaviour generalizes to the concept of k-equivalence of polytopes, see
[9, Chapter 12]. A d-polytope P is k-equivalent to a d′-polytope P ′ if the k-skeleta
of P and P ′ are combinatorially equivalent.

However, we can make use of the following observation.

Remark 4.13. By the definition of k-neighborly, the complete graph Kn is the
graph of a 2-neighborly polytope P with n vertices since 2-neighborly means that
every selection of two vertices forms an edge. This implies that every two vertices
of G(P ) are adjacent, i.e., G(P ) is complete.

So, the idea is to embed G into an appropriate complete graph by adding edges.
Then we want to make use of Remark 4.13. Therefore, we need to distinguish
the following cases:

1) |V | = 3. The only bridgeless graph with three vertices is the triangle. The
triangle consists of one cycle. The complement of each edge is a spanning
forest of the triangle. Thus, the cographic hyperplane arrangement of the
triangle is one-dimensional, having one hyperplane, which is the origin, for
each of the three edges and normal vector 1. Therefore, we obtain two
regions corresponding to the two totally cyclic orientations of the triangle.

2) |V | = 4. Embed G into the complete graph K4. Then we can consider
K4 as the graph of the 3-dimensional cyclic polytope C3(4) which is com-
binatorially equivalent to the tetrahedron. Now we can apply Chapter 4.2:
consider the cellular chain complexes of C3(4) and its dual C3(4)4 and set
up the cographic hyperplane arrangement for C3(4). Afterwards, erase the
added edges as described below.
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3) |V | ≥ 5. Embed G into the complete K|V |. Then we can consider K|V |
as the graph of the 4-dimensional cyclic polytope C4(|V |) since C4(|V |) is
2-neighborly. Now we can apply Chapter 4.4: consider the cellular chain
complexes of C4(|V |) and its dual C4(|V |)4 and set up the cographic hy-
perplane arrangement for C4(|V |). Afterwards, erase the added edges as
described below.

Let |V | ≥ 5. We want to erase the edges that we added when embedding
G = (V,E) into K|V |. At this point, we exploit again the fact that we can
consider re-orientations in terms of linear algebra. Consider an added edge
e ∈ K|V | \ G. The setminus is considered as an operation on the set of edges
of K|V |. We want to erase the column belonging to e from the matrix represen-
tation of ∂T2 . Therefore, we consider the ridges containing e, i.e., the rows of ∂T2
having a 1 or −1 entry on the position of e. Since all non-zero entries are just ±1,
we can just add up pairs of these rows or their negatives to obtain a zero column.
This way we also obtain the new basis vectors corresponding to the cycles of the
new cycle basis that we obtain when erasing an edge.

Geometrically, this translates into combining each two of the ridges or reorienta-
tions of them such that for e one of the possibly re-oriented ridges is oriented in
the opposite direction of the other. Figure 19 shows how the edge 13 is erased by
uniting the left with the middle triangle that both contain 13 and how the basis
vector of the flow space of the graph not containing 13 corresponding to the new
cycle is constructed.

1

2

3 added to 1 3

4

gives 1

2

3

4

1 1
-1

-1 1
1

1 1

1-1
0

Figure 19: Erasing the edge 13.

Every edge is contained in at least three ridges since this is the dual to the
statement that the ridges of a 4-polytope have at least three edges. As long as
there are at least two cycles that we obtained from ridges containing the edge
we want to erase, this method works. This is the case since we assumed G to be
bridgeless and we start with at least three cycles containing each edge of G. We
will use the following notation.

Definition 4.14. Let P be a 4-polytope. A cycle obtained from a sequence of
ridges r1, ..., rk of P by erasing edges contained in r1, ..., rk is called a contracted
ridge.

When we have more than one edge such that all these edges are all contained
only in the same (contracted) ridges and some of them are supposed to be erased,
but not all, we can only erase all of them or none. However, this would imply
that after erasing these edges there would be at least one bridge in G.
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If we unite (contracted) ridges having more than one edge in common, we erase
all of them to obtain the new (contracted) ridge and thus, we obtain no entry
not equal to ±1 or 0. We can observe that we erase only columns of ∂T2 = ∂42 .
Thus, when combining (contracted) ridges, we add only ±1 with 0 or 0 with 0.
Therefore, we do not obtain entries other than ±1 or 0.

In the case that |V | = 4, we do not have the property that each edge is contained
in at least three facets. However, there are just two possible classes of graphs up
to isomorphisms with four vertices that are connected, simple and bridgeless. The
first class of graphs are those obtained from the complete graph K4 by deleting
one edge e. In this case we combine the two facets containing e to erase e from
the facet-edge incidence matrix. This way we also obtain the basis vectors (of the
flow spaces of these graphs) that are corresponding to the (contracted) ridges of
the new cycle basis that we obtain when erasing an edge.

The second class is obtained from K4 by deleting one edge e and the edge e′ with
the property that both edges have no common incident vertices. Since we have
only four vertices, the choice of e′ is unique when e was given. Because e and
e′ have no common vertices, and all facets are triangles, they are contained in
two different pairs of facets. Therefore, we can combine the two facets containing
e to erase e from the facet-edge incidence matrix without affecting the facets
containing e′. Afterwards, we can do the same for e′. This way we also obtain the
basis vectors (of the flow spaces of these graphs), that are corresponding to the
(contracted) ridges of the new cycle basis that we obtain when erasing an edge.

There are no further connected, simple and bridgeless graphs with four vertices.
If we would like to delete more than two edges or two edges that are different
from the ones of the second class, we would have to delete an edge of a vertex v
that is incident to an edge that we also want to delete. Since the degree of each
vertex of the K4 is three, that means that we would decrease the degree of v to
one. Hence, the last edge incident to v would be a bridge.

Definition 4.15. Let G = (V,E) be a simple and bridgeless graph with |V | ≥ 4.
Let ∂T2 be the transposed of the second boundary map of the cellular chain com-
plex of C4(|V |) if |V | ≥ 5 or of C3(4) if |V | = 4. Then let (∂T2 )′ be the matrix
obtained from ∂T2 by erasing the edges of K|V | \ G or if G is a complete graph
then (∂T2 )′ = (∂T2 ) and call the column vectors of (∂T2 )′ the normal vectors of the
cographic hyperplane arrangement of G.

In Remark 4.17 we will argue why calling (∂T2 )′ the cographic hyperplane arrange-
ment of G is justified.

Definition 4.16. A contracted ridge forest is a collection of contracted ridges
arising from deleting edges from a ridge forest.

As argued above, the vectors of ((∂T2 )′)T corresponding to contracted ridge forests
stay linearly independent.
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Definition 4.17. Let P4 be a 4-polytope and let R4 be a contracted ridge
forest. An edge e4 is called a contracted ridge leaf of R4 if and only if e4 is
contained in exactly one contracted ridge of R4.

Remark 4.14. For every ridge forest and every contracted ridge forest there
exists at least one (contracted) ridge leaf since otherwise we would have a ridge
cycle.

Example 4.10. As an example consider the graph G given by Figure 20.

1

2

3

4

Figure 20: The complete graph K4 without the edge 14.

In a first step, we embed G into the K4 that we know from Figure 1 and set up
the cographic hyperplane arrangement for K4 as in Example 4.8. To re-obtain
G, we have to erase the edge 14 which is contained in the facets 124 and 134.
Therefore, we combine these two facets and obtain the new cycle 1234 (green) as
shown by Figure 21.

1
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4

Figure 21: We combine the facets 124 and 134 to erase the edge 14 (blue).

In terms of matrices, we obtain the following matrix which gives us as its columns
the cographic hyperplane arrangement of G:

12 13 14 23 24 34
123
1234
234



−1 −1 0 −1 0 0

1 1 0 0 −1 −1
0 0 0 1 1 1




We see that 14 is not contained in any cycle anymore, i.e., we do not consider it
anymore. We see that the columns are linearly independent if and only if they
induce a complement of a spanning set. For example, the columns corresponding
to the edges 12 and 13 are not linearly independent and their complement is not
spanning.
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Eventually, if we erase the edge 23, we obtain the following cographic hyperplane
arrangement for the graph arising from the K4 from Example 4.8 without the
edges 14 and 23.

12 13 14 23 24 34
1234

(
1 1 0 0 −1 −1

)

Corollary 4.5. Let G = (V,E) be a simple and bridgeless graph. We have seen
that the rows of (∂T2 )′ are an alternative generating system of the flow space where
we have given a vector for each edge of G. Thus, the columns of (∂T2 )′ are the
normal vectors of the hyperplane arrangement FG∩A where A is the arrangement
of coordinate hyperplanes in RE.

Remark 4.15. The part of Theorem 4.4 claiming that regions of the cographic
hyperplane arrangement are in one-to-one correspondence with the totally cyclic
orientations on the edges of G also follows from Greene-Zaslavsky’s work, see
[8] and Corollary 4.5. Greene and Zaslavsky define the cographic hyperplane
arrangement of G to be the induced arrangement, H⊥(G) = AFG

, and write
h(e) for the hyperplane corresponding to e, i.e., AFG

= FG ∩ A. Then they
show that the regions of the cographic hyperplane arrangement are in one-to-
one correspondence with the totally cyclic orientations on the edges of G. Now,
Corollary 4.5 states that the columns of (∂T2 )′ are the normal vectors of the
hyperplane arrangement FG ∩ A.

Remark 4.16. For a graph G that is Steinitz we have shown two different ways of
constructing its cographic hyperplane arrangement. In general, these hyperplane
arrangements are not equal. However, they are isomorphic by the isomorphism
given by the base change between the corresponding flow spaces.

Proposition 4.2. Let G = (V,E) be a graph with |V | ≥ 4. Let ∂T2 be the
transposed of the second boundary map of the cellular chain complex of C4(|V |)
if |V | ≥ 5 or of C3(4) if |V | = 4 and let (∂T2 )′ be the matrix representation of the
normal vectors of the cographic hyperplane arrangement of G. A subset of the set
of columns of (∂T2 )′ is linearly independent if and only if it induces a complement
of a spanning set on G.

Proof. Suppose that K is a complement of a spanning set of G. Then it is also a
complement of a spanning set ofK|V | since we add only edges by embeddingG into
K|V | and thus preserve the property that the complement of K is spanning. Thus,
by Corollary 4.3, K induces a linearly independent subset of the columns of the
cographic hyperplane arrangement of K|V |. Since K ⊆ G, the erasing procedure
means for the columns corresponding to the edges of G only row operations.
Row operations preserve linear independency. Thus, the column vectors of the
cographic hyperplane arrangement induced by K are linearly independent.

Conversely, suppose that K is not a complement of a spanning set of G. Thus,
there are edges of K that are a cut set cutting off a vertex v ∈ V , since otherwise
the complement of K were spanning. Every ridge containing v contains exactly
two of the edges incident to v. We distinguish two cases.
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The first case is that the degree g := deg(v) of v is even. We first want to consider
the case that we have given the following orientations. Embed v and its incident
edges into R2. Go around the edges e0, e1, ..., eg−1 incident to v clockwise. Then
let every second edge be oriented, with respect to vertices, towards v and every
other away from v. We assume for a moment that every edge ei together with its
successor e(i+1) mod g spans a (contracted) ridge ri, for i ∈ 0, 1, ..., g − 1, which we
obtained from ridges by erasing-operations. Then let these (contracted) ridges
be oriented such that ei and e(i+1) mod g are oriented positively with respect to
the orientation of these ridges. Since g := deg(v) is even, at the end of this
procedure, the first edge is oriented positively with respect to the orientation
of the last (contracted) ridge. Thus, all entries of the (contracted) ridge-edge-
incidence matrix are 1. If we use the order of the (contracted) ridges and edges
given by this procedure, the (contracted) ridge-edge-incidence matrix looks as
follows.

e0 e1 e2 · · · eg−2 eg−1
r0
r1
r2
...

rg−2
rg−1




1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0

. . .
0 0 0 · · · 1 1
1 0 0 · · · 0 1




We see that the columns of this matrix are linearly dependent. Now the claim
follows since we can obtain every actual (contracted) ridge C that we obtained
from the erasing-operations out of ridges by combining these "dummy" (con-
tracted) ridges. This means only row operations on the above matrix and thus
preserves linear independency resp. dependency. Furthermore, re-orientations of
(contracted) ridges resp. edges also preserve the linear independency resp. de-
pendency since turning around the orientation of a (contracted) ridge means
multiplying the corresponding row by −1 and turning around the orientation of
an edge means multiplying the corresponding column by −1. These operations
also preserve linear independency resp. dependency.

Now suppose that g := deg(v) is odd. Embed v and its incident edges into
R2. Go around the edges e0, e1, ..., eg−1 incident to v clockwise. Then let every
second edge be oriented, with respect to vertices, towards v and every other away
from v. We assume for a moment that every edge ei together with its successor
e(i+1) mod g spans a (contracted) ridge ri, for i ∈ 0, 1, ..., g − 1, which we obtained
from ridges by erasing-operations. Then let these (contracted) ridges be oriented
such that ei and e(i+1) mod g are oriented positively with respect to the orientation
of these ridges. Since g := deg(v) is odd, at the end of this procedure, the first
edge is oriented negatively with respect to the orientation of the last (contracted)
ridge. Thus, all entries of the (contracted) ridge-edge-incidence matrix are +1,
besides that entry, which is −1. If we use the order of the (contracted) ridges
and edges given by this procedure, the (contracted) ridge-edge-incidence matrix
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looks as follows.

e0 e1 e2 · · · eg−2 eg−1
r0
r1
r2
...

rg−2
rg−1




1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0

. . .
0 0 0 · · · 1 1
−1 0 0 · · · 0 1




We see that the columns of this matrix are linearly dependent. Now the claim
follows from the same arguments as in the case that deg(v) is even.

Proposition 4.3. Let G = (V,E) be a graph with |V | ≥ 4. Let ∂T2 be the
transposed of the second boundary map of the cellular chain complex of C4(|V |)
if |V | ≥ 5 or of C3(4) if |V | = 4. Let (∂T2 )′ be the matrix representation of the
normal vectors of the cographic hyperplane arrangement of G. The regions of the
cographic hyperplane arrangement of G are in one-to-one correspondence with the
totally cyclic orientations on G.

Proof. By Corollary 4.4 we know that the regions of the cographic hyperplane
arrangement of K|V | are in one-to-one correspondence with the totally cyclic
orientations on K|V |. If we erase an edge e during the erasing-procedure to obtain
G from K|V |, on the one hand we unite the contracted ridges containing e. On
the other hand, we unite the regions corresponding to the contracted ridges that
we unite and which were separated by the hyperplane corresponding to e. Thus,
we preserve the one-to-one correspondence between the regions of the cographic
hyperplane arrangement and the totally cyclic orientations on G.

Remark 4.17. By Proposition 4.2 and Proposition 4.3 the cographic hyperplane
arrangement, which is given by the column vectors of (∂T2 )′ of any simple and
bridgeless graph G, satisfies the properties of the definition of a cographic hyper-
plane arrangement, see Definition 3.6. Thus, it is justified to call it the cographic
hyperplane arrangement of G.

4.6 Ehrhart polynomials of flow zonotopes

In this Chapter we want to study the Ehrhart polynomials of flow zonotopes.
We follow again the case distinction which we introduced in Chapter 4.5. In this
chapter we assume all graphs to be bridgeless.

Definition 4.18. Let G = (V,E) be a (simple and bridgeless) graph. The flow
zonotope CG of G is defined as

CG :=
∑

e∈E
de
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where de := [0, xe] and xe is the column vector of the matrix representation of
(∂T2 )′ corresponding to the edge e ∈ E where we defined (∂T2 )′ for each simple and
bridgeless graph by Definition 4.15.

Remark 4.18. Let G = (V,E) be a simple and bridgeless graph. The zeroth
coefficient of the Ehrhart polynomial of the flow zonotope CG is 1 because the
number of complements of spanning sets of G of size zero is one. These sets are
exactly the linearly independent subsets of the set of columns of the cographic
hyperplane arrangement of G by Proposition 4.2.

Let T be a triangle. The normal vectors of the cographic hyperplane arrangement
of T are three times the vector 1 corresponding to the fact that each edge of T is
a complement of a spanning set of T and a complement of more than one edge is
not spanning anymore. Thus, there are three linearly independent subsets of the
set of normal vectors of the cographic hyperplane arrangement of T of size one
whose minor is each 1. Therefore, the Ehrhart polynomial of the flow zonotope
CT of T is

LCT = 3t+ 1. (11)

Proposition 4.4. Let G = (V,E) be a simple and bridgeless graph with |V | ≥ 4.
Let ∂T2 be the transposed of the second boundary map of the cellular chain complex
of C4(|V |) if |V | ≥ 5 or of C3(4) if |V | = 4 and let (∂T2 )′ be the matrix representa-
tion of the normal vectors of the cographic hyperplane arrangement of G. Let S be
a linearly independent collection of columns of (∂T2 )′ of size 1 ≤ k ≤ |E|−|V |+1.
Then, there exists a k × k-submatrix of S whose determinant is ±1.

Proof. That S consists of linearly independent columns, implies that it induces a
(contracted) ridge forest on P . By Remark 4.14, for every (contracted) ridge forest
there exists at least one ridge leaf. To prove Proposition 4.4, we use induction.
Let k = 1, then it is clear that there is a ±1 entry in one column of (∂T2 )′ since this
corresponds to the fact that the edge corresponding to this column is contained
in at least on (contracted) ridge.

Now let 1 ≤ l ≤ k and assume that there exists a l × l- submatrix S ′ of S with
determinant ±1. Then this also holds for l − 1: Since the columns of S ′ are all
linearly independent, they induce a (contracted) ridge forest on P , i.e., there is at
least one (contracted) ridge leaf e. This means that there is an edge e induced by
S ′ that is contained only in one of the (contracted) ridges r that we consider for
S ′, i.e., there is one row of S ′ with a ±1 entry at the position given by r and e and
zero otherwise. Thus, if we apply Laplace expansion along the row corresponding
to r, the factor of each minor-summand is zero besides for the submatrix S ′′ that
occurs when removing the column corresponding to e because the entry at the
position determined by r and e is ±1. For the other edges the corresponding
entries are zero. Since we multiply the determinant of S ′′ by ±1, and obtain by
the induction hypothesis as determinant of S ′ ±1, the determinant of S ′′ must
be ±1 as well. Thus, there exists a (l − 1) × (l − 1)-submatrix of S ′ that has
determinant ±1.
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Now we are finally prepared for our main theorem.

Theorem 4.5. Let G = (V,E) be a simple and bridgeless graph. Then the
Ehrhart polynomial LCG of CG is given by

LCG(t) =

|E|−|V |+1∑

k=0

dkt
k

where the coefficient dk is the number of (labeled) complements of (labeled) span-
ning sets of size k.

Proof. For |V | = 3, the claim was proven by (11). Now let |V | ≥ 4. By Propo-
sition 4.4, for each linearly independent subset S of the set of columns of (∂T2 )′

of size k, there exists a k × k minor of value ±1 for 1 ≤ k ≤ |E| − |V | + 1.
Thus, the greatest common divisor m(S) of all k × k minors of S equals one.
By Theorem 3.3, the coefficient dk of the Ehrhart polynomial LCG equals the
number of submatrices S of (∂T2 )′ with non-zero determinant. By Proposition 4.2
the number of submatrices S of (∂T2 )′ with non-zero determinant is exactly the
number of complements of a spanning set of G of size k. By Remark 4.18, the
zeroth coefficient of LCG equals the number of complements of spanning sets of G
of size zero. This number is 1.

In total, we obtain

LCG(t) =
∑

S

m(S)t|S| =
∑

S

1 · t|S| =
∑

C a complement of a spanning set of size k

1 · tk

=

|E|−|V |+1∑

k=0

dkt
k

where the first sum is over all S that are linearly independent subsets of the set
of columns of (∂T2 )′.

Example 4.11. Let C = (V,E) by a cycle of length |E|. Since each edge of C is
a complement of a spanning set of C and a complement of more than one edge is
not spanning anymore, we obtain the Ehrhart polynomial

LCC (t) = |E| · t+ 1.

Example 4.12. The flow zonotope of the complete graph K4 is the permuta-
hedron P4. We can calculate its Ehrhart polynomial LCK4

as follows. The first
coefficient d1 of LCK4

is six since every edge of K4 is a complement of a spanning
set. Every choice of two edges of K4 is a complement of a spanning set. Thus,
d2 equals

(
6
2

)
= 15. Every choice of three edges besides the ones incident to the

same vertex is a complement of a spanning set. Therefore, d3 equals
(
6
3

)
−4 = 16.

In total, we have

LCK4
(t) = 16t3 + 15t2 + 6t+ 1.
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