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1 Introduction

In 1976 Ehrhart proved in [5] and [6] that the map that associates a natural number n
with the number of integer points in the n-th dilate of a lattice polytope P is a polynomial,
called the Ehrhart polynomial of P. Here, the question arises what information about
the corresponding polytope the Ehrhart polynomial encodes and which polynomials are
Ehrhart polynomials of lattice polytopes. In dimension 2, this question was solved by Beck
et al. in [2, pp. 4-5], which we will elaborate on in Section 2.3. But for higher dimensions
this problem is still open. So it is for the class of zonotopes, i.e., polytopes that are the
Minkowski sum of finitely many line segments.
The aim of this thesis is to classify the Ehrhart polynomials of lattice zonotopes of di-
mensions 2 and of degree 2. This constitutes a first step to solve the open problem
of characterizing the Ehrhart polynomials and h∗-polynomials of d-dimensional par-
allelepipeds and zonotopes, as raised in [3, p. 15] by Beck, Jochemko, and McCul-
lough.

First, I will introduce definitions and preliminary knowledge about Ehrhart polynomials
of lattice polytopes, h∗-polynomials, and zonotopes.
Chapter 3 will be a discussion of the 2-dimensional case, which is special in the sense
that the set of 2-dimensional lattice zonotopes equals the set of centrally symmetric
lattice polytopes of dimension 2. We can give a precise characterization of the Ehrhart
polynomials of 2-dimensional lattice zonotopes:

Theorem 1.1. The set of the Ehrhart polynomials ehr(n) = 1 + c1n + c2n2 of all 2-dimensional
lattice zonotopes is the set of integer points in the polyhedral complex comprised of the rays

S′ = {(c2, c1) : c1 = c2 + 1, c2 ≥ 1},
T = {(c2, c1) : c1 = c2

2 + 2, c2 ≥ 2},
R′ = R≥1 × {2}
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1 Introduction

and the area enclosed by T and R′, where the pair (c2, c1) ∈ Z2 represents the polynomial
ehr(n) = 1 + c1n + c2n2. See Figure 3.4.

In the proof of this theorem, we will proceed by restricting the set of possible Ehrhart
polynomials of 2-dimensional lattice zonotopes using Theorem 2.18 from [3, Theorem 1.3,
p. 2] as well as Scott’s Theorem 2.5 from [12]. Next, we will give an explicit construction
of zonotopes associated with the polynomials in that set and, thereby, obtain the above
classification of the Ehrhart and h∗-polynomials of lattice zonotopes of dimension 2.
The natural next step will be to consider degree-2 zonotopes, which we will dedicate
Chapter 4 to. We will observe that there exist lattice zonotopes of degree 2 only in
dimensions 2 or 3. The main body of this chapter will consist of working
towards Theorem 4.9, which provides us with a classification of the h∗-polynomials of
3-dimensional lattice zonotopes of degree 2. Theorem 2.18 will give us a simplicial cone
of dimension 3 which equals the convex hull of the h∗-polynomials of all 3-dimensional
lattice zonotopes. Using the restriction of the lattice width of 3-dimensional zonotopes
of degree 2, we will be able to reduce the question which polynomials of degree 2 are
h∗-polynomials of 3-dimensional zonotopes without interior lattice points to the following
two cases: On the one hand, we get the set of h∗-polynomials corresponding to the Ehrhart
polynomials from Theorem 1.1. We achieve this by constructing 3-dimensional lattice
zonotopes from 2-dimensional lattice zonotopes considering them in the (x, y)-plane and
adding the unit vector of the z-coordinate as a generating vector and showing that every
3-dimensional lattice zonotope of degree 2 and lattice width 1 is unimodularly equivalent
to a zonotope constructed in this way. On the other hand, there are the h∗-polynomials of
3-dimensional lattice parallelepipeds of lattice width bigger than 1. We will show that the
latter set is included in the first one and, thereby, obtain Theorem 4.9.
We will conclude with a brief chapter about 3-dimensional zonotopes of degree 3, which
is meant as a stimulus to further study the Ehrhart polynomials of lattice zonotopes and
develop a classification for higher or even general dimensions. Most importantly, it is
to be noted here that the number of lattice points contained in a d-dimensional lattice
polytope with a fixed number k ∈ Z≥1 of interior lattice points is bounded from above.
Thus, there is only a finite number of corresponding Ehrhart polynomials for each d and
each k.
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2 Preliminary Knowledge

2.1 Ehrhart Polynomials

In this thesis, we will write P ⊂ Rd for a lattice polytope, i.e., a convex polytope whose
vertices all lie in Zd. Our object of investigation is the Ehrhart polynomial of P, that is, the
function that counts the integer points in the n-th dilate of P:

ehrP : N→N, n 7→ ehrP(n) := |nP ∩Zd|.

Eugène Ehrhart showed in [5] and [6] that this function is a polynomial in n. Therefore,
the domain of ehrP can be extended to the set of complex numbers.
The coefficients of the Ehrhart polynomial contain information about the polytope itself.
For instance, the leading coefficient of ehrP equals the normalized volume of P with respect
to the sublattice Zd ∩ aff(P). Similarly, the second highest coefficient can be interpreted as
half the surface area of P, which is the sum over the volumes of each facet of P normalized
with respect to the corresponding sublattice. The constant term of the Ehrhart polynomial
of P is the Euler characteristic of P, which is 1 since P is a closed convex polytope.
Furthermore, the following reciprocity law provides an interpretation for the values of the
Ehrhart polynomial evaluated at negative integers:

Theorem 2.1. (Ehrhart−Macdonald Reciprocity Theorem [9, Theorem 4.6, p. 192])

ehrP(−n) = (−1)dim(P)ehrP◦(n) for all n ∈N,

where ehrP◦ denotes the function counting the interior lattice points of the n-th dilate of P.
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2.2 h∗-Polynomials

2.2 h∗-Polynomials

The h∗-polynomial of a d-dimensional lattice polytope P ⊂ Rd is defined
via h∗(P) : C→ C, t 7→ h0(P) + · · ·+ hd(P)td, where

ehrP(n) = h0(P)
(

n + d
d

)
+ h1(P)

(
n + d− 1

d

)
+ · · ·+ hd(P)

(
n
d

)
(2.1)

or equivalently using the notion of the Ehrhart series

EhrP(t) := ∑
n≥0

ehrP(n)tn =
h∗(P)(t)
(1− t)d+1 . (2.2)

Here, we interpret (k
l) := 0 whenever k < l.

Stanley proved in [14, Theorem 2.1, pp. 336-337] that the coefficients of the h∗-polynomial
of lattice polytopes are all non-negative integers. The constant coefficient is h0(P) = 1,
and h1(P) = |P ∩Zd| − (d + 1). The sum of all coefficients of the h∗-polynomial equals
the normalized volume of the polytope, i.e., d! · vol(P).
The degree deg(h∗) of the h∗-polynomial of a d-dimensional polytope P is smaller or equal
to d and is called the degree of the lattice polytope P. It is known that the degree of P is
the largest number k ∈ Z≥1 such that there is an interior lattice point in the (d + 1− k)-th
dilate of P, i.e.,

deg(h∗) = max
{

k ∈ {1, . . . , d} : hk(P) 6= 0
}

= max
{

k ∈ {1, . . . , d} : (d + 1− k)P◦ ∩Zd 6= ∅
}

.

In particular, due to the Reciprocity Theorem 2.1

hdeg(h∗)(P) = (−1)d
(

h0(P) · 0 + h1(P) · 0 + · · ·+ hdeg(h∗)(P)
(
−1
d

))
(2.3)

= (−1)dehrP (deg(h∗)− d− 1)

= ehrP◦ (d + 1− deg(h∗)) =
∣∣∣(d + 1− deg(h∗)) P◦ ∩Zd

∣∣∣ .
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2.3 The 2-dimensional Case

Pick’s Theorem [10] relates the area of a lattice polygon with the number of integer points
in the polygon and the number of integer points in its boundary. Thereby, we get an
explicit description for the coefficients of the Ehrhart polynomial ehrP of a 2-dimensional
lattice polytope P:

Theorem 2.2. (Pick′s Theorem [10])
Let P be a 2-dimensional lattice polytope. Then

ehrP(n) = An2 + b
2 n + 1 ,

where A is the area of P and b is the number of lattice points on the boundary of P.

Raman and Öhman [11] use the following two well-known lemmas, which I will state
without proof, to show this statement.

Lemma 2.3. Any 2-dimensional lattice polytope admits a triangulation into elementary triangles,
i.e., triangles with lattice vertices and no other lattice points on the boundary and no interior lattice
points.

Lemma 2.4. The area of any elementary triangle in Z2 is 1/2.

The following proof of Pick’s Theorem from [11, pp. 200-202] is based on the consideration
of angles:

Proof. We know that ehrP(n) = c2n2 + c1n + 1 with c2 = A.
Let Σ := ehrP◦(1) denote the number of interior points of P. By the Ehrhart-Macdonald
Reciprocity Theorem 2.1,

Σ = ehrP◦(1) = ehrP(−1) = A− c1 + 1 and, thus, A = Σ + c1 − 1. (2.4)

By Lemma 2.3, it is possible to triangulate P into k elementary triangles. Next, we consider
the sum of the internal angles of all these triangles using two distinct approaches.
First, the sum of the three internal angles of any triangle is π. Hence, the sum of the
internal angles of all triangles of the triangulation equals k · π.
On the other hand, we can compute the sum by considering the sum of the internal angles
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2.3 The 2-dimensional Case

at each vertex of the triangulation separately. At interior points the internal angles sum up
to 2π. At boundary points that are not vertices of P the sum of the internal angles equals π.
The sum of internal angles at the vertices of P cannot be determined in such a general way.
However, it is known that adding up the internal angles at all the vertices gives m · π− 2π

where m denotes the number of vertices of P.
Then the sum of angles at interior points is Σ · 2π and the sum of angles at boundary
points is b · π − 2π, where b is the number of lattice points on the boundary of P. Double
counting yields k · π = Σ · 2π + bπ − 2π and, thus, k = 2 · Σ + b− 2.
Lemma 2.4 tells us that the area of P is A = 1/2 · k = Σ + b/2− 1. Therefore, by (2.4),
c1 = b/2.

The following relation established by Scott in 1976 [12] provides us with further informa-
tion about the coefficients of ehrP in the 2-dimensional case:

Theorem 2.5. (Scott′s Theorem [12])
Let ehrP(n) = c2n2 + c1n+ 1 be the Ehrhart polynomial of a lattice 2-polytope P. If P◦ ∩Z2 6= ∅,
and P is not unimodularly equivalent to ∆ := conv{(0, 0), (3, 0), (0, 3)}, then

c1 ≤ 1
2 c2 + 2. (2.5)

Remark 2.6. Two lattice polytopes P and Q are called unimodularly equivalent if we can obtain
one from the other by applying an integral unimodular transformation or translation, that is, if
there exist a square integer matrix M with determinant −1 or 1 and a t with integral coordinates
such that Q = MP + t. The property of convexity, as well as the Ehrhart polynomial are invariant
under unimodular equivalence.

Remark 2.7. By Pick’s Theorem 2.2, we have 2c1 = ehrP(1) = c2 + c1 + 1 and, thus, c1 = c2 + 1
for a 2-dimensional lattice polytope P with no interior lattice points.
For ∆ = conv{(0, 0), (3, 0), (0, 3)},

ehr∆(n) = 9
2 n2 + 9

2 n + 1.

Remark 2.8. By Pick’s Theorem 2.2, the following inequality is equivalent to inequality (2.5) in
Scott’s Theorem:

c2 = vol(P) ≤ 2 · vol(P)− b + 4 = 2
(
|P◦ ∩Z2|+ 1

)
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2.3 The 2-dimensional Case

for b = |P ∩Z2| − |P◦ ∩Z2| and |P ∩Z2| = ehrP(1) = vol(P) + b/2 + 1.

Now we may raise the question which polynomials of degree 2 can be realized as Ehrhart
polynomials of a 2-dimensional lattice polytope. As mentioned in Section 2.1, it is known
that the constant term has to be 1. So we identify a polynomial c2n2 + c1n + 1 with the pair
(c2, c1) and consider the set Q of all such pairs corresponding to Ehrhart polynomials in
the plane.
From Pick’s Theorem 2.2, it is clear that c1 is half-integral, because c1 = b/2 where b counts
the integer points in the boundary of P and, thus, b ∈ Z. The same holds true for c2 as
we can deduce from Lemma 2.3 and Lemma 2.4, since c2 equals the area of P and we can
write P as the union of elementary triangles, each of whose area is 1/2.
Since we can describe the Ehrhart polynomial either in the standard basis or with the
coefficients of the h∗-polynomial as in (2.1), we can calculate that the h∗-polynomial
corresponding to the Ehrhart polynomial c2n2 + c1n + 1 is

h2t2 + h1t + 1 = (c2 − c1 + 1)t2 + (c2 + c1 − 2)t + 1 (2.6)

by solving a system of linear equations with two unknowns. As the coefficients h2 and h1

are non-negative integers, c2 and c1 are either both integral or both non-integral.

Figure 2.1: The polyhedral complex containing all pairs corresponding to Ehrhart
polynomials of 2-dimensional lattice polytopes.

Trivially, we get the bound c1 ≥ 3/2 as any 2-dimensional lattice polytope has at least 3
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2.3 The 2-dimensional Case

vertices, which are integral points in the boundary. In particular, this is a sharp bound,
because there are polygons with exactly three boundary lattice points and arbitrarily large
area. Every half-integer point on the ray R := [1/2, ∞) × {3/2} can be realized by a
triangle of the following form: 5y := conv{(0, 1), (1, 0), (y, y)} for y ∈ Z>0.
From Remark 2.7, we know that the pairs that correspond to the Ehrhart polynomials of
2-dimensional lattice polytopes with no interior lattice points are all contained in the ray
S := {(c2, c1) : c1 = c2 + 1, c2 ≥ 1/2}. For y ∈ Z>0, the point (y/2, y/2 + 1) is associated
with the Ehrhart polynomial of the triangle 4y := conv{(0, 0), (1, 0), (0, y)}, which has
area y/2 = A = c2 and 2(y/2 + 1) = y + 2 = b = 2c1 boundary lattice points. In the point
(1/2, 3/2) the rays S and R meet.
Moreover, we get the exceptional point (9/2, 9/2), which represents the Ehrhart polyno-
mial of polytopes unimodularly equivalent to ∆.
Finally, Scott’s Theorem 2.5 provides us with a further bound for the pairs that stand for
the Ehrhart polynomials of those 2-dimensional lattice polytopes with at least one lattice
point in the interior, excepting the special point (9/2, 9/2). In particular, every point of
the ray T := {(c2, c1) : c1 = c2/2 + 2, c2 ≥ 2} with integral coordinates corresponds to an
Ehrhart polynomial, because the rectangle ÀÁy:= conv{(0, 0), (2, 0), (2, y), (0, y)}, where
y is a positive integer, has an area of 2y = c2 and the number of the lattice points on its
boundary is 2(c2/2 + 2) = 2(y + 2) = 2y + 4 = 2(y + 1) + 2 = b = 2c1.
Let Yi := {(c2, c1) : c1 = c2 + 1, c1 ≤ c2/2 + 2, c2 ≥ i + 1} denote the line segment parallel
to the ray S enclosed by the rays R and T for i ∈ Z≥1. We order the half-integer points
v0

i , . . . , vni
i of Yi such that vk+1

i = vk
i + (1/2, 1/2) for all k ∈ {0, . . . , ni − 1} and i ∈ Z≥1.

Then, the point v0
i can be realized by the triangle V0

i := conv{(−1, 0), (1, 0), (0, i + 1)}. We
iteratively define the polytopes

Vk
i := conv

(
Vk−1

i ∪
{
(−1, k+1

2 )
})

for odd k ∈ {1, . . . , ni}, (2.7)

Vk
i := conv

(
Vk−1

i ∪
{
(1, k

2)
})

for even k ∈ {2, . . . , ni}.

The Ehrhart polynomial of the polytope Vk
i corresponds to the point vk

i for all
k ∈ {0, . . . , ni} and i ∈ Z≥1.

Figure 2.1 shows the region containing all half-integral pairs corresponding to degree-2
Ehrhart polynomials, which consists of the component bounded by the rays S, T, and R,
as well as the ray S and the point (9/2, 9/2). Every point in this region with either both
coordinates being integers or both coordinates being half-integers but not integers can be
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2.3 The 2-dimensional Case

Figure 2.2: Polytopes5y,4y,ÀÁy,4, Vk
i realizing the points of the polyhedral com-

plex shown in Figure 2.1 whose half-integral coordinates are either both integral or
both non-integral and half-integral.
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2.4 The degree-2 Case

realized as a 2-dimensional lattice polytope. We demonstrate our constructions by way of
some examples in Figure 2.2.

2.4 The degree-2 Case

Similarly, we want to study the set of degree-2 lattice polytopes in order to better under-
stand how the classification of the subclass of degree-2 zonotopes which we will develop
in Chapter 4 relates. Just as we considered pairs of coefficients of Ehrhart polynomials in
the Section 2.3, we will now consider pairs of the form (h2, h1) ∈ Z2

≥0 corresponding to
the h∗-polynomial h2t2 + h1t + 1.

Due to Treutlein [15], we have a generalized version of Scott’s Theorem 2.5 for lat-
tice polytopes of degree 2 of general dimension, which restricts the set of possible h∗-
polynomials:

Theorem 2.9. [15, Theorem 2, p. 355] Let d ∈ Z≥2. Let P be a d-dimensional lattice polytope
of degree 2 with h∗(P)(t) = 1 + h1(P)t + h2(P)t2. Then

h1(P) ≤

7 if h2(P) = 1,

3h2(P) + 3 if h2(P) ≥ 2.
(2.8)

In order to calculate the h∗-polynomial h∗(P)(t) = h2(P)t2 + h1(P)t + 1 of a d-dimensional
polytope P of degree 2 we only need to determine the number of lattice points in P
as well as its volume, because according to Section 2.2, the coefficients of h∗(P) are
h1(P) = |P ∩Zd| − (d + 1) and h2(P) = d! · vol(P)− h1(P)− 1 for d ≥ 2.
We can obtain degree-2 lattice polytopes of dimension 3 by constructing a lattice pyramid
P(Q) of height 1 over a 2-dimensional lattice polytope Q that we constructed in the
previous section. Then equality holds:

h1(P(Q)) = |P(Q) ∩Z3| − 4 = |Q ∩Z2| − 3 = h1(Q) and (2.9)

h2(P(Q)) = 6 · vol(P(Q))− h1(P(Q))− 1 = 2 · vol(Q)− h1(Q)− 1 = h2(Q).

Clearly, the polytope P(5y) := conv{(0, 1, 0), (1, 0, 0), (y, y, 0), (0, 0, 1)} is a 3-dimensional
lattice polytope without interior lattice points. It has y + 3 integer points and its volume is

10



2.4 The degree-2 Case

Figure 2.3: The set of integer points in the above polyhedral complex equals the set of
pairs corresponding to h∗-polynomials of 3-dimensional lattice polytopes of degree
2. The points (h2, h1) satisfying h1 ≥ h2 are the ones that can also be realized in the
2-dimensional case.

(2y− 1)/6 for all y ∈ Z≥1. So P(5y) has h∗-polynomial (y− 1)t2 + (y− 1)t + 1. Thereby,
all integer points in the diagonal ray R̂ := {(y, y) : y ≥ 1} are realized.
The pyramid P(4y) := conv{(0, 0, 0), (1, 0, 0), (0, y, 0), (0, 0, 1)} has y + 3 lattice points
and volume y/6 for all y ∈ Z≥1. Hence, it corresponds to the point (h2, h1) = (0, y− 1),
which lies in Ŝ := {0} ×R≥0.
There are 11 integer points in the pyramidP(∆) := conv{(0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 1)}
and vol(P(∆)) = 3/2. Therefore, P(∆) corresponds to the point (7, 1).
The polytope P(ÀÁy) := conv{(0, 0, 0), (2, 0, 0), (2, y, 0), (0, y, 0), (0, 0, 1)} has 3y + 4 lat-
tice points and volume 2y/3 for all y ∈ Z≥1. Thus, the h∗-polynomial of P(ÀÁy) is
(y − 1)t2 + 3yt + 1. So each integer point in T̂ := {(y, 3y + 3) : y ≥ 0} is realized in
this way. The ray T̂ together with the point (7, 1) is the upper bound (2.8) attained by
Treutlein’s Theorem 2.9.

The polytope P(V0
i ) := conv{(−1, 0, 0), (1, 0, 0), (0, i + 1, 0), (0, 0, 1)} has i + 4 integer

points and volume i/3 for all i ∈ Z≥1. So it corresponds to the point (i − 1, i) for all
i ∈ Z≥1. Let P(Vk

i ) be the pyramid with added vertex (0, 0, 1) over Vk
i as

defined in (2.7) for all i ∈ Z≥1 and k ∈ {0, . . . , ni}. The polytope P(Vk
i ) has one more
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2.5 Zonotopes

lattice point than P(Vk−1
i ) and vol(P(Vk

i )) = vol(P(Vk−1
i )) + 1/2 for each i ∈ Z≥1 and

k ∈ {1, . . . , ni}. Its h∗-polynomial is (i − 1)t2 + (i + k)t + 1. So all integer points in the
region framed by the rays T̂ and R̂ can be realized as a 3-dimensional degree-2 lattice
polytope.

Figure 2.4: The polytope Pk,l for k = 3 and l = 2.

In [7, Proof of Proposition 1.10, p. 80], Henk and Tagami gave a construction for lattice
polytopes that realize the points (h2, h1) with h1 ≤ h2: Let k, l ∈ Z with 0 ≤ k ≤ m, and
Pk,l := conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0,−k), (1, 1, l + 1)}. The lattice polytope Pk,l has
4+ k lattice points and vol(Pk,l) = k/6+ (l + 1)/6 = (k + l + 1)/6. Therefore, h1(Pk,l) = k
and h2(Pk,l) = l.

Similarly as in (2.9), the equality of the h∗-polynomials h∗(Q) = h∗(P) holds for any
d-dimensional lattice polytope P of height 1 with a (d− 1)-dimensional lattice polytope
Q as its base for general dimensions d ∈ Z≥3 . Hence, for d ∈ Z>3, every polynomial
of the form h2t2 + h1t + 1 with h2, h1 ∈ Z≥0 satisfying the upper bound (2.8) can be
realized as a d-dimensional lattice pyramid over the 3-dimensional realization constructed
above.

2.5 Zonotopes

In this paper, we are interested in a particular class of polytopes, namely the zonotopes. A
zonotope is the Minkowski sum of finitely many line segments, i.e., given line segments
L1, . . . , Ln ⊂ Rd,

L1 + · · ·+ Ln := {x1 + · · ·+ xn : xi ∈ Li}

12



2.5 Zonotopes

is a zonotope. An equivalent definition is given by a projection of the unit cube [0, 1]n:
Given a set of vectors V = {v1, . . . , vn} ⊂ Rd,

Z(v1, . . . , vn) :=

{
n

∑
i=1

λivi : 0 ≤ λi ≤ 1

}

is the zonotope generated by V. Up to translation, every zonotope is of this form. We call a
zonotope a lattice zonotope if its generating set V satisfies V ⊂ Zd.

Given a zonotope Z generated by vectors v1, . . . , vn as above, we consider its translate by
half the sum of all its generating vectors

Z′ := Z− 1
2

n

∑
i=1

vi

=

{
n

∑
i=1

(λi − 1
2)vi : 0 ≤ λi ≤ 1

}

=

{
1
2

n

∑
i=1

λivi : −1 ≤ λi ≤ 1

}
= Z

(
±1

2 v1, . . . ,±1
2 vn

)
.

The translate Z′ is generated by the vectors v1/2, . . . , vn/2,−v1/2, . . . ,−vn/2. This zono-
tope is symmetric about the origin, i.e., x ∈ Z′ if and only if−x ∈ Z′. Hence, all zonotopes
are centrally symmetric, that is, each zonotope has a translate that is symmetric about
the origin. We can differentiate between lattice zonotopes that are centrally symmetric
about a lattice point and those that are centrally symmetric about a point with at least one
half-integer coordinate.
The highest coefficient hd of the h∗-polynomial equals the number of integer points in the in-
terior of the corresponding zonotope. Lattice zonotopes that are centrally symmetric about
an integer point have an odd number of interior lattice points. So their h∗-polynomials
will have an odd highest coefficient. On the other hand, there is an even number of interior
integer points in lattice zonotopes that are centrally symmetric about a half-integer point,
wherefore their h∗-polynomials have even hd.

Lemma 2.10. Every translate of a lattice parallelepiped contains an integer point.

Proof. Let

Πv1,...,vd :=

{
d

∑
i=1

λivi : 0 ≤ λi ≤ 1

}

13



2.5 Zonotopes

be the d-dimensional parallelepiped spanned by the integer vectors v1, . . . , vd, and t ∈ Rd.
Since v1, . . . , vd form a basis of Rd, there are unique ω1, . . . , ωd ∈ R such that t = ∑d

i=1 ωivi.
For i ∈ {1, . . . , d} define µi := dωie − ωi ∈ [0, 1). Then t + ∑d

i=1 µivi = ∑d
i=1dωievi is an

integer point lying in the translate t + Πv1,...,vd of the lattice parallelepiped.

Theorem 2.11. Every translate of a 2-dimensional lattice zonotope generated by three pairwise
linearly independent vectors contains an interior lattice point.

Proof. Let Z(v1, v2, v3) := {λ1v1 + λ2v2 + λ3v3 : λi ∈ [0, 1] for all i ∈ {1, 2, 3}} be the lat-
tice zonotope generated by the pairwise linearly independent vectors v1, v2, v3 ∈ Z2. Then
there exist α2, α3 ∈ R>0 and σ2, σ3 ∈ {1,−1} such that v1 = σ2α2v2 + σ3α3v3. Define

ε :=
1

2 ·max{1, α2, α3}
.

Then ε ∈ (0, 1) and εαi ∈ (0, 1) for all i ∈ {2, 3}. We are interested in the translate t + Z
for a fixed t ∈ R2.

Figure 2.5: The 2-dimensional lattice zonotope Z generated by the three vectors
v1 = (1, 2), v2 = (0, 1), and v3 = (1, 0). Here ε = 1/4.

Consider the case that σ2 = σ3 = 1. The set V := (1− ε)v1 + Z(v2, v2) is a subset of the
zonotope Z and the translate of a lattice parallelepiped. Then, according to Lemma 2.10,
the translate t + V contains an integer point x. If x lies in the interior of t + V, it is an
interior lattice point of t + Z. If x is a vertex of t + V, all vertices of t + V are lattice points,
in particular (1− ε)v1 + t. Since we can write

(1− ε)v1 + t =
(
(1− 3

2 ε)v1 +
εα2
2 v2 +

εα3
2 v3

)
+ t,

it is clear that (1− ε)v1 + t lies in the interior of t + Z. If x lies in the relative interior of
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2.5 Zonotopes

one of the facets of t + V, then there exists another integer point x̄ in the relative interior of
the opposing facet. So w.l.o.g. we can assume that x = ((1− ε)v1 + λv2 + 0 · v3) + t for
some λ ∈ (0, 1). Choose a

δ ∈
(

0, min{1− ε, 1−λ
α2
}
)

.

Then

x = ((1− ε)v1 + λv2 + 0 · v3) + t = ((1− ε− δ)v1 + (λ + δα2)v2 + δα3v3) + t

is an interior lattice point of t + Z.
Now consider that σ2 = −1 or σ3 = −1. Since

Z(v1, v2, v3) = Z(v1, σ2v2, σ3v3) +
3

∑
i=2

σi=−1

vi

and v1 = (−σ2)α2(−v2) + (−σ3)α3(−v3), this case is already covered by the first case.

Theorem 2.12. [13, p. 319] Every (lattice) zonotope has a subdivision into (lattice) parallelepipeds.

Suppose that w1, . . . , wm ∈ Rd are linearly independent, and let σ1, . . . , σm ∈ {±1}.
Then

Πσ1,...,σm
w1,...,wm :=

{
m

∑
i=1

λiwi :
0 ≤ λi < 1 if σi = −1

0 < λi ≤ 1 if σi = 1

}
is the half-open parallelepiped generated by the vectors w1, . . . , wm, where the signs
σ1, . . . , σm refer to which facets are included and which are excluded.

We can refine the statement of Theorem 2.12:

Lemma 2.13. [4, Lemma 9.1, p. 171] The zonotope Z(v1, . . . , vn) can be written as the disjoint
union of translates of Πσ1,...,σm

w1,...,wm , where {w1, . . . , wm} ranges over all linearly independent subsets
of {v1, . . . , vn} with suitable σ1, . . . , σm.

Lemma 2.14. [4, Lemma 9.2, p. 172] Suppose that w1, . . . , wd ∈ Rd are linearly independent.
Let

Π :=

{
d

∑
i=1

λiwi : 0 ≤ λi < 1

}
.

Then the volume of Π is vol(Π) = |det(A)|, where A is the square matrix whose columns are the
vectors w1, . . . , wd, and its Ehrhart polynomial is ehrΠ(n) = vol(Π)nd.
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2.5 Zonotopes

Combining the results of the last two lemmas, we can first decompose a lattice zono-
tope into half-open lattice parallelepipeds and calculate the coefficients of the Ehrhart
polynomial by summing up the respective relative volumes:

Theorem 2.15. [4, Theorem 9.9, p. 177] Let Z := Z(v1, . . . , vn) be the zonotope generated by
the integer vectors v1, . . . , vn. Then the Ehrhart polynomial of Z is

ehrZ(n) = ∑
I

g(I)n|I|,

where I ranges over all linearly independent subsets of {v1, . . . , vn}, and g(I) denotes the greatest
common divisor of all minors of size |I| of the matrix that has the elements of I as its columns, and
g(∅) = 1.

Another theorem by Beck, Jochemko and McCullough [3] will come in handy later on, for
which we first need to introduce the following notation:
Let Sd be the set of all permutations on [d] := {1, . . . , d}. The descent set of a permutation
σ = σ1σ2 . . . σd ∈ Sd is defined as Des(σ) := {i ∈ [d− 1] : σi > σi+1}, and for the number
of descents of σ we write des(σ) := |Des(σ)|.
The Eulerian number a(d, k) := |{σ ∈ Sd : des(σ) = k}| counts the permutations on [d]
with precisely k descents. The (A, j)-Eulerian number, defined by

aj(d, k) := |{σ ∈ Sd : σd = d + 1− j and des(σ) = k}|,

has the added condition that only permutations with last letter d + 1− j are included.
Finally, the (A, j)-Eulerian polynomial is given by

Aj(d, t) :=
d−1

∑
k=0

aj(d, k)tk.

Theorem 2.16. [3, Theorem 4.2, p. 10] The h∗-polynomial of the half-open unit cube

Cd
j := [0, 1]d \ {x ∈ Rd : xd = xd−1 = · · · = xd+1−j = 1},

where j indicates the number of removed facets, is h∗(Cd
j ) = Aj+1(d + 1, t) for j ∈ {0, . . . , d}.

Theorem 2.17. [3, Proposition 4.10, p. 13] Every d-dimensional (lattice) zonotope can be
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2.5 Zonotopes

partitioned into d-dimensional half-open (lattice) parallelepipeds of the following form:

Π(I) :=

{
m

∑
i=1

λivi : 0 ≤ λi < 1 for all i ∈ I, 0 ≤ λi ≤ 1 for all i /∈ I

}
,

where v1, . . . , vm ∈ Rd are linearly independent vectors and I ⊆ {1, . . . , m}.

We know that the h∗-polynomial of a d-dimensional lattice zonotope is the sum of the
h∗-polynomials of the half-open d-dimensional lattice parallelepipdes into which the
zonotope can be partitioned. Beck, Jochemko and McCullough [3, pp. 13-14] showed that
the h∗-polynomial of a half-open lattice parallelepiped of the form Π(I) is a nonnegative
linear combination of the polynomials A1(d + 1, t), . . . , Ad(d + 1, t). Moreover, in their
construction of the half-open decomposition of a lattice zonotope in the proof of Theorem
2.17 there is at most one closed parallelepiped. They obtained the following theorem that
will be a useful tool for our further considerations:

Theorem 2.18. [3, Theorem 1.3, p. 2] Let d ≥ 1. The convex hull of the h∗-polynomials of all
d-dimensional lattice zonotopes (viewed as points in Rd+1) is equal to the d-dimensional simplicial
cone

A1(d + 1, t) + R≥0A2(d + 1, t) + · · ·+ R≥0Ad+1(d + 1, t). (2.10)

Remark 2.19. [3, p. 14] The polynomials A1(d + 1, t), . . . , Ad+1(d + 1, t) form a basis of the
space of polynomials of degree d and smaller.

Remark 2.20. Due to Theorem 2.18 we can narrow our search for suitable h∗-polynomials. How-
ever, it does not provide a classification of the h∗-polynomials of all d-dimensional lattice zonotopes,
because far from every integer point contained in the cone (2.10) can be realized by a d-dimensional
lattice zonotope.

17



3 Classification of 2-dimensional Lattice
Zonotopes

Theorem 1.1 states that the set of Ehrhart polynomials of 2-dimensional lattice zonotopes
equals the set of integer points lying in the three rays S′ = {(c2, c1) : c1 = c2 + 1, c2 ≥ 1},
T = {(c2, c1) : c1 = c2/2 + 2, c2 ≥ 2}, R′ = R≥1 × {2} and the area enclosed by T and R′,
where the pair (c2, c1) ∈ Z2 represents the polynomial ehr(n) = 1 + c1n + c2n2, as shown
in Figure 3.4. Here, we will give the proof:

Proof. From Theorem 2.18, we know that the convex hull of the h∗-polynomials of
all 2-dimensional lattice zonotopes (viewed as points in R3) is equal to the sim-
plicial cone C := 1 + 1t + R≥0(2t) + R≥0(t + t2), which has facets S̃ := {0} × [1, ∞)

and R̃ := {(h2, h1) : h1 = h2 + 1, h2 ≥ 0}.

Figure 3.1: The convex hull of the h∗-polynomials of all 2-dimensional lattice zono-
topes viewed as points (h2, h1) with facets S̃ and R̃, where h∗(t) = 1 + h1t + h2t2.

The question is for which pairs (h2, h1) = (B, B + N) with B ∈ Z≥0 and N ∈ Z≥1 the
associated h∗-polynomial h∗(t) = 1 + h1t + h2t2 corresponds to the Ehrhart polynomial of
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3 Classification of 2-dimensional Lattice Zonotopes

a lattice zonotope. Using equation (2.6), we calculate that the point (B, B + N) is associated
with the potential Ehrhart polynomial

f(B,N)(n) = 1 +
3 + N

2
n +

(
B +

1 + N
2

)
n2. (3.1)

Assuming that f(B,N) is the Ehrhart polynomial of a lattice zonotope Y, the number of
lattice points on the boundary of Y is 3 + N according to Pick’s Theorem 2.2. For even N,
the zonotope Y would have an odd number of lattice points of the boundary, which is a
contradiction, as zonotopes are centrally symmetric. Thus, all possible h∗-polynomials
will have

(h2, h1) = (B, B + N) with B, N ∈ Z≥0 and N odd. (3.2)

Figure 3.2: The 2-dimensional lattice zonotopes ZN generated by the two vectors
(1, 0), (0, (N + 1)/2) for N ∈ {1, 3, 5, 7}.

The pairs (0, N) with N ∈ Z≥1 are the integer points in the facet S̃. According to (3.2), we
need only consider odd N. The lattice zonotope ZN generated by the two vectors (1, 0)
and (0, (N + 1)/2) has the Ehrhart polynomial f(0,N) because this zonotope has the 3 + N
integer points (0, i), (1, i) for all i ∈ {0, 1, . . . , (N + 1)/2} on its boundary and an area of
(1 + N)/2. See Figure 3.2.

The points (B, B + 1) with B ∈ Z≥0, lying on the facet R̃ of the simplicial cone C, corre-
spond to the polynomial f(B,1)(n) = 1 + 2n + (B + 1)n2. The zonotope ZB generated by
the two vectors (1, 0) and (1, B + 1) has precisely f(B,1) as its Ehrhart polynomial since this
zonotope has the 4 integer points (0, 0), (1, 0), (1, B + 1), and (2, B + 1) on its boundary;
moreover, ZB admits a triangulation into 2(B + 1) elementary triangles and, thus, has an
area of (B + 1) by Lemma 2.4. Consider Figure 3.3 for examples.
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3 Classification of 2-dimensional Lattice Zonotopes

Figure 3.3: The 2-dimensional lattice zonotopes ZB generated by the two vectors
(1, 0), (1, B + 1) for B ∈ {0, 1, 2, 3} with a triangulation into elementary triangles.

Now that we understand the facets of the cone C, we will take a closer look at its interior.
Using the description from (3.1), we can translate our picture in Figure 3.1 for the coeffi-
cients (h2, h1) of h∗-polynomials into one for coefficients (c2, c1) of an Ehrhart polynomial
1 + c1n + c2n2. Taking into account Scott’s Theorem 2.5, we obtain Figure 3.4.

Figure 3.4: The polyhedral complex containing all pairs corresponding to Ehrhart
polynomials of 2-dimensional lattice zonotopes.

An integer point (2y, y + 2), y ∈ Z≥1, on the ray T = {(c2, c1) : c1 = c2/2 + 2} can be
realized by the zonotope Yy generated by the vectors (2, 0) and (0, y), because it has an
area of 2y and 2(y + 1) + 2 = 2(y + 2) integer points on the boundary.

Now we consider the rays parallel to T of the form Xm := {(2p + m, p + 2) : p ∈ Z≥1} for
some m ∈ Z≥1; X0 = T. See Figure 3.5.
For each integer point (x2, x1) that lies in the interior of the area enclosed by the rays T
and R′, there exists an m ∈ Z≥1 such that the ray Xm contains (x2, x1). Furthermore, each
integer point is associated with a lattice zonotope, because, by Theorem 2.15, the zonotope
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3 Classification of 2-dimensional Lattice Zonotopes

Figure 3.5: The rays Xm.

generated by the three vectors (0, p), (1, 0) and (1, m) has the Ehrhart polynomial

1 +
(

gcd(0, p) + gcd(1, 0) + gcd(1, m)
)

n+(∣∣∣∣∣det

(
0 1
p 0

)∣∣∣∣∣+
∣∣∣∣∣det

(
0 1
p m

)∣∣∣∣∣+
∣∣∣∣∣det

(
1 1
0 m

)∣∣∣∣∣
)

n2

=1 + (p + 2)n + (2p + m)n2.

See Figure 3.6 for examples.

Figure 3.6: The lattice zonotopes generated by the three vectors (0, p), (1, 0), (1, m)
for m = 2 and p ∈ {1, 2, 3, 4} partitioned into parallelepipeds.
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3 Classification of 2-dimensional Lattice Zonotopes

Remark 3.1. We can translate the picture in Figure 3.4 back to the context of h∗-polynomials.
Note that by (3.2), we can realize only integer points (h2, h1) with h1 − h2 odd.

Figure 3.7: The marked integer points correspond to the h∗-polynomials of 2-
dimensional lattice zonotopes.

Define

S̃ :={0} × {h1 ∈ Z≥0 odd},
T̃ :={(h2, h1) : h1 = 3h2 + 3 ≥ 3},
R̃ :={(h2, h1) : h1 = h2 + 1 ≥ 1},

X̃i :={(h2, h1) : h1 = 3h2 − 2i + 3, h2 ≥ i} for all i ∈ Z≥1, and X̃0 := T̃.

The set (
S̃ ∪ T̃ ∪ R̃ ∪

⋃
i≥1

X̃i

)
∩Z2

is precisely the set of points corresponding to h∗-polynomials of 2-dimensional lattice zonotopes.
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4 Classification of Lattice Zonotopes of
Degree 2

In this chapter, we are interested in the Ehrhart polynomials of a lattice zonotope P of
dimension d ≥ 3 and degree 2. We note that by (2.3) the highest coefficient of the h∗-
polynomial of P is h2(P) = |(d− 1)P◦∩Z2| and |m · P◦∩Z2| = 0 for all m ∈ {1, . . . , d− 2}.
At first we look at parallelepipeds, the "building blocks" of zonotopes, and show that their
second dilate will contain at least one interior integer point:

Theorem 4.1. Let d ∈ Z≥1, and let v1, . . . , vd ∈ Zd be linearly independent vectors.
Let Πv1,...,vd := {∑d

i=1 λivi : 0 ≤ λi ≤ 1} be the parallelepiped spanned by v1, . . . , vd.
Then the second dilate of Πv1,...,vd contains an interior lattice point.

Proof. Define v := ∑d
i=1 vi. Clearly, v is an integer point.

Since v1, . . . , vd are linearly independent vectors spanning Rd, the interior of Πv1,...,vd is
not empty and {

d

∑
i=1

λivi : −1
2 < λi <

1
2

}
is an open neighborhood of the origin. Therefore,

v +

{
d

∑
i=1

λivi : −1
2 < λi <

1
2

}
=

{
d

∑
i=1

λivi : 1
2 < λi <

3
2

}

⊆
{

d

∑
i=1

λivi : 0 ≤ λi ≤ 2

}
= 2 ·Πv1,...,vd .

is an open neighborhood of v contained in 2 ·Πv1,...,vd . So v is an interior integer point in
the second dilate of Πv1,...,vd .
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4 Classification of Lattice Zonotopes of Degree 2

By Theorem 2.12, every lattice zonotope can be subdivided into lattice parallelepipeds. It
follows that any lattice zonotope with no interior lattice points has at least one integer point
in its second dilate. Taking into consideration the relation between the highest coefficient of
the h∗-polynomial and the number of integer points in the dilates of the zonotope, it is clear
that there can only be d-dimensional zonotopes of degree d or d− 1. In particular, there
are no d-dimensional lattice zonotopes of degree smaller or equal to 2 for d ∈ Z≥4 and no
3-dimensional lattice zonotopes of degree 1. Hence, only 3-dimensional lattice zonotopes
of degree 2 will be of interest to us in the following.

In order to study this subset of 3-dimensional zonotopes, we proceed similarly as in the
previous chapter by applying Theorem 2.18 for the 3-dimensional case. We obtain that the
convex hull of the h∗-polynomials of all 3-dimensional lattice zonotopes is equal to the
3-dimensional simplicial cone

(1 + 4t + t2) + R≥0(4t + 2t2) + R≥0(2t + 4t2) + R≥0(t + 4t2 + t3) (4.1)

=
{

1 + (4 + 4α + 2β + γ)t + (1 + 2α + 4β + 4γ)t2 + γt3 : α, β, γ ∈ R≥0

}
.

For the case of 3-dimensional lattice zonotopes of degree 2, the parameter γ is 0. So the
2-dimensional simplicial cone{

1 + (4 + 4α + 2β)t + (1 + 2α + 4β)t2 : α, β ∈ R≥0

}
(4.2)

equals the convex hull of the corresponding h∗-polynomials. We represent each h∗-
polynomial h∗(t) = 1 + h1t + h2t2 by a point in Z2 of the form (h2, h1). So we consider
D := {(1 + 2α + 4β, 4 + 4α + 2β) : α, β ∈ R≥0}. See Figure 4.1. The facets of D
are

S̄ := {(h2, h1) : h1 = 2h2 + 2 ≥ 1} and (4.3)

R̄ := {(h2, h1) : h1 = h2/2 + 7/2 ≥ 1}.

We want to find out for which of the integer points inside this cone there is a 3-dimensional
lattice zonotope with a matching h∗-polynomial. We can immediately exclude a lot of
points by scrutinizing the properties of the coefficients.
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4 Classification of Lattice Zonotopes of Degree 2

Figure 4.1: The convex hull D of the h∗-polynomials of all 3-dimensional lat-
tice zonotopes of degree 2 viewed as points (h2, h1) with facets S̄ and R̄, where
h∗(t) = 1 + h1t + h2t2.

Inserting n = 1 in the Ehrhart polynomial using the expression (2.1), we get

ehrP(1) = h0(P)
(

4
3

)
+ h1(P)

(
3
3

)
+ h2(P)

(
2
3

)
= 4 + h1(P). (4.4)

Since P does not contain any interior lattice points, all the integer points in the first dilate
lie in the boundary. As discussed before, the number of integer points in a zonotope’s
boundary is always even because zonotopes are centrally symmetric. Hence, ehrP(1) is
even and, consequently, so is h1(P).
We can derive a similar result about the coefficient h2(P). The second dilate of a lattice
zonotope is centrally symmetric about a lattice point. Such lattice zonotopes have an odd
number of interior lattice points. Since h2(P) equals the number of integer points in the
interior of the second dilate of the lattice zonotope P, it is clear that h2(P) is odd.
Furthermore, we know from Theorem 2.12 that each lattice zonotope has a subdivision into
lattice parallelepipeds. Since the volume of each lattice parallelepiped is integral according
to Lemma 2.14, so is the volume of the zonotope as the sum of the volumes of those lattice
parallelepipeds. The property that the sum of the coefficients of the h∗-polynomial equals
the zonotope’s normalized volume, that is 1 + h1(P) + h2(P) = 6 · vol(P), induces that the
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4 Classification of Lattice Zonotopes of Degree 2

sum is divisible by 6. Define

D′ := {(h2, h1) ∈ D : h1 even, h2 odd, 1 + h1 + h2 divisible by 6}. (4.5)

We can build a 3-dimensional lattice zonotope Z′ of degree 2 from a 2-dimensional zono-
tope Z that we constructed in the previous chapter (see Theorem 1.1) by considering it
in the (x, y)-plane and adding the unit vector of the z-coordinate as a generating vec-
tor. The two zonotopes Z′ and Z have the same volume and the number of integer
points on the boundary of Z′ is twice the number of integer points in the zonotope Z.
Let 1 + h1t + h2t2 be the h∗-polynomial of Z and 1 + h′1t + h′2t2 the h∗-polynomial of Z′.
Then

1 + h1 + h2

2
= vol(Z) = vol(Z′) =

1 + h′1 + h′2
6

and 6 + 2h1 = 2 · ehrZ(1) = 2 · |Z ∩Z2| = |Z′ ∩Z2| − |Z′◦ ∩Z2| = ehrZ′(1)− 0 = 4 + h′1.
We calculate that h′1 = 2+ 2h1 and h′2 = h1 + 3h2. We define the function

g :

{(h2, h1) : 1 + h1t + h2t2 h∗-polynomial of a 2-dim. lattice zonotope} → Z2

(h2, h1) 7→ (h′2, h′1) := (h1 + 3h2, 2 + 2h1).

(4.6)

Under the function g, the set {(m, m + 1) : m ∈ Z≥0} ⊂ R̃ (see Remark 3.1) is mapped
to {(4m + 1, 2m + 4) : m ∈ Z≥0}. This equals precisely the set R̄ ∩ D′. The image of the
set {(0, m) : m ∈ Z≥1 odd} = S̃ under g is {(m, 2m + 2) : m ∈ Z≥1 odd}. This is the set
S̄ ∩ D′.
Lastly, for each i ∈ Z≥0 the set {(i + m, i + 3m + 3) : m ∈ Z≥0} ⊂ X̃i is mapped
to

Yi := {(4i + 6m + 3, 2i + 6m + 8) : m ∈ Z≥0}.

Define

X̄i := {(4i + 6m + 3, 2i + 6m + 8) : m ∈ R≥0} (4.7)

for i ∈ Z≥0. Then X̄i is the ray containing the set Yi. The prerequesite that

1 + 2i + 6m + 8 + 4i + 6m + 3 = 12 + 6i + 12m
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4 Classification of Lattice Zonotopes of Degree 2

is divisble by 6 is satisfied for i ∈ Z≥0 if 2m ∈ Z≥0. However, m cannot be half-integral,
because then the first coordinate is even and the second is odd. It follows Yi = X̄i ∩D′. Us-
ing the same argument, we can show that all integer points in the intersection of D′ and the
region enclosed by the rays R̄, S̄, and X̄0 lie in R̄ ∪⋃i≥0 X̄i.

Figure 4.2: The image of the set of points corresponding to the h∗-polynomials of
2-dimensional lattice zonotopes under the function g, as well as the upper bound A
for h1 of h∗-polynomials of degree 2 given by Theorem 2.9.

Now it only remains unclear which of the integer points in the interior of the cone enclosed
by the rays S̄ and X̄0 correspond to h∗-polynomials of 3-dimensional lattice zonotopes of
degree 2. The set of the lattice points in the interior of this cone that satisfy the conditions
that h1 is even, h2 is odd and 1 + h1 + h2 is divisible by 6, is the image under the function
g of the interior integer points of the cone spanned by the rays {0} × [1, ∞) and T̃ in the
2-dimensional case. Scott’s Theorem 2.5 shows that there are no 2-dimensional lattice
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4 Classification of Lattice Zonotopes of Degree 2

polytopes with h∗-polynomials corresponding to the interior lattice points of that cone.
For our study of 3-dimensional lattice zonotopes of degree 2, the upper bound given by
Treutlein’s Theorem 2.9, a generalized version of Scott’s Theorem, is not tight and does not
provide us with further information about the points in question as can be seen in
Figure 4.2.

In this context, it proves useful to consider the notion of lattice width. See, for example, [1]
for the definitions. The width of a lattice polytope P in direction v ∈ Rd \ {0} is given
by

ωv(P) := max{vTx : x ∈ P} −min{vTx : x ∈ P}.

The lattice width of P is defined via ω(P) := min{ωv(P) : v ∈ Zd \ {0}}. We note
that if P is a lattice polytope, ωv(P) ∈ Z≥0 for all v ∈ Zd \ {0} and, thus, ω(P) takes
non-negative integer values.

The property of 3-dimensional degree-2 lattice zonotopes of not having any interior lattice
point allows us to deduce information about their lattice width:

Theorem 4.2. Every 3-dimensional lattice zonotope of degree 2 has lattice width 1 or is a lattice
parallelepiped.

Proof. Let Z be a 3-dimensional lattice zonotope of degree 2 and lattice width bigger than
1. Assume that Z is generated by pairwise linearly independent vectors v1, . . . , vk ∈ Z3 for
some k ≥ 4. We will show that Z contains an integer point in its interior.
Since Z is 3-dimensional, there is a set of three generating vectors that forms a basis of
the vector space R3, say {v1, v2, v3}. Thus, there exist αi ∈ R≥0 and σi ∈ {1,−1} for all
i ∈ {1, 2, 3} such that v4 = σ1α1v1 + σ2α2v2 + σ3α3v3.

First we consider the case that there is j ∈ {1, 2, 3} such that αj = 0. Then αi > 0 for
all i ∈ {1, 2, 3} \ {j}, because the generating vectors are pairwise linearly independent.
W.l.o.g. let α1 = 0. Then v2, v3, v4 lie in a hyperplane and F := Z(v2, v3, v4) is a facet
of Z′ := Z(v1, v2, v3, v4). In particular, F and F̄ := v1 + F are 2-dimensional lattice
zonotopes with three generators each. Therefore, there exist lattice points x ∈ relint(F)
and x̄ ∈ relint(F̄) due to Theorem 2.11. Since ωv(Z) ≥ 2 for all normal vectors v of F,
we know that there are parallel hyperplanes H1, H2, H3 such that Z ∩Z3 ∩ Hi 6= ∅ for
all i ∈ {1, 2, 3} and there exist l, m ∈ {1, 2, 3} such that F ⊂ Hl and F̄ ⊂ Hm. Let H2 be a
hyperplane that lies between H1 and H3. If F or F̄ is contained in H2, the point x or x̄ is an
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4 Classification of Lattice Zonotopes of Degree 2

Figure 4.3: The zonotope Z′, which coincides in this example with the convex hull of
the two opposing facets conv(F ∪ F̄).

interior lattice point of Z, respectively. Otherwise, conv(F ∪ F̄) ⊆ Z and conv(F ∪ F̄) ∩ H2

is the translate of a 2-dimensional lattice zonotope generated by three vectors and, thereby,
contains an interior integer point according to Theorem 2.11.
Now consider that αi > 0 for all i ∈ {1, 2, 3}. We can assume that σi = 1 for all i ∈ {1, 2, 3},
because

Z′ = Z(v1, v2, v3, v4) = Z(σ1v1, σ2v2, σ3v3, v4) +
3

∑
i=1

σi=−1

vi and

v4 = σ1α1v1 + σ2α2v2 + σ3α3v3 = 1 · α1(σ1v1) + 1 · α2(σ2v2) + 1 · α3(σ3v3).

The lattice point v4 lies in the interior of Z′, because for

ε :=
1

2 ·max {1, αi : i ∈ {1, 2, 3}} ∈ (0, 1)

we have 1− ε ∈ (0, 1) and εαi ∈ (0, 1) for all i ∈ {1, 2, 3}, and

v4 = α1v1 + α2v2 + α3v3 = εα1v1 + εα2v2 + εα3v3 + (1− ε)v4.

Since Z′ ⊆ Z, this is a contradiction as Z is of degree 2 and does not contain interior lattice
points.

Lemma 4.3. Every 3-dimensional lattice zonotope of degree 2 and lattice width 1 is unimodular to a
zonotope that can be constructed from a 2-dimensional zonotope Z considering it in the (x, y)-plane
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4 Classification of Lattice Zonotopes of Degree 2

and adding the unit vector of the z-coordinate as a generating vector.

Proof. Let Z be a 3-dimensional lattice zonotope of degree 2 and lattice width 1. Let F be a
facet of Z such that the width of Z in direction of a normal vector v of F equals 1. Let H
and H̄ denote the parallel hyperplanes in which F and the symmetric counterpart F̄ lie,
respectively. Then Z is contained inbetween H and H̄. Choose two vectors v1 and v2 that
generate the lattice structure H ∩Z3 in the hyperplane H. Since ωv(P) = 1 for each normal
vector v of F, there is an edge of Z, say v3, with one vertex lying in H and the other in H̄
and no integer points in its relative interior. Hence, the three vectors v1, v2, v3 are linearly
independent and form a lattice basis of Z3. We can map v1, v2, v3 to the standard basis of
Z3. The change of basis matrix has the vectors v1, v2, v3 as its columns and determinant 1
or −1. Thus, it is unimodular.

Now we will consider which polynomials can be realized as Ehrhart polynomials of 3-
dimensional lattice parallelpipeds of degree 2 and lattice width bigger than 1. If we can
show that no point in D′ \

(⋃
i≥0 X̄i ∪ S̄ ∪ R̄

)
(see (4.3), (4.5), and (4.7) for the notation)

can be realized as a 3-dimensional lattice prallelepiped of degree 2, we will have proven
that the points in D′ \

(⋃
i≥0 X̄i ∪ S̄ ∪ R̄

)
cannot be realized at all as 3-dimensional lattice

zonotopes of degree 2.

Let u, v, w ∈ Z3 be linear independent vectors such that Z := Z(u, v, w) is a 3-dimensional
lattice parallelepiped of degree 2 and lattice width 2 or bigger. Let L(u) denote the relative
volume of the line segment Z(u) = {λu : λ ∈ [0, 1]} w.r.t. to the lattice structure of the
ray {λu : λ ∈ R}. Then L(u) = |Z(u) ∩Z3| − 1 ≥ 1, because u is a lattice vector. We call
u ∈ Z3 primitive if L(u) = 1.

Lemma 4.4. Each 3-dimensional lattice parallelepiped of degree 2 and lattice width bigger than 1
has at most one non-primitive generator.

Proof. Assume L(u) > 1 and L(v) > 1. Let λz := min{λ ∈ (0, 1) : λz ∈ Z3} and z̃ := λzz
for all z ∈ {u, v}. Then z̃ ≤ z/2 for all z ∈ {u, v}. Consider the facets F := Z(u, v) and
F̄ := Z(u, v) + w of Z := Z(u, v, w). Let HF, HF̄ be the hyperplanes containing F and
F̄, respectively. Since ω(Z) ≥ 2, there exists a hyperplane H1 parallel to H and lying
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4 Classification of Lattice Zonotopes of Degree 2

between HF and HF̄ such that H1 ∩ Z ∩Z3 6= ∅. The set F1 := H1 ∩ Z is a translate of the
2-dimensional lattice zonotope F. Let µ ∈ (0, 1) such that F1 = F + µw. Then

Y :=Z(ũ, ṽ) + 1
2(ũ + ṽ) + µw

=
{

λ1ũ + λ2ṽ : 1
2 ≤ λi ≤ 3

2 for all i ∈ {1, 2}
}
+ µw ⊆ rel int(F1) ⊆ int(Z)

is the translate of a 2-dimensional lattice parallelepiped. By Lemma 2.10, there exists a
lattice point in Y and, thus, in the interior of Z, which is a contradiction to the assumption
that Z is of degree 2.

Next, we will focus on 3-dimensional lattice parallelepipeds of degree 2 with lattice width
bigger than 1 and only primitive generators. For that purpose, we refer to solid angles,
a generalization of the 2-dimensional angle. The solid angle of a point x ∈ Rd w.r.t. a
convex polytope P ⊂ Rd is defined as

αP(x) := limε→0
vol (Bε(x) ∩ P)

vol Bε(x)
, (4.8)

where Bε(x) denotes the d-dimensional ball of radius ε > 0 with center at x. See [4, p. 227]
for the definition. Note that if P is not full-dimensional, then αP(x) = 0 for all x ∈ Rd.
Otherwise, αP(x) = 0 if x /∈ P, and αP(x) = 1 if x ∈ P◦. If x lies in the boundary of
a full-dimensional polytope P, then αP(x) ∈ (0, 1). In the following, we will consider
the solid angle of a point x w.r.t. a lower-dimensional polytope P within the affine span
generated by P and use the same notation αP(x) for this, i.e., in the definition (4.8) we have
the relative volumes w.r.t. the affine span of P instead of the usual volumes in Rd.
To us, the measure

A(P) := ∑
x∈P∩Zd

αP(x)

is of particular interest, because, as shown in [16, Lecture 7],

A(P + t) = A(P) = vol(P) for a lattice parallelepiped P ⊂ Rd and t ∈ Rd. (4.9)

Lemma 4.5. Each 3-dimensional lattice parallelepiped Z of degree 2 with lattice width bigger than
1 and only primitive generators satisfies (h2(Z), h1(Z)) ∈ {(8, 10), (13, 10), (3, 8), (9, 8)}.

Proof. Let u, v, w be primitive. Let F := Z(u, v), F̄ := Z(u, v) + w, and HF, HF̄ the corre-

31



4 Classification of Lattice Zonotopes of Degree 2

sponding hyperplanes. Since Z has lattice width bigger or equal to 2, there is a parallel
hyperplane H1 lying between HF and HF̄ such that H1 ∩ Z ∩Z3 6= ∅. Let F1 := H1 ∩ Z.
Then F1 is a rational translate of the 2-dimensional lattice zonotope F. Since Z := Z(u, v, w)

does not contain interior lattice points, F1 does not contain integer points in its relative
interior. Furthermore, w is a primitive vector. Thus, the vertices of F1 do not lie in Z3.
Hence, any integer point in F1 is contained in the relative interior of its facets. As the
facets of F1 are translates of the primitive vectors u and v, each facet can contain at most
1 lattice point in its relative interior. So A(F1) ≤ 4 · 1/2 = 2 if we consider F1 in dimen-
sion 2 w.r.t. the lattice structure of H1 ∩Z3. Since there is an affine lattice isomorphism
mapping H1 ∩Z3 to HF ∩Z3, we can regard F1 as a rational translate of F. Due to (4.9),
A(F) = A(F1) ≤ 2. Therefore, any facet of Z has at most 1 integer point in its relative
interior and ehrZ(1) ≤ 8 + 6 = 14.
Assume that the facet F does not contain any integer point in its relative interior, i.e.,
|F ∩Z3| = 4. Due to the symmetry of zonotopes, F̄ also does not contain a lattice point in
its interior. Since Z has width bigger or equal to 2 in the direction of each normal vector
of the facet G := Z(u, w), there exists a hyperplane H2 that is parallel to the hyperplane
HG containing G, lies between G and Ḡ := Z(u, w) + v, and satisfies H2 ∩ Z ∩Z3 6= ∅.
Let x ∈ G1 := H2 ∩ Z. Then x does not lie in the relative interior of G1, because Z does
not contain interior lattice points, nor is x a vertex of G1, because v is a primitive vector.
Hence, x lies in the relative interior of a facet of G1. We know that x /∈ G1 ∩ Z(u, v) and
x /∈ G1 ∩ Z(u, v) + w, because F and F̄ do not have integer points in the relative interior.
So x lies in the relative interior of Z(v, w) or Z(v, w) + u. It follows that the facets Z(v, w)

and Z(v, w) + u each contain exactly 1 lattice point in their respective relative interior
because of symmetry. Analogously, we can make the same argument for Z(v, w) and show
that also the facets Z(u, w) and Z(u, w) + v each contain exactly 1 lattice point in their
respective relative interior. So at most 2 facets of Z cannot contain lattice points in their
relative interior, i.e., ehrZ(1) ≥ 8 + 4 = 12.

Due to the symmetric property of zonotopes, any 3-dimensional lattice parallelepiped of
degree 2 with only primitive generators and lattice width bigger than 1 contains either 12
or 14 lattice points. The points (8, 10) ∈ X̄i and (13, 10) ∈ R̄ are the only two points in D′

of the form (h2, h1) such that h1 + 4 = 14. The points (3, 8) ∈ S̄ and (9, 8) ∈ R̄ are the only
two points in D′ satisfying h1 + 4 = 12.

Remark 4.6. The point (13, 10) can be realized by the parallelepiped Q spanned by the vectors
(1, 1, 0), (−1, 1, 0), and (1, 1, 2), which has degree 2 and lattice width 2.
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4 Classification of Lattice Zonotopes of Degree 2

By Lemma 2.15, the Ehrhart polynomial of Q is ehrQ(n) = 4n3 + 6n2 + 3n + 1.

Remark 4.7. The Ehrhart polynomial corresponding to the h∗-polynomial 1 + h1t + h2t2 is

ehr(n) = 1 +
11 + 2h1 − h2

6
n +

2 + h1

2
n2 +

1 + h1 + h2

6
n3.

We define the map

ψ : Z2 → Z3, (h2, h1) 7→ (1+h1+h2
6 , 2+h1

2 , 11+2h1−h2
6 ).

Figure 4.4: The triples (c3, c2, c1) corresponding to the Ehrhart polynomials
1 + c1n + c2n2 + c3n3 of 3-dimensional lattice zonotopes of degree 2.

Conversely, the Ehrhart polynomial 1 + c1n + c2n2 + c3n3 is associated with the h∗-polynomial

h∗(t) = 1 + (−3 + c1 + c2 + c3)t + (3− 2c1 + 4c3)t2.

Lemma 4.8. Each 3-dimensional lattice parallelepiped Z of degree 2 with lattice width bigger than
1 and one non-primitive generator satisfies (h2(Z), h1(Z)) ∈ ⋃i≥0 X̄i ∪ S̄ ∪ R̄.
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4 Classification of Lattice Zonotopes of Degree 2

Proof. Let L(w) > 1 and let u, v be primitive. Let λw := min{λ ∈ (0, 1) : λw ∈ Z3} and
w̃ := λww. Then w̃ is a primitive lattice vector. F1 := Z(u, v) + w̃ has the same lattice
structure as the facets F := Z(u, v) and F̄ := Z(u, v) + w of Z := Z(u, v, w). Since Z is
of degree 2, F1 does not contain lattice points in its relative interior. Hence, also F and
F̄ have no integer points in the interior. In particular, |F ∩Z3| = |F̄ ∩Z3| = 4, because
L(u) = L(v) = 1.
We can consider Z as a "stack" of translates of the zonotope Z̃ := Z(u, v, w̃), i.e.,

Zi := Z̃ + iw̃ for all i ∈ {0, 1, . . . ,L(w)} and Z =
L(w)⋃
i=0

Zi.

Applying the inclusion-exclusion-law, we obtain

ehrZ = (L(w) + 1) · ehrZ̃ −L(w) · ehrF = ehrZ̃ + L(w) · (ehrZ̃ − ehrF) . (4.10)

Since the facet F has relative volume 1 and contains 4 lattice points in its boundary,
ehrF(n) = n2 + 2n + 1. Moreover, we note that Z̃ has only primitive generators and
satisfies deg(Z̃) = 2 as well as ω(Z̃) ≥ 2.
Hence, any 3-dimensional lattice parallelepiped Z of degree 2 with one non-primitive
generator and lattice width bigger than 1 can be described as the union of translates
of a lattice parallelepiped Z̃ that corresponds to either one of the points (3, 8) ∈ S̄ and
(9, 8) ∈ R̄.

According to Remark 4.7, the triples of coefficients of the Ehrhart polynomial corre-
sponding to the pairs (h2, h1) = (3, 8) and (9, 8) of coefficients of the h∗-polynomial
are (c3, c2, c1) = (2, 5, 4) and (3, 5, 3). By (4.10), the sets

{(2, 5, 4) + k · (2, 4, 2) : k ∈ Z≥1} ⊂ S̄′ and

{(3, 5, 3) + k · (3, 4, 1) : k ∈ Z≥1} ⊂ R̄′ ∪
⋃

i∈Z≥0

X̄′i ,

where S̄′ := ψ(S̄), R̄′ := ψ(R̄), and X̄i
′ := ψ(X̄i) for all i ∈ Z≥0, contain all points

corresponding to 3-dimensional lattice parallelepipeds of degree 2 with one non-primitive
generator and lattice width bigger than 1.

We have shown that the Ehrhart polynomial of any 3-dimensional lattice parallelepiped
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4 Classification of Lattice Zonotopes of Degree 2

of degree 2 and lattice width bigger than 1 corresponds to a point in
⋃

i≥0 X̄i ∪ S̄ ∪ R̄.
Therefore, the points in consideration, i.e., the points in D′ \

(⋃
i≥0 X̄i ∪ S̄ ∪ R̄

)
, cannot be

realized as 3-dimensional lattice zonotopes of degree 2.

Theorem 4.9. The set of the h∗-polynomials h∗(t) = 1 + h1t + h2t2 of all 3-dimensional lattice
zonotopes of degree 2 is the set of integer points D′ ∩

(⋃
i≥0 X̄i ∪ S̄ ∪ R̄

)
, where the pair

(h2, h1) ∈ Z2 represents the polynomial h∗(t) = 1 + h1t + h2t2. See (4.5) and Figure 4.2.

Remark 4.10. According to Remark 2.19 and (4.1), we can write the h∗-polynomial of each 3-
dimensional lattice zonotope Z of degree 2 as a linear combination of the polynomials A1(4, t),
A2(4, t), A3(4, t). There exist a2, a3 ∈ R≥0 such that

h∗(Z)(t) =A1(4, t) + a2 · A2(4, t) + a3 · A3(4, t)

=(1 + 4t + t2) + a2(4t + 2t2) + a3(2t + 4t2).

Under this basis transformation, the ray S̄ (see Figure 4.2) is mapped to the positive
part of the a2-axis S̄′′, R̄ to the positive half of the a3-axis R̄′′, and the rays X̄i to the rays
X̄i
′′ := {(m + i, m + 1) : m ∈ Z≥0} for i ∈ Z≥0.

Figure 4.5: The h∗-polynomials of all 3-dimensional lattice zonotopes of degree 2
described in the basis of the polynomials A1(4, t), A2(4, t), A3(4, t).
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Zonotopes

In the previous chapter, we studied 3-dimensional lattice zonotopes of degree 2. Now
we are interested in lattice zonotopes of dimension 3 with highest coefficient of the h∗-
polynomial h3 6= 0. This part of the thesis does not deliver any final results, but is to be un-
derstood as a starting point and motivation for further research.

In (4.1), we already found that the simplicial cone{
1 + (4 + 4α + 2β + γ)t + (1 + 2α + 4β + 4γ)t2 + γt3 : α, β, γ ∈ R≥0

}
is equal to the convex hull of the h∗-polynomials of all 3-dimensional lattice zonotopes.
Let h3 = γ ∈ Z≥1 be fixed.
In [8, Theorem 1, p. 1023], Lagarias and Ziegler showed that the volume of a d-dimensional
lattice polytope that contains exactly k ≥ 1 interior integer points is bounded from above
by k(7k + 7)d2d+1

. Inserting d = 3 and k = h3 = 1, we obtain the upper bound 1448.
Since the sum of all coefficients of the h∗-polynomial is the normalized volume of the
corresponding polytope, this also constitutes an upper bound for the coefficients of the
h∗- and Ehrhart polynomials of 3-dimensional lattice zonotopes with at least one interior
integer point. Hence, there is only a finite number of such polynomials.
By (2.3), h3 is the number of interior integer points in the corresponding zonotope. So h3 is
odd if and only if h1 is odd due to (4.4). Moreover, 1 + h1 + h2 + h3 equals the normalized
volume of the zonotope and, thus, is divisble by 6. In particular, the sum is even and,
hence, h2 is odd.
According to [2, Theorem 3.5, p. 9], if h3 > 0, the following inequality is true:

h0 + h1 ≤ h2 + h3. (5.1)
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5 Classification of 3-dimensional Lattice Zonotopes

Say h3 = 1. Then inequality (5.1) becomes h1 ≤ h2.
Figure 3.7 shows that, up to unimodularity, there are three pairwise distinct 2-dimensional
lattice zonotopes with h2 = 1, i.e., exactly one interior lattice point. See Figure 5.1. If we
consider those zonotopes in the x-y-plane and add the vector (0, 0, 2) as a generator, we
obtain three 3-dimensional zonotopes satisfying h3 = 1.

Figure 5.1: Up to unimodularity, the only three pairwise distinct 2-dimensional lattice
zonotopes with h2 = 1.
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