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Chapter 1

The Mathematics of Hyperplane

Arrangements

In this chapter, we will review some mathematical foundations of hyperplane

arrangements, discuss the problem of computing the characteristic polynomial

of a hyperplane arrangement, and prompt the software approach to studying

this problem.

1.1 Hyperplane Arrangements

A hyperplane is a d-1 dimensional affine subspace of Rd. More formally:

H = {xεRd : a · x = b} for some aεRd\{0}, b εR.

1
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For instance, in R2, any hyperplane is a (1-dimensional) line; in R3, any hyper-

plane is a (2-dimensional) plane.

A hyperplane arrangement is a finite set of hyperplanes Rd. Figure 1.1 shows an

example of a hyperplane arrangement in R2. We’ll call this hyperplane arrange-

ment A .

Figure 1.1: Three hyperplanes (lines) intersecting in R2.

In A , we have three hyperplanes, which we have labeled H1, H2, and H3. We

also have three intersections, namely H1 ∩ H2, H1 ∩ H3, and H2 ∩ H3. All of

these structures — both the intersections and the hyperplanes themselves — are

known as flats. Flats of a given dimension can intersect with each other to create

flats of the next lower dimension; these flats can intersect with each other; and so

on, until we reach dimension 0.
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1.2 The Zaslavsky Theorem

As early as the 19th century, Jacob Steiner researched how to count the regions of

hyperplane arrangements in R2 and R3 [4]. For H = {H1, . . . , Hn}, a region is

defined as a maximal connected component of Rd\
⋃n

k=1 Hk.

In 1975, Thomas Zaslavsky, for his doctoral thesis in Mathematics at the Mas-

sachusetts Institute of Technology, solved the problem in the general case (for

any dimension) by finding a way to count the number of total regions, and the

number of bounded regions formed by a hyperplane arrangement [5].

Summarized, his algorithm consists of the following steps:

1. Recursively find all flats created by the hyperplane arrangement, noting the

set inclusions (the intersection properties of the arrangement).

2. Assign integer values to each flat, based on these set inclusions, according

to a recursive function known as the Möbius function.

3. Sum these integers for the flats of each dimension, and use these sums as

the coefficients of a characteristic polynomial χ.

4. Evaluate χ for certain constants to produce the numbers of total and bounded

regions.

Specifically, his theorem states:

Theorem 1.1. [5] |χA(−1)| = the number of regions formed by the arrangement A.
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Below, we will explore each of these steps in greater detail. Afterwards, I will

present Dr. Zaslavsky’s proof.

1.2.1 Intersection Properties

The intersection properties of A are the ways in which the flats intersect with each

other. For instance, one intersection property of A is that H1 intersects with H2.

We represent these intersection properties in what is known as a meet-semilattice,

a certain partially ordered set ordered by reverse inclusion. A meet-semilattice

is a structure that represents the intersection properties of an arrangement in a

hierarchical way. In Figure 1.2, we see the meet-semilattice L of A .

Figure 1.2: Semilattice of the hyperplane arrangement depicted in Figure 1.1.

Because we order by reverse inclusion, we place R2, the ambient space, at the
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bottom of L . H1, H2, and H3 are each affine subspaces of R2, so we place them

directly above and connect them with lines down to R2. Likewise, the other flats

(the intersections of the hyperplanes) are subspaces of the hyperplanes in which

they are contained. For example, since H1 ∩ H2 is a subspace of both H1 and H2,

it is connected to each of H1 and H2 (but not to H3).

Notice that each horizontal rank of the semilattice corresponds to a dimen-

sion. R2 (the ambient space) is of dimension 2. H1, H2, and H3 are each flats of

dimension 1 — they are lines. H1 ∩ H2, H1 ∩ H3, and H2 ∩ H3 are each points,

and therefore of dimension 0.

1.2.2 The Möbius Function

A poset, or partially-ordered set, is a set whose elements are related by some re-

lation ≤. The Möbius function is a recursive function, first defined by August

Möbius in 1831 [2], used for assigning integer values to elements of a poset. The

general Möbius function is defined through [1]:

µ(r, s) :=



0 if r > s,

1 if r = s,

−
∑

r≤u<s

µ(r, u) if r < s.

Since in the semilattice of a hyperplane arrangement we arrange the flats by re-
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verse inclusion, we will define the Möbius function as follows:

µ(r, s) :=



0 if r ⊂ s,

1 if r = s,

−
∑

r⊇u⊃s

µ(r, u) if r ⊃ s.

(1.1)

We will use these values to calculate the characteristic polynomial of the arrange-

ment.

As an example, let us compute the Möbius values µ(R2, s) for the flats s in A .

We assign a Möbius value of 1 to the ambient space — in our example, the R2 flat.

Then, according to the recursion, we assign each other flat a Möbius value equal

to the negation of the sum of the unique flats underneath it. Continuing with our

example, we get Figure 1.3.

H1 is assigned a value of (-1), because the summation of the Möbius values

of all the nodes beneath it (just the R2 flat) sum to 1. H2 and H3 will each also

receive Möbius values of (-1), for the same reason. The H1 ∩ H2 flat receives a

Möbius value of 1, because the Möbius values of the flats beneath it (R2, H1, and

H2) sum to (-1). H1 ∩ H3, and H2 ∩ H3 likewise receive Möbius values of 1.
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Figure 1.3: Möbius values for the semilattice in Figure 1.2.

1.2.3 The Characteristic Polynomial

The characteristic polynomial of a hyperplane arrangement, χ, is calculated from

the Möbius values of the flats in L , by summing the Möbius values on each rank

of L and using these as the coefficients of the polynomial. Given formally [1]:

χ(λ) :=
∑
sεL

µ(Rd, s)λdim s .

In our example arrangement, A , the Möbius values of the flats in dimension

2 (just R2) sum to 1. The Möbius values of the flats in dimension 1 (H1, H2, and

H3) sum to (-3). The Möbius values of flats in dimension 0 sum to 3. Therefore,

our characteristic polynomial is:
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χ(t) = t2 − 3t + 3 .

1.2.4 Counting the Regions

According to Theorem 1.1,

|χA(−1)| = the number of regions formed by arrangement A, in Rd.

Zaslavsky also proved that

|χA(+1)| = the number of bounded regions formed by arrangement A, in Rd.

Returning to the our example, we count the regions:

χ(−1) = 7 total regions

χ(+1) = 1 bounded region,

and we verify our work by labeling the regions in Figure 1.4.

1.3 An Example in R3

Let’s walk through a slightly more challenging example, this time in R3.
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Figure 1.4: A labeling of the seven regions in the arrangement.

Figure 1.5: Arrangement of 4 hyperplanes (planes) in R3, with equations:
x1− x2 + 0.3x3 = 0; x1 + x2 + x3 = −2; x1 + 3x2− x3 = 0; and x1 + 5x2 + 5x3 = 10.
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In Figure 1.5 we see four hyperplanes, labelled H1 through H4, that form a

tetrahedron. We begin drawing the semilattice by creating a flat for R3 (the am-

bient space), and placing flats above it for each of the four supplied hyperplanes.

Since no two of these hyperplanes are parallel, all four of the hyperplanes inter-

sect each of the other three, yielding a total of six 2-dimensional (line) intersec-

tions. We see that not all of these six lines intersect each other. For instance, H1 ∩

H2 does not intersect H3 ∩ H4. (From this perspective, H1 ∩ H2 passes in front

of H3 ∩ H4.) The six lines intersect to form only four points, specifically the four

vertices of the tetrahedron. Therefore, we finish drawing the semilattice in Figure

1.6.

Figure 1.6: The complete semilattice for the arrangement.

Next we recursively calculate Möbius values for the flats in the semilattice.

According to the formula, we assign a Möbius value of (+1) to the R3 flat. Then,
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H1 receives a Möbius value of (-1), since the sum of the Möbius values of all of

the flats beneath H1 (just R3) is (+1), and the Möbius value of H1 must sum with

it to 0. H2, H3, and H4 likewise receive Möbius values of (-1).

H1 ∩ H2 sits above the flats H1, H2, and R3, which have Möbius values of

(-1), (-1), and (+1) respectively. We assign a Möbius value of (+1) to H1 ∩ H2.

Similarly, each of the other five flats (lines) in dimension 1 also receive Möbius

values of (+1).

H1 ∩ H2 ∩ H3 sits above the flats H1 ∩ H2, H1 ∩ H3, and H2 ∩ H3, H1, H2,

H3, and R3 . Since these Möbius values sum to (+1), we assign a Möbius value of

(-1) to the H1 ∩ H2 ∩ H4 flat. Symmetrically, the other dimension 0 flats (points)

also each receive Möbius values of (-1), yielding Figure 1.7.

Figure 1.7: The semilattice with all Möbius values labeled.

We sum across the Möbius values in each dimension and assign these sums
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be the coefficients for the corresponding terms of the characteristic polynomial,

χ.

χ(t) = t3 − 4t2 + 6t− 4 .

Lastly, we evaluate χ at (-1) and (+1), and take the absolute values, to yield 15

total regions and 1 bounded region. We refer to Figure 1.8, to check our work.

Figure 1.8: 4 hyperplanes intersecting in R3, with some of the regions labeled.

Of course, the one bounded region is the enclosed tetrahedron in the center

of the picture. To count the 15 total regions, we begin by counting the 6 regions

labelled R1 through R6. There are 6 more (corresponding) regions underneath

hyperplane 4 (the hyperplane that consumes the entire background of this pic-

ture. The enclosed tetrahedron itself makes 13. The fourteenth region stems from
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the top of the enclosed tetrahedron, out toward the viewer. Finally, the fifteenth

region has a base of hyperplane 4 and extends away from the user, underneath

the enclosed tetrahedron.

1.4 Proof of Zaslavsky’s Theorem

Let’s look at Zaslavsky’s proof of Theorem 1.1:

|χA(−1)| = the number of regions formed by arrangement A, in Rd.

We set up the proof by introducing a way to count the faces of an arrange-

ment, discussing Möbius inversion, and then discussing what it means to induce a

hyperplane arrangement on a flat.

Let A be a hyperplane arrangement in Rd. Then, A divides the space into

regions, or open polyhedra, R1, . . . Ri such that:

Rd = ∪i
j=1Rj,

where Rj denotes the closure of Rj .

This is a polyhedral subdivision, whose faces (the surfaces that make up the

polyhedra’s boundaries) are the faces of the closure of the regions. Let fk denote

the number of k-dimensional faces of the subdivision. According to the Euler
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relation, we have

d∑
k=0

(−1)kfk = (−1)d. (1.2)

Next, Möbius inversion allows us to find a sort of inverse of a function on a

poset by using the Möbius function. It states:

f(x) =
∑
y≥x

g(y) ⇐⇒ g(x) =
∑
y≥x

µ(x, y)f(y),

As we saw in Equation 1.1, we will take (y ≥ x) to mean that y is above x in

the semilattice, i.e. (y ⊆ x), and we’ll rewrite the expression to read:

f(x) =
∑
y⊆x

g(y) ⇐⇒ g(x) =
∑
y⊆x

µ(x, y)f(y)

Finally we discuss induced arrangements. Ay, the hyperplane arrangement in-

duced on y, is the subset of A that intersects y. More formally:

Ay = {H ∩ y : HεA}.

For instance, recall the arrangement of three intersecting lines in R2, depicted

in Figure 1.1. Let’s say that H3 (one of the three lines) was y. Then, Ay would

look like this:

Figure 1.9 depicts a line with two points on it, formed by the intersections with
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Figure 1.9: The arrangement Ay, the arrangement induced on y.

hyperplanes H1 and H2. The semilattice for this arrangement is given in Figure

1.10.

Figure 1.10: The semilattice for the arrangement Ay.

Let : r(y) = the number of regions of Ay.

Then r(H3) would equal 3, since there is one (bounded) region formed be-

tween the two points, and one (unbounded) region on each side of it.

Now that all the pieces are in place, let’s begin.

Let : f(x) =
∑
y⊆x

(−1)dim(y)r(y).
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We define another function, g(y):

Let : g(y) = (−1)dim(y)r(y).

Then:

f(x) =
∑
y⊆x

g(y)

We apply Möbius inversion:

g(x) =
∑
y⊆x

µ(x, y)f(y)

Here we’ll take an aside. f(x) =
∑

y⊆x(−1)dim(y)r(y). However, the regions

formed by Ay map directly to the faces of y, F , where dim(y) = dim(F ). So we

can rewrite f(x):

f(x) =
∑
y⊆x

∑
F face of y

dim(F ) = dim(y)

(−1)dim(F ).

Since this is summed over all flats that are subsets of x, we can reduce this to:

f(x) =
∑

F face of x

(−1)dim(F ).

And then if we break up this sum into the sum of the number of faces of each
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dimension:

f(x) =

dim(x)∑
k=0

(−1)kfk,

and substituting from the Euler relation, Equation (1.2):

f(x) = (−1)dim(x).

Returning from our aside, we substitute for f(x) and g(x):

(−1)dim(x)r(x) =
∑
y⊆x

µ(x, y)(−1)dim(y).

Evaluating for Rd gives

r(Rd) = (−1)d
∑
y⊆Rd

µ(Rd, y)(−1)dim(y),

and since

χ(t) =
∑
y⊆Rd

µ(Rd, y)tdim(y),

then

r(Rd) = (−1)dχ(−1).
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Since r(Rd) is always positive, we can rewrite this as

r(Rd) = |χ(−1)|.

This proves that the number of regions formed by a given arrangement is

equal to the absolute value of the arrangement’s characteristic polynomial evalu-

ated at (-1).

1.5 Subspaces

Typically, a user would run the software by supplying only a set of hyperplanes.

However, the user may additionally provide a subspace within which the soft-

ware will intersect the provided hyperplanes.

1.5.1 Theory

The subspace must be given as an intersection of hyperplanes, where each hyper-

plane is of the same dimension as hyperplanes in the arrangement.

Each hyperplane in the arrangement will intersect the subspace in one of three

ways:

1. In full dimension, i.e., the subspace is a subset of the hyperplane;

2. Not at all, i.e., there is no solution to the system of equations consisting of
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the hyperplane and all of the hyperplanes that comprise the subspace; or

3. In a generic way, i.e., the hyperplane intersects the subspace, but not in full

dimension.

Subspaces can be viewed as nothing more than the solution space to a sys-

tem of linear constraints, within which we conduct other analyses. We will see

an example of this later, when we discuss other researchers’ extensions of our

software.

1.5.2 Implementation

The software implementation is fairly straightforward. Rather than the root node

of the semilattice consisting of the ambient space, it will consist of the equations

that comprise the subspace, and rather than the provided hyperplanes occupying

the first level of the semilattice above this root node, each of the provided hyper-

planes would be intersected with the subspace, and the resulting flats would be

inserted into the semilattice directly above the root. Once the program begins

intersecting these flats with each other, it doesn’t know (doesn’t care) how many

equations comprise each flat — it simply attempts to intersect whatever flats it

encounters.

The dimensions of flats in a hyperplane arrangement work a little differently

when a subspace is provided. Without a subspace, the ambient space has di-

mension equal to the number of variables provided in each hyperplane. When a
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subspace is provided, it is by definition some subset of that ambient space, and

therefore has a dimension less than the number of variables. The software ver-

ifies that the subspace itself is a valid flat (has a solution), and then determines

its rank, and thus dimension. As expected, the dimension of the flats formed by

intersecting each hyperplane with the subspace is one less than the dimension of

the subspace, and so on.

Rejecting Hyperplanes

When the software is supplied with a subspace not all of the hyperplanes in the

arrangement may be valid to insert into the semilattice. As we discussed above,

there are three ways in which a hyperplane can intersect the subspace: in full

dimension, not at all, or in a generic way.

The software rejects any hyperplane that intersects the subspace in full dimen-

sion, because the resulting flat would still be the entire subspace. The software

rejects any hyperplane that does not intersect the subspace at all, because (like

any other flat test the software performs) the software rejects any system of equa-

tions that has no solution. For instance, this case would trigger the error message:

WARNING: input <hyperplane> was rejected from the arrangement because it

did not intersect the supplied subspace.
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It only retains the flats that represent hyperplanes that intersect the subspace,

but not in full dimension.

1.5.3 An Example

Let’s begin with a subspace, S , in R3, that consists of the following planes:

S :=


x = 0,

y = 0,

y = 2.

This subspace is invalid. y = 0 and y = 2 do not intersect; therefore, the system of

equations does not have a solution. Assuming we remove y = 2, we are left with

the subspace:

S :=


x = 0,

y = 0.

Therefore, our subspace is the intersection of these two hyperplanes, otherwise

known as the z-axis.

Now, let’s say our hyperplane arrangement is the following:
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A :=



z = 0,

z = 2,

z = x,

y = −x,

x = 2.

First, the software attempts to intersect each hyperplane with the subspace. z =

0 intersects the z-axis at the origin. z = 2 intersects the z-axis at (0, 0, 2) (for the

ordering (x, y, z)). z = x also intersects the z-axis at the origin, so it is rejected

as a duplicate of another hyperplane. y = -x is rejected because it intersects the

subspace in full dimension. x = 2 is rejected because it does not intersect the

subspace at all. We begin by drawing the semilattice depicted in Figure 1.11.

Then the software recursively intersects flats with each other (like in the or-

dinary case), down to dimension 0. In this case though, we’re already there —

there are no more intersections to find. We calculate the Möbius values, as seen

in Figure 1.12.

We sum across the Möbius values in each dimension and produce the charac-

teristic polynomial:

χ(t) = t− 2.
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Figure 1.11: The semilattice for arrangement A .

By evaluating χ at (-1) and (+1), we determine that there are 3 total regions in

the arrangement, 1 of which is bounded. This may not be obvious, so let’s look at

this graphically. Really just a number line, Figure 1.13 shows the 3 total regions,

and we see that Region 2 is the 1 bounded region.

1.6 Linear Algebra

Above, we learned that the original hyperplanes in the arrangement, the inter-

sections of the hyperplanes, as well as all of the intersections of the intersections,
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Figure 1.12: The semilattice for arrangement A , with Möbius values indicated.

Figure 1.13: The arrangement A , with the regions labeled.

are known as flats. Each flat can be represented by a subset of the hyperplanes

that intersect to form it. Figure 1.14 is an example of this, in R2.

Let’s say that the equations of the hyperplanes are these:
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Figure 1.14: Three lines intersecting in a point.

H1 : x = 2,

H2 : y = 2,

H3 : y = −x + 4.

Then, the intersection of the three hyperplanes, H1 ∩ H2 ∩ H3, can be given as

the intersection of the three equations:
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H1 ∩H2 ∩H3 : (x = 2) ∩ (y = 2) ∩ (y = −x + 4).

1.6.1 Matrices

A flat is a just system of equations, so we will represent it with a matrix. Using

the convention Ax = b, if we continue our example, our matrix looks like this:


1 0

0 1

1 1

 ·
 x

y

 =


2

2

4


1.6.2 Matrix Rank

However, we return to the graph and realize that we do not require all three

hyperplanes to form the point H1 ∩ H2 ∩ H3. We could form it with just two of

the hyperplanes (say, H1 and H2), as seen in Figure 1.15.

Any additional hyperplanes that pass through that point (e.g., H3) do not

change the nature of the flat. (Which, and how many, hyperplanes intersect in

each flat is important in calculating the Möbius function, but not important when

simply defining the flat.)

When the rank of a matrix equals the number of equations in the matrix, we

say that the matrix is of full rank. We will see in Sections 3.1.3 and 3.2.3 that for
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Figure 1.15: Two lines intersecting in a point.

efficiency reasons, we have implemented Gaussian elimination to eliminate all

unnecessary equations at each step. In other words, we will always deal with

matrices that are of full rank.

1.6.3 Intersection Properties

A point has dimension 0, a line has dimension 1, a plane has dimension 2, etc. If

we have a matrix that has a solution, what dimension is the flat? As we saw in

our example above, the lines H1 and H2 intersected to produce the point H1 ∩

H2.



28

Generally, two flats of dimension d intersect to produce a flat of dimension d-1,

but there are two cases where this won’t happen: if the two flats are incidental, or

if the flats are parallel or skew. We will use basic matrix operations and Gaussian

elimination to solve matrices, to determine which flats intersect.

1.6.4 Dimensions

Dimensions come into play throughout hyperplane arrangement analyses. We

begin with the dimension of the ambient space, the space within which we intersect

the arrangement. Since we are considering Euclidian spaces, the ambient space

will be R1, R2, R3. . . , or any Rd.

We learned earlier that each hyperplane will be of dimension 1 fewer than the

dimension of the ambient space. We also learned that two hyperplanes (or any

two flats of the same dimension) can have one of three relations with one another:

they can intersect in full dimension (not a valid flat), not intersect at all (not a flat

at all), or intersect in a generic way. Since all flats in a semilattice are linear (do not

curve), no two flats can intersect in more than one (new) flat without intersecting

in full dimension.

Just as we know that two (non-incident) lines intersect to form a point, and

two (non-incident) planes intersect to form a line, two (non-incident) 3-dimensional

linear forms intersect to form a plane, and so on. In all cases, flats of dimension

i intersect to form flats of dimension i-1. More than two flats of dimension i can
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intersect in one place, but they still create a flat of dimension i-1.

1.6.5 Finding Intersections of Flats

Finally, we discuss the linear algebra of finding intersections between flats. There

are two cases we need to address:

1. Testing for an intersection between two flats of the same dimension; and

2. Once we have found a valid intersection between two (or more) flats, testing

whether additional flats also pass through that intersection.

We begin with what we have termed the expected dimension, which we will

abbreviate ED. In case 1, the ED will always be the dimension one less than the

dimension of the two flats we are attempting to intersect. The algorithm attempts

to build the semilattice from the bottom-up (just as would be done by hand), one

dimension at a time — any new flats inserted into the semilattice must be of the

next (lower) dimension.

In case 2, we have already found a valid intersection between two or more

flats. Let’s say those original flats had dimension c. Then the intersection we

found between them would be of dimension c − 1. At this point, we’re testing

whether another flat of dimension c also passes through this new intersection,

and so we’re testing for a solution between flats of dimension c− 1 and c, respec-

tively. Here, the ED is c − 1, since we’re testing whether the c-dimensional flat
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passes through the flat of dimension c− 1 — not whether it forms a new flat.

To determine if two flats intersect, we start by concatenating the two matri-

ces, one above the other (removing any duplicate equations), and we perform

Gaussian elimination on the resulting matrix to test for a solution.

For there to be a solution to the matrix, the post-Gaussian elimination matrix,

a square matrix in upper-triangular form, must be non-singular — must not have

any 0’s on its diagonal. If there is a solution, we calculate the dimension of the

resulting (post-Gaussian elimination) matrix by subtracting the rank of the matrix

from the dimension of the ambient space. If the dimension equals the ED (one

less than the dimension of the inputted flats), there is a valid solution; otherwise

there is not.



Chapter 2

Algorithmic Solution

In this chapter, we discuss our solution to the problem, beginning with two key

algorithms, followed by some important data structures and architectural as-

pects.

2.1 Algorithms

To review the description of the problem (Section 1.2), a mathematician would

follow the following steps to solve this problem by hand:

1. Contruct the semilattice by recursively finding all flats created by the hy-

perplane arrangement.

2. Calculate the Möbius values of the flats in the semilattice.

31
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3. Sum the Möbius values in each dimension to generate the characteristic

polynomial, χ.

4. Evaluate χ at (-1) and (+1), to produce the numbers of total and bounded

regions, respectively.

From a high level, the software generally follows the same steps. Clearly,

however, steps 1 and 2 — finding the intersections and calculating the Möbius

values — present some complex challenges. Below we present our solutions to

these problems.

2.1.1 Finding Intersections

The algorithm for finding intersections is bit complicated. To understand what

the code is doing, we will first dig a little deeper into what the code needs to do;

then we will examine the algorithms used to accomplish it.

Analyzing the Problem

The algorithm begins with one major assumption: that no two equations repre-

sent the same hyperplane. (Similarly, the algorithm assumes that the subspace, if

provided, is given by a matrix of full rank.)

Then, there is one fundamental rule on which this algorithm is based (listed

first), and two results. Collectively, we’ll call these “The 3 Rules”:
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1. Because all flats are linear, the intersection of two flats is unique — two flats

can intersect in at most one new flat.

2. Given flats A, B, and C in dimension i, if there exists a flat A ∩ B ∩ C in

dimension i - 1, there will not also exist (distinct) flats that contain any two

of A, B, and C.

3. Given the same A, B, and C, if there exists an intersection A ∩ B (but not A

∩ B ∩ C), C could still intersect A and/or B.

Each flat can potentially intersect any other flat, and because all the flats are

linear forms, any two flats of dimension d that intersect will intersect to create a

flat of dimension d-1.

Since we need to check for intersections between every pair of flats, the basic

algorithm loops as follows:

for i from 1 to (number of flats in this dimension) {

for j from i+1 to (number of flats in this dimension) {

Search for intersections

}

}

However, more than two flats can intersect in one place. To determine the

intersection properties of the arrangement and calculate the Möbius Function
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correctly, we need to know about all of the flats that intersect in a given place.

Therefore, we need to modify the above algorithm to allow for this.

There are two possible approaches we can take:

1. Use the algorithm above to find every pair of flats that intersect, and then

intersect these intersections with each other to find any larger intersections

(formed by more than two flats); or

2. Modify the algorithm above to build up a flat representing the intersection

of as many flats as possible, first, before searching for the next intersection.

Our implementation uses option 2.

Let’s walk through an example. Assume we are looking for intersections

within a dimension containing six flats, numbered 1 to 6. Let’s say that we’ve

already searched for intersections with flat 1, and we found only one intersec-

tion: 1 ∩ 2 ∩ 4.

Now we’re beginning to search for intersections between flat 2 and the re-

maining flats in this dimension. We check 2 ∩ 3 — we find an intersection. So

now, we begin searching for intersections between 2 ∩ 3 and the remaining flats

in this dimension, to see if other flats also pass through this intersection. We check

2 ∩ 3 ∩ 4 — no intersection. Then we check 2 ∩ 3 ∩ 5 — there is an intersection.

Then we check 2 ∩ 3 ∩ 5 with flat 6 — no intersection.

What have we found so far? We know that flats 2, 3, and 5 all intersect in the
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same place, and that flats 4 and 6 do not also intersect in that place. However,

based on Rule #3, flat 2 could still intersect flats 4 and/or 6, in some other place(s).

So, we continue checking for intersections with flat 2. Since we have already

found an intersection between flats 2 and 3 (at 2 ∩ 3 ∩ 5), based on Rule #2, there

is no need to search for another intersection that contains both 2 and 3. But based

on Rule #3, even though we have already checked for a flat 2 ∩ 3 ∩ 4 (which did

not exist), we still need to check 2 ∩ 4, and in fact, there is an intersection at 2 ∩ 4.

Now we’re testing 2 ∩ 4 with each of the remaining flats. Thanks to Rule #2, we

do not try 2 ∩ 4 ∩ 5 (since we already have an intersection containing 2 and 5), so

we move onto 2 ∩ 4 ∩ 6, and there is not an intersection there.

We again return to checking flat 2 against any remaining flats. Since we have

already found intersections between flat 2 and flats 3, 4, and 5, we do not check

any of these pairs again. This leaves only 6 — we check 2 ∩ 6, and there is no

intersection. Now we are done checking for intersections between flat 2 and the

others.

We discovered intersections 2 ∩ 3 ∩ 5 and 2 ∩ 4. Before we insert these two

flats into the semilattice, we first verify that these flats are not duplicates of any

other flats we had found previously. When we check, we realize that 2 ∩ 4 is a

duplicate of 1 ∩ 2 ∩ 4 (not surprisingly, according to Rule #2). Therefore, we only

insert the flat 2 ∩ 3 ∩ 5 into the semilattice. And the algorithm repeats the above

logic, searching for intersections beginning with flat 3, then 4, 5, and 6. . . and
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we’re done with this dimension.

Our Solution

Rule #1 says that an intersection between two flats is unique. So, we keep track

of with which flats we have already found intersections. This is accomplished

with the Intersection Array (IA), an array of booleans created for each flat. When

the algorithm begins looking for intersections beginning with flat F, it creates an

IA, containing one array element for each other flat, and all array elements are

defaulted to false. Before testing for an intersection between F and another flat,

G, the algorithm first confirms that F.IA[G] is false; otherwise it skips it. When-

ever the algorithm finds an intersection between F and another flat, H, it flips

F.IA[H] to true. The IA variable is discarded after the algorithm finishes looking

for intersections beginning with flat F.

If it has built up a flat F’, and it discovers that flat G also passes through F’,

it must now begin searching for flats that also pass through F’ ∩ G, as well as

continue searching for flats that pass through just F’. This is where the algorithm

branches. Since we chose to implement the algorithm such that it attempts to

build up the largest possible flat it can, first, it continues by searching for flats that

pass through F’ ∩G. . . and will branch more times if it finds any, before returning

to searching for flats that pass through F’.

The IA variable persists across branches. For example, if the algorithm finds
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F’ ∩ G ∩ H but can’t find any other flats that pass through this intersection, it

returns to checking for flats that pass through F’ ∩ G — but it does not check H,

since it is marked as true in the IA. Likewise, when the algorithm returns to the

branch searching for intersections that pass through only F’, it will not consider

G or H again.

The algorithm makes heavy use of a few functions:

• In the EquationMatrix class:

1. public EquationMatrix( EquationMatrix e )

2. public EquationMatrix( EquationMatrix e1, EquationMatrix e2, int ex-

pectedDimension )

3. public boolean solveMatrix()

• In the Lattice class:

1. private boolean twoFlatsAreEquivalent( LatticeNode a, LatticeNode b,

int expectedDim )

EquationMatrix( EquationMatrix e ) is the copy constructor for the EquationMa-

trix class. This method is vital to the intersections algorithm, because the algo-

rithm sends a lot of matrices off to the linear algebra engine, which performs a

lot of manipulations on its inputs. The copy constructor allows the intersections

algorithm to save a copy of a flat before it sends it off to the linear algebra engine.
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EquationMatrix( EquationMatrix e1, EquationMatrix e2, int expectedDimension )

is the “merge” constructor for the EquationMatrix — it merges two matrices into

one. This is how we test for intersections. We merge two EquationMatrix objects

and then send the result into the linear algebra engine, to test for a solution of the

correct dimension.

solveMatrix() is the linear algebra engine. It, with the help of the Gaussian

elimination method, performs all of the manipulations necessary to determine

whether the given matrix has a solution. If it does, it compares its dimension

with the expectedDimension that was passed in, to verify that the solution space is

of the correct dimension. For instance, assuming we have found a flat A ∩ B, and

we’re testing whether C also passes through that same intersection, the expected-

Dimension will be the same dimension as A ∩ B. If A ∩ B ∩ C has a solution, C

intersects with A and B at A ∩ B, and if A ∩ B ∩ C has the same dimension as A ∩

B, then C did not change the intersection, which means A, B, and C all intersect

in the same place. If the dimensions are not equal (A ∩ B ∩ C has dimension 1

less than A ∩ B), then we don’t want to know about A ∩ B ∩ C just yet — that flat

(which we will revisit) is for a later dimension in the semilattice.

twoFlatsAreEquivalent() does what it promises! It returns to the algorithm

whether the flats stored in two LatticeNodes are equivalent. If the algorithm has

already found an intersection A ∩ B ∩ C, and later (when searching for intersec-

tions beginning with flat B), it finds B ∩ C, it needs to be smart enough to realize
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that these are one in the same.

2.1.2 Computing Möbius Values

We learned about the Möbius function, and how it applies to this problem, in the

mathematics chapter. How do we solve this problem?

The job of computing the Möbius values for the semilattice is a natural candi-

date for dynamic programming, and specifically with a “bottom-up” approach.

We use dynamic programming, because the problem certainly demonstrates op-

timal substructure — that is, finding the Möbius values of flats in lower dimen-

sions (higher up in the semilattice) requires the results finding the Möbius of flats

in higher dimensions (flats lower in the semilattice) first, and the Möbius values

for flats in the higher dimensions will be used multiple times each. Let’s look at

our example semilattice again, Figure 2.1, to demonstrate this concept.

The Möbius value of the R3 flat is used when computing the Möbius values of

all of the flats above it, as well as for computing the characteristic polynomial (χ)

for the arrangement — it is used a total of 15 times. The Möbius value for the H1

flat is used when computing the Möbius values for the H1 ∩ H2, H1 ∩ H3, H1 ∩

H4, H1 ∩ H2 ∩ H3, H1 ∩ H2 ∩ H4, and H1 ∩ H3 ∩ H4 flats, and in computing

χ, and so on. Computing Möbius values from the bottom of the semilattice, up,

is the obvious way to approach the problem, and then the algorithm becomes

seemingly trivial:
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Figure 2.1: The semilattice, with Möbius values, for the arrangement depicted in
Figure 1.5.

computeMobiusValues()

flatd1.mobiusValue = 1; // the ambient space

for i from (dimension-1) 7→ 0 {

for j from 1 7→ (number of flats in this dimension) {

flatij .mobiusValue = ( 0 - mobiusRecursion(i, j) );

}

}

}

mobiusRecursion( i, j ) {
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int m = flatij .mobiusValue;

for k from 1 7→ (number of flats immediately beneath this flat) {

m += mobiusRecursion( i-1, (index of flat(i−1)k) )

}

}

This algorithm simply follows every path down from a given node (to the

bottom of the semilattice) and sums the Möbius values of all nodes it encounters.

So, beginning in dimension 2, it computes the Möbius value for H1 by simply

encountering R3, and assigning H1 the negative of that sum. It does the same for

H2, H3, and H4, in that order. Then it moves to dimension 1. For H1 ∩ H2, it

encounters H1 and recurses again to find R3. It returns (+1) back to the step at

H1, where it adds the Möbius value at H1 (-1), and returns 0 to the step at H1 ∩

H2. Next, it encounters H2, followed by R3, which returns (+1) back to H2, which

adds its (-1) and returns 0 to H1 ∩ H2. 0 + 0 = 0, and the negative of 0 is 0; the

Möbius value of H1 ∩ H2 is set to 0. (And the algorithm proceeds to the next

LatticeNode.)

Unfortunately, that computation was incorrect, because the algorithm counted

the Möbius value of R3 twice. Why did this happen? Since the semilattice is not

a tree (each flat may have multiple parents), this algorithm will frequently multi-

count Möbius values. The problem becomes more pronounced as the algorithm

moves further up the semilattice. For instance, when computing the Möbius
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value for flat H1 ∩H2 ∩H3 the algorithm would double-count the Möbius values

for H1, H2 and H3 and count the Möbius value of the R3 flat 6 times. Clearly this

algorithm does not solve the problem.

To get around this, we introduce the concept of a dirty bit. The term is stolen

from Systems Architecture, where the term refers to a bit of memory used to note

whether a location in the a system’s page cache has been changed, and there-

fore may no longer be valid. In this application, we use the dirtyBit member

data (stored in the LatticeNode object) to note whether the computeMobiusVal-

ues() algorithm has already encountered this LatticeNode. Once the algorithm

encounters each LatticeNode, it marks its dirtyBit as invalid, thereby instructing

the algorithm to ignore it, should the algorithm encounter it again.

Thus, the use of the dirtyBit variables allow the algorithm to add the Möbius

value of each LatticeNode only once, and therefore to correctly compute the

Möbius value of a given LatticeNode. However, the LatticeNode objects whose

dirtyBit variables were marked will necessarily (and correctly) be re-encountered

during the computation of other LatticeNode objects’ Möbius values. (When

computing the Möbius value for H1 ∩ H3, the algorithm will encounter some of

the same LatticeNode objects it encountered when computing the Möbius value

of H1 ∩ H2.) Therefore, another method resets the dirtyBit for all affected Lat-

ticeNode objects, before beginning computation of the Möbius value of the next

LatticeNode.
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So, our final algorithm looks like this:

computeMobiusValues()

flatd1.mobiusValue = 1; // the ambient space

for i from (dimension-1) 7→ 0 {

for j from 1 7→ (number of flats in this dimension) {

flatij .mobiusValue = ( 0 - mobiusRecursion(i, j) );

resetDirtyBit(for the sub-lattice topped by the LatticeNode at i,j);

}

}

}

mobiusRecursion( i, j ) {

if (flatij.dirtyBit == false) {

flatij.dirtyBit = true;

int m = flatij .mobiusValue;

for k from 1 7→ (number of flats immediately beneath this flat) {

m += mobiusRecursion( i-1, (index of flat(i−1)k) )

}

} else {

return 0;
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}

}

These methods have three major additions over the original methods. First,

in mobiusRecursion(), we now flag each LatticeNode as dirty as soon as we en-

counter it, with: “flatij.dirtyBit = true”. Second, we have wrapped the logic of

mobiusRecursion() in an if/else clause, such that the logic only runs if the Latti-

ceNode is not already dirty. The combination of these two additions ensures that

we only visit each LatticeNode once. Third, at the end of computeMobiusValues(),

we have added a command to reset the affected dirtyBit values after computing

the Möbius value of this LatticeNode.

2.2 Architecture

In this section, we begin by discussing the layout of the primary subsystems and

how these subsystems all fit together. Then, we discuss several design decisions,

including the choice of programming langauge, the use of system resources, and

some design tradeoffs.

2.2.1 Layout of Primary Subsystems

The architecture of the application is primarily comprised of three data structures:

the EquationMatrix, the LatticeNode, and the Lattice. We will build up the overall
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architecture by discussing each of these structures, in that order. We will examine

what each of these structures look like and how they map to the mathematics

discussed in the prior chapter.

EquationMatrix

The primary purpose of an EquationMatrix object is to store the data for the equa-

tions of a flat. As we saw above, when discussing the FileInputReader, it attempts

to read in the data of an input file such that it represents the underlying matrix

multiplication:
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The architectural parts of the EquationMatrix member data are:

private double[][] A;

private double[] B;

And when we draw a picture of A and B (see Figure 2.2), we see that this

representation mimics the matrix representation very closely.
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Figure 2.2: An EquationMatrix object.

Since the x1. . . xn elements are variables (not values), they are obviously not

stored in memory. Otherwise, the mapping from matrix representation to data

structure representation is very straightforward.
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LatticeNode

LatticeNode objects exist primarily to connect EquationMatrix objects to one an-

other, across dimensions. As we read earlier in this chapter, a LatticeNode object

contains the following architectural member data:

private EquationMatrix em;

private Vector parentVector;

private Vector childVector;

First, we see the EquationMatrix object, em, that this LatticeNode contains.

After that are the childVector and the parentVector. These member data allow the

software to attach this LatticeNode to the LatticeNode objects below and above

it in the Lattice, respectively. The childVector is a Vector of references to the Lat-

ticeNode objects which hold the EquationMatrix objects that intersected to form

em in this LatticeNode. Conversely, the parentVector contains references to Latti-

ceNode objects containing EquationMatrix objects which are subsets of em. We

see a depiction of a LatticeNode in Figure 2.3.

The childVector and parentVector contain references to other LatticeNode ob-

jects. Likewise, the childVector and parentVector Vectors of other LatticeNode ob-

jects point to this object (not shown).

If the em contained in this LatticeNode is of dimension i, its parents will be of

dimension i - 1 and its children will be of dimension i+1. A LatticeNode can have
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Figure 2.3: A LatticeNode object.

any number of parents, including 0. Obviously, flats of dimension 0 (points),

which live at the top of the semilattice, will never have parents.

LatticeNode objects must have at least two children (since all new flats are

formed by the intersection of two or more existing flats) with two exceptions.

The root node — the sole LatticeNode in dimension d — has no children. And

the original hyperplanes (each of which is of dimension d-1) each only have one

child: the root node.
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Lattice

The primary architectural component of the Lattice object is its:

private Vector[] latticeArray;

This array of Vectors is the container for all of the LatticeNode objects. We see

this visually in Figure 2.4.

The vertical series of boxes (on the left-hand side) is the array. Each element in

that array points to a Vector object — these Vectors are depicted by the horizontal

series of boxes. Each of these boxes contains exactly one LatticeNode. The arrows

connecting these LatticeNodes are the references stored in each LatticeNode ob-

ject’s childVector and parentVector Vectors. (childVector and parentVector references

are depicted as double-ended arrows to reduce clutter — in reality, there are two

(parallel) single-ended arrows connecting each pair of LatticeNode objects.)

Each element of the array corresponds to a dimension, such that all of the flats

of a particular dimension lie in that dimension’s Vector. Since the dimensions of

a semilattice run from 0 7−→ d, the array must be of length d+1. Dimension d

(array element d) will always contain a Vector of just one LatticeNode — the Lat-

ticeNode that holds the EquationMatrix representing the root node. The Vector

in dimension d - 1 (stored in array element d - 1) will always hold one LatticeN-

ode per equation read in from the user’s input file (less any equations that were

rejected for their failure to intersect properly with the subspace). After d - 1, how-



50

Figure 2.4: A Lattice object.

ever, the software doesn’t know how many flats will live in each dimension until

it does the math. (More on this in Section 3.3.1.)

The latticeArray member data is similar in structure to the A member data

of an EquationMatrix, the key difference being that, for A, the software knows

how many elements each array element needs to hold at the time A is instanti-

ated (since all equations within a given Lattice have the same number of coeffi-
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cients). We do not have the same luxury when creating Lattice objects. Because

the software does not know how many flats to expect in lower dimensions, we

use (auto-extending) Vector objects to hold the LatticeNode objects in each di-

mension. (This is the same reason we implemented the childVector and parentVec-

tor LatticeNode member data with Vectors as well.)

2.2.2 How It All Fits Together

The software reads in an input file, and optionally, a subspace file. The software

instantiates the latticeArray Vector[] with length d+1 (where d is the number of

variables in each hyperplane equation). It creates a Vector object and places it

in latticeArray[d]. If there is a subspace, the software reads it into an Equation-

Matrix object (otherwise it creates a dummy, 1-equation EquationMatrix of all

0-coeffcients), wraps that object in a LatticeNode object (with no parents or chil-

dren, for now), and places that LatticeNode object into that lone Vector.

Then the software creates another Vector and places it in latticeArray[d-1]. It

creates 1-equation EquationMatrix objects for each hyperplane equation (that is

not rejected for its interplay with the subspace), wraps each of these in a LatticeN-

ode object and inserts the LatticeNode objects into the Vector. Then, the software

connects the two dimensions in both directions. It inserts references into the root

node’s parentVector that point to each of the LatticeNode objects in dimension d-1,

and likewise, creates one reference in each of those LatticeNodes objects’ childVec-
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tor Vectors which point back to the root node.

The software begins to search for intersections. It loops over the LatticeN-

ode objects in dimension d-1, and intersects them according to the intersection

algorithm (coming in just a moment!) to form LatticeNode objects that are in-

serted into the Vector of LatticeNode objects of dimension d-2. These are con-

nected down to the LatticeNode objects that intersected to form them, and those

children are connected up to these LatticeNode objects they just formed. This

process continues until we reach dimension 0 (or until the flats at the top of the

semilattice fail to intersect with each other). . . and the semilattice is formed.



Chapter 3

Software Implementation

Now that we understand the mathematical background of the problem and have

presented our solution, we discuss our implementation. We will look at the pri-

mary data structures and methods and then analyze the runtime complexity and

the observed performance for the application.

3.1 Data Structures and Methods

There are seven major classes in the application:

1. Lattice

2. LatticeNode

3. EquationMatrix

53
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4. FileInputReader

5. FileOutputWriter

6. MatrixGenerator

7. TestSuite

We will discuss these classes in that order. (We will begin to discuss how

these classes interact with one another here, but will address that in more detail

in Section 2.2.) For each class, we will look at the following three areas:

1. Member Data

2. Constructors

3. Methods

(Additionally, for the FileInputReader class, we include Section 3.1.4, regard-

ing input format.) Unimportant and/or uninteresting items (e.g., default con-

structors and “get” and “set” methods) are omitted. We will dive a little deeper

into the most critical algorithms in this section, and a little more in Section 2.1

later in this chapter.

3.1.1 Lattice

The Lattice class is the most important class in the application. Among other

things, it contains the main() method for the application, the logic for searching
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for intersections of flats, and the algorithm for computing Möbius values. The

Lattice data structure is the outermost data structure in the application — it forms

the structure of the semilattice.

Member Data

These are the most important pieces of member data in the Lattice class:

private int dimension;

private EquationMatrix[] arrangementArray;

private EquationMatrix subspaceEM;

private Vector[] latticeArray;

private int numFlatTests;

private int[] charPoly;

private int numberOfRegions = 0;

private int numberOfBoundedRegions = 0;

private String output;

The dimension holds the dimension of the ambient space. In the typical case,

for Rd, dimension = d; when a subspace is provided, the dimension equals the di-

mension of the subspace.

The arrangementArray is an array of 1-equation EquationMatrix objects, where

each EquationMatrix objects holds one of the equations provided by the user in

the input file.
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subspaceEM is the EquationMatrix that holds the subspace provided by the

user. If no subspace is provided, subspaceEM is null.

The latticeArray is a data structure that holds the entire semilattice. It consists

of an array of Vector objects. Each Vector object contains all of the LatticeNode

objects (that hold flats) of a particular dimension — since Vectors auto-extend in

size, the software is able to insert new LatticeNode objects without any explicit

data structure management. The array of Vectors is of length dimension + 1, where

each array slot corresponds to the dimension of the flats stored within it. For

example, array slot 0 consists of all of the flats of dimension 0, namely all of the

points; array slot 1 contains all the lines; array slot dimension consists of only the

ambient space flat, be that the Rd flat, or the subspace (if provided). The set-

inclusion relationships are managed by the LatticeNode objects themselves, not

by the Lattice data structure.

numFlatTests is a counter of how many EquationMatrix objects are sent to the

linear algebra engine for solving (primarily for testing / performance analysis).

The charPoly holds the characteristic polynomial of the arrangement, χ. It is

stored as an array of integers, where each array slot holds a coefficient of χ. num-

berOfRegions and numberOfBoundedRegions are just what they say, and are com-

puted by evaluating charPoly at (-1) and (+1), respectively.

output is the buffer that holds the text that will be written out to the output file.

The software appends to this String as it generates more output, and the entire
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String is written to the output file when the software completes its work.

Constructors

There are two primary constructors:

public Lattice( EquationMatrix[] arrArray, int dim )

public Lattice( EquationMatrix[] arrArray, int dim,

EquationMatrix subspace )

The first constructor is for the case in which there is no subspace provided.

It takes as parameters an array of 1-equation EquationMatrix objects (which is

stored in the arrangementArray) and the dimension of the ambient space. (Since

there is no subspace, the ambient space is Rd, and thus, the dimension of it is d).

The second constructor is used when there is a subspace provided. It takes the

same parameters, plus an EquationMatrix defining the subspace.

Methods

These are the major methods in the Lattice class:

public void initializeLattice( EquationMatrix[] arrArray,

int dim, EquationMatrix subspace )

public void buildLattice()

private void findIntersections( int i, int j, int kInit,
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boolean[] IA )

private boolean twoFlatsAreEquivalent( LatticeNode a,

LatticeNode b,

int expectedDim )

private static void connectParentToChild( LatticeNode

parent, LatticeNode child )

public void computeMobiusValues()

private void computeCharPoly()

public void latticeArrayTraversal()

public static void main(String[] args) throws Exception

initializeLattice() begins by initializing the private member data for this Lattice

object. It creates an empty Vector[] of length dimension + 1, and populates array

slot d with a single LatticeNode (the root node) that represents either Rd or the

subspace, as applicable. Note: if a subspace is provided, it performs some vali-

dation on the provided subspace and eliminates equations that are unnecessary

— make the subspace flat not be of full rank — and rejects any equations from

the inputted hyperplane arrangement that either do not intersect the subspace or

else wholly contain the subspace. Next, initializeLattice() inserts LatticeNode ob-

jects into array slot d-1 to represent all of the (remaining) hyperplanes, and calls

connectParentToChild() to create the set-inclusion relationships between these Lat-

ticeNode objects and the root node.
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buildLattice() loops over the dimensions, from dimension d-1 7−→ 0, loops over

the flats contained in each of these dimensions, and calls findIntersections() to

search for the flats with which each of these flats intersects.

findIntersections() is where most of the heavy lifting is done, when building the

semilattice. Here is some pseudo-code, to explain what it does:

findIntersections( flat F ){

Create an "intersection array", IA, of booleans, to

store with which flats we have successfully

intersected F; initialize to all false

Create an EquationMatrix, X, consisting of just the

equations in F

For each other flat, Y, in this dimension {

If IA[Y] is false {

X’ = X (call the EquationMatrix copy

constructor, to preserve the state of X)

X’ = (X’ union Y)

If X’ has a solution of the expected rank {

X = X’

IA[Y] = true

}

}
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}

If we found an intersection between X and any number of

other flats {

Create and initialize a LatticeNode, L, for

EquationMatrix X

Insert L into the Lattice

Attach L as the "parent" of all of the LatticeNode

objects, M’s, that intersected to create it

Attach each M as a "child" of L

Call findIntersections() to look for intersections

between X and any flats still marked as false

in the IA[], beginning with the first flat

after the first Y that successfully

intersected with F

}

}

So, findIntersections() has three major steps:

1. Beginning with the flat we’re working with (F), try to build up an intersec-

tion between as many flats as possible.

2. If we found an intersection:
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(a) Insert this new flat into the semilattice.

(b) Recursively call findIntersections() to search for other intersections con-

taining F.

F can intersect any number of the other flats in its dimension, but since all of

these flats are linear, it can only intersect each other flat in one place. Therefore,

if a flat F intersects with flats G and H, to form a flat A, F cannot also intersect

with G or H anywhere else (creating new flats). However, after finding F ∩ G ∩

H, the algorithm will test F ∩ G ∩ H ∩ I — if there is not a solution, the algorithm

will then test F ∩ G ∩ H ∩ J, and so on, but it must return later to test F ∩ I. And

that’s only the beginning. We will discuss this algorithm in much greater detail

in Section 2.1.

twoFlatsAreEquivalent() is a helper method, which simply tests whether two

flats are equivalent. To avoid unnecessary calls to the linear algebra engine, the

software first checks to see whether the set of equations in one of the flats is a

subset of the set of equations of the other flat. If this is the case, and the two flats

are of the same dimension, the flats are equivalent; otherwise, twoFlatsAreEquiv-

alent() merges the two flats and sends the result to the linear algebra engine — if

and only if the merged flat has a solution and has the same rank as either of the

original flats, then the two flats are declared equivalent.

connectParentToChild() is a helper method that takes two LatticeNode objects

(A and B) as parameters, and calls methods in the LatticeNode class to connect A
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as a parent of B and connect B as a child of A.

computeMobiusValues() recursively traverses the semilattice to compute the

Möbius values of all of the flats. This algorithm is explained in much more detail

in Section 2.1.

latticeArrayTraversal() traverses the semilattice to output the flats and their

Möbius values, in order (by dimension), to the output String.

computeCharPoly() sums the Möbius values of all the flats in each dimension

to obtain the coefficients of the characteristic polynomial, χ, and stores these in-

tegers in the member data charPoly. Then it computes the number of total regions

and bounded regions and stores these values in numberOfRegions and numberOf-

BoundedRegions, respectively, and outputs all this data to the output String.

The main() method does several things. First it reads in optional parameters

from the user. The user can supply switches to have the software output timing

statistics, suppress most of the software’s output (instruct it not to run latticeAr-

rayTraversal()), and/or provide a subspace. Then it calls the FileInputReader class

to read in the user’s hyperplane arrangement, and if applicable, the subspace.

Next, it calls the various Lattice class methods in order, to initialize the Lattice,

build the Lattice, compute the Möbius values, (optionally) output the contents of

the Lattice, and output χ and the counts of regions. Finally, it calls the FileOut-

putWriter class to write the output String out to file.
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3.1.2 LatticeNode

LatticeNode objects represent the flats in the Lattice, and the set-inclusion rela-

tionships between them. The LatticeNode class has no interesting methods —

mostly just get’s and set’s.

Member Data

private EquationMatrix em;

private Vector parentVector;

private Vector childVector;

private int mobiusValue = 0;

private int dirtyBit = 0;

A LatticeNode primarily consists of an EquationMatrix, em, (to hold the ma-

trix of equations that define this flat), a parentVector of references to parent Latti-

ceNode objects, a childVector of references to child LatticeNode objects, an integer

to hold the mobiusValue of this flat, and an integer to hold the dirtyBit.

“Parent” refers to a flat that lies immediately above this flat in the semilattice

— that is, a flat that is a subset of this flat, and is one dimension less than this flat.

A “child” LatticeNode is, of course, the opposite — a flat that is a superset of this

flat, lies immediately below this flat in the semilattice, and is of one dimension

greater than this flat.
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The software uses Vector’s to hold the sets of parent and child LatticeNodes,

since at the moment the software creates a new LatticeNode object, it does not

know how many parent or child LatticeNodes to which it must be attached in the

semilattice. (Vector objects are self-extending, versus simple arrays).

The Möbius value integer is self-explanatory, and the dirtyBit is an integer

used by the software during the process of computing the Möbius values.

3.1.3 EquationMatrix

An EquationMatrix object holds a matrix of linear equations and some data about

the matrix, such as its rank and dimension. This class also contains all of the

methods used in testing matrices for solutions (including all the linear algebra

code), and a method that outputs an matrix to text (as used in the output file

produced by the software).

Member Data

The equations of an EquationMatrix object are stored in the following data struc-

tures:

private double[][] A;

private double[] B;

private int rank;

private int dimension;
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private int expectedDim;

The A member data holds an ordered list of equations, each of which consists

of an ordered list of doubles. The ordered list of doubles represent the ordered

variable coefficients of a single equation; the list of the equations must themselves

also be ordered, because these equations have corresponding B values, that are

stored in the B array — the A and B arrays must have the same orderings.

The EquationMatrix class also holds integer values for its matrix’ rank, di-

mension, and expected dimension, expectedDim. expectedDim is the dimension the

calling method expects the matrix to be. If it does not match, the matrix is not a

valid flat for the given dimension of the semilattice.

Constructors

There are three primary constructors in the EquationMatrix class:

public EquationMatrix(double[][] matrixA, double[] vectorB)

public EquationMatrix(EquationMatrix e)

public EquationMatrix(EquationMatrix e1, EquationMatrix e2,

int expectedDimension)

The first is an ordinary constructor that takes an A, a B, and an expectedDim,

and creates an EquationMatrix object with these values.

The second constructor is a copy constructor that takes an EquationMatrix ob-

ject as its input and duplicates it.
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The last constructor is a “merge” constructor, that takes two EquationMatrix

objects and creates a new EquationMatrix object consisting of all of the equa-

tions of the first EquationMatrix object followed by all the equations of the sec-

ond EquationMatrix object, less any equations that are duplicated from the first

EquationMatrix object (in that order).

Since the linear algebra code performs a great deal of manipulations on Equa-

tionMatrix objects, the software uses the copy constructor to save the original

state of an EquationMatrix prior to these manipulations. This merge constructor

is used when attempting to find an intersection between two flats — the matrices

are merged into one, and the linear algebra code searches for a solution to that

matrix.

Methods

The most important methods of the EquationMatrix class are solveMatrix(), which

tests for a solution to a matrix, and its helper method gaussianElimination(). We’ll

begin by looking at solveMatrix():

public boolean solveMatrix(){

int numvars = A[0].length;

gaussianElimination();

dropAllZeroRows();

if( A[0].length >= A.length) {
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rank = A.length;

} else {

if( !extraRowsAreEquivalent() ) {

return false;

}

dropExtraRows( A.length - A[0].length );

rank = A[0].length;

}

dimension = numvars - rank;

return (expectedDim == dimension) && isNonsingular();

}

Let i be the number of equations in the matrix (the height of the matrix);

Let j be the number of variables in each equation (the width of the matrix);

Let the diagonal be the set of elements for which the row number equals the col-

umn number;

It begins by calculating i. Then it performs Gaussian elimination on the matrix,

which we’ll look at more closely in a moment. Next, it eliminates any rows in the

matrix which now consist solely of 0’s (including the B value), since these repre-

sent equations that were found to be linear combinations of other equations, and

are therefore unnecessary.
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Then the algorithm looks at the shape of the resulting matrix. If it is square (i

= j), or has more columns than rows (j > i), the algorithm decides that the rank of

the matrix equals j.

Otherwise — if i > j — additional work is required. Since the algorithm has

already performed Gaussian elimination, the matrix should be in upper-triangular

form, meaning that all values below the diagonal are 0’s. Reusing an example from

the Mathematics chapter:



5 2.5 −1

0 1 0

0 0 2

0 0 C

0 0 D





2

1

−4

−6

8


We are left with a square matrix (in upper-triangular form) and some addi-

tional equations, which should each consist of all 0’s except for the far-right value

in the A matrix and its B value. In this example, we have two such equations. For

there to be a solution to this matrix, the bottom equation of the square matrix

(in this case, the third row) must be equivalent to both of the additional equa-

tions. (This will only be the case if C = 3 and D = -4.) The algorithm passes

off responsibility for checking for these equivalences to a helper method named

extraRowsAreEquivalent().
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If the additional rows are not equivalent, solveMatrix() reports that this matrix

does not have a solution; otherwise, it lops off the additional rows — making the

matrix square — and sets the rank of the matrix equal to the width of the matrix.

Finally, the algorithm reports that the matrix has a solution if it is has the expected

dimension and is non-singular (has no 0’s on its diagonal).

Now let’s look at the gaussianElimination() algorithm:

private void gaussianElimination(){

int numrows = A.length;

int numcolumns = A[0].length;

double multiplier = 1;

for(int i = 0; i < Math.min(numrows, numcolumns); i++){

int numRowsAvailableToSwapWith = numrows - i - 1;

int numColsAvailableToSwapWith = numcolumns - i - 1;

while(A[i][i] == 0 && numColsAvailableToSwapWith

> 0) {

sendColumnToRight( i );

numColsAvailableToSwapWith--;

}

while( A[i][i] == 0 && numRowsAvailableToSwapWith

> 0 ){

sendRowToBottom( i );
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numRowsAvailableToSwapWith--;

}

if( A[i][i] != 0 ) { // if we eliminated the 0-pivot

for( int j = i + 1; j < numrows; j++ ){

if( A[j][i] != 0 ){ // then we need to make

// it be a 0

multiplier = -( A[i][i] / A[j][i] );

for( int k = i; k < numcolumns; k++ ){

A[j][k] = A[i][k] + (A[j][k]

* multiplier);

}

B[j] = B[i] + (B[j] * multiplier);

}

}

}

}

}

Gaussian elimination iterates down the diagonal, and performs the following

steps:

1. If this diagonal element is a 0:
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(a) Repeatedly send the values in this column all the way to the right of

the A matrix, shifting all other columns left one place, until we either

eliminate the 0 on the diagonal, or run out of columns with which to

swap.

(b) If we ran out of columns, continue trying to eliminate the 0 on the

diagonal by sending rows of values to the bottom of the matrix, shifting

all other rows up one place, until we eliminate the 0 or run out of rows

with which to swap.

2. If we successfully eliminated the 0 on the diagonal, attempt to make all val-

ues underneath this diagonal element be 0’s. For each value beneath this

diagonal element:

(a) Determine the factor that, when multiplied times this non-diagonal el-

ement, will produce the negative of the diagonal element.

(b) Multiply all values in this row by that factor.

(c) Add the values in the row containing the diagonal element to their cor-

responding values in this row. This will make the element beneath the

diagonal element (in this row) become a 0.

In so doing, this algorithm uses legal row and column operations to attempt

to reform the matrix such that it contains non-zero values for all of its diagonal

elements and all 0’s beneath the diagonal, to achieve upper-triangular form.
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The printMatrix() method simply loops over the matrix and outputs the values

in the format seen in the output files produced by the software.

All other methods in the EquationMatrix class are helper methods to those

already described, such as one that sends a column of data to the right of the A

matrix, another that sends a row of data to the bottom of the matrix, and one that

drops rows that are all 0’s.

3.1.4 FileInputReader

The FileInputReader class reads in text files — hyperplane arrangement input

files and subspace files — for the Lattice class.

Member Data

The only important member data is:

private EquationMatrix[] hyperplaneEquations;

This is the structure that holds the result of what is read in. It will either con-

tain one EquationMatrix consisting of any number of equations, or any number

of EquationMatrix objects each consisting of just one equation.

Constructors

There are three constructors in the FileInputReader class:
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public FileInputReader( String filename, boolean

parseIndivEMs )

public FileInputReader( String filename )

public FileInputReader( File file )

The first constructor takes a filename (and path) of a file to read in, and gives

the caller an option on how to read in the equations found in the file. As alluded

to above, the caller can request that the constructor read in the input file as one

large matrix (parseIndivEMs = false), or as a series of 1-equation matrices (parseIn-

divEMs = true).

The other two constructors assume parseIndivEMs = true, and they allow the

caller to read in an input file either by filename or from a File object.

This choice of how to read in an input file is for supporting subspaces. Nor-

mally the software would read the equations into separate, 1-equation Equation-

Matrix objects, so they can each be inserted into dimension d-1 of the Lattice

structure. In the case of subspaces, the caller should call the first constructor

with parseIndivEMs = false, to instruct it to read the input file into just one Equa-

tionMatrix object, since this will be inserted into the Lattice as the root node, in

dimension d.

Methods

The only important method is:
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public void readInput( File file, boolean parseIndivEMs )

This method (called by the constructors), simply reads in the input file to the

hyperplaneEquations member data, in the format prescribed by parseIndivEMs. It

performs validation on the format of the data contained in the input file on a

purely structural level (e.g. it ensures there are the correct number of equations

and coefficients within each equation). It is ignorant of all things mathematical

(e.g. it does not check the rank of the resulting matrix). The proper format of the

input file is given here:

Input Format

Linear equations are often written in the form:

A · x = b

However, the equations in the input file must conform to the following standard:

b| − A

For example,

5x1 + 2x2 − 0.4x3 = 17
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would be rewritten as:

17 −5 −2 0.4

Before listing the hyperplane equations, one header line is required, consisting

of the number of equations in the arrangement followed by the dimension of the

space. Since each hyperplane equation must be of dimension equal to one fewer

than the dimension of the entire space, the dimension of the space will be equal

to the number of tokens given for each equation.

Generally, an inputted hyperplane arrangement should be of the form:

j k

b1 −a11 −a12 −a13 . . . −a1k

b2 −a21 a22 −a23 . . . −a2k

. . .

. . .

. . .

bj −aj1 −aj2 −aj3 . . . −ajk

The software will intrepret the above input to represent the following system of

equations:
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a11 · x1 + a12 · x2 + a13 · x3 . . . = b1

a21 · x1 + a22 · x2 + a23 · x3 . . . = b2

. . = .

. . = .

. . = .

aj1 · x1 + aj2 · x2 + aj3 · x3 . . . = bj

3.1.5 FileOutputWriter

The FileOutputWriter class does not contain any member data, and its only con-

structor is the default constructor, which does nothing. It contains just one method:

public void writeFile( String filename, String output )

writeFile() writes the output String to a file with the path and filename filename.

It will overwrite any existing file with the same path and filename.

3.1.6 MatrixGenerator

The MatrixGenerator class is a standalone tool that generates test cases for several

special hyperplane arrangements, in any given dimension.

Member Data

The user must supply three pieces of data on the commandline, which are:
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private int numHyperplanes;

private int dimension;

private String filename;

These pieces of member data correspond to the number of hyperplanes the

user would like in the arrangement (if applicable), the dimension of the arrange-

ment, and the path and filename of the file to be written, respectively.

Constructors

public MatrixGenerator( String[] args )

There is just one constructor. It takes the args parameter from the command-

line, and validates that the first three array elements are the three pieces of mem-

ber data above (in that order). Optionally, the user can supply a fourth parameter

via the commandline: the arrangement type. Currently, eight types of arrange-

ments are supported:

1. rand (default): a matrix of random doubles

2. braid: “braid arrangement” matrix of all equations Xi=Xj for all i,j: 1 ≤ i <

j ≤ d

3. genbraid: “generic braid arrangement” matrix of all equations Xi - Xj = Aij

for all i,j: 1 ≤ i < j ≤ d, Aij’s are generic (relatively prime)
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4. shi: “Shi arrangement” matrix of all equations Xi-Xj=0,1 for all i,j: 1 ≤ i < j

≤ d

5. linial: “Linial arrangement” matrix of all equations Xi-Xj=1 for all i,j: 1 ≤ i

< j ≤ d

6. catalan: “Catalan arrangement” matrix of all equations Xi-Xj={-1,0,1} for

all i,j: 1 ≤ i < j ≤ d

7. semiorder: “semiorder arrangement” matrix of all equations Xi-Xj={-1,1}

for all i,j: 1 ≤ i < j ≤ d

8. threshold: “threshold arrangement” matrix of all equations Xi+Xj=0 for all

i,j: 1 ≤ i < j ≤ d

The rand arrangement is commonplace. The other seven of these arrange-

ments are defined by Stanley[3].

Methods

There is one method for generating each of the eight types of arrangements:

private void matrixRandom()

private void matrixBraid()

private void matrixGenBraid()

private void matrixShi()
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private void matrixLinial()

private void matrixCatalan()

private void matrixSemiorder()

private void matrixThreshold()

For the most part, the algorithms are straightforward — a couple of nested for-

loops each. And there are no parameters to any of them because the constructor

sets the only parameters these methods require as member data for the class.

matrixGenBraid() is a little different than the others. The equations of a generic

braid arrangement have the same format as those of the ordinary braid arrange-

ment, except that the B values are not 0’s, but relatively prime Aij’s (constants).

The easiest way to ensure linear independence across these B values is to make

them distinct prime numbers. Rather than have the software search for primes at

runtime, we hardcoded the first 1229 prime numbers (all the primes between 1

and 10,000); the software randomly selects primes from this list for the B values.

3.1.7 TestSuite

The TestSuite class is for running the suite of test cases. It contains only a main()

method, which does the following:

1. Examine the “test” directory (located immediately within the “hyperplanes”

directory) to compose a list of test files to read in.
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2. For each test file:

(a) Call the main() method of the Lattice class with the same commandline

parameters the user supplies, for this file.

(b) If this failed, report an applicable error message for this test case and

proceed to the next test case. Otherwise, attempt to read in the ex-

pected result file. This file has the same name as the input file, except

it has a “.out” extension and is located in the “output” directory.

(c) If this failed, give an error message and proceed to the next test case.

Otherwise, compare the obtained result with the expected result —

character-by-character.

(d) If there is any discrepancy, report an error message. Otherwise, report

success. In either case, proceed to the next test case.

The TestSuite will also report the number of flat tests (calls to the linear algebra

engine) and the time (in seconds) it took to run each test case. There are no output

files written by the TestSuite — all outputs are written to the System.out stream.

3.2 Design Decisions

Here we discuss the decisions that led to our choice of programming language,

led us to design the software to run as a standalone program (rather than a web-

based tool), and led to some substantial performance gains.
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3.2.1 Programming Language

The software is written in Java, specifically:

java version ”1.5.0 06”

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0 06-b05)

Java HotSpot(TM) Client VM (build 1.5.0 06-b05, mixed mode)

I discuss the version of Java further when discussing system requirements in

Section 4.1.

We wrote the software in Java for a couple of reasons. First, Java is platform-

independent. With the exception of the interactions with the file system per-

formed in the TestSuite (see Section 4.2), the software can theoretically be run,

as-is, on any platform for which there is a Java distribution. In testing, we have

found that the software runs as expected on Windows, Linux, and Mac platforms.

Since the software’s users are generally going to be from the academic commu-

nity, and since the academic community uses non-Windows environments at a

far greater rate than does the community of general computer users, platform-

independence is especially advantageous.

Second, Java is one of the most popular programming languages in use today.

Since so many would-be users already use Java, this choice should increase the

adoption rate and usage of the software. It also increases the number of open-
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source developers who might offer to extend the software, as well as the number

of developers who might choose to use the software as a module within their

own software applications.

Speaking of open-source development, the software is available for download

and development on Sourceforge, under UNIX name “thac”.

3.2.2 Tradeoffs

The software generates a lot of output, and this led to a few major design deci-

sions. We designed the software to write its results to a file, rather than to the

terminal stream, for obvious reasons. We built in a few optional parameters that

allow the user to suppress portions of the output, both to speed up the execution

of the program, as well as to allow the user to manage the size of each output file.

More interestingly, we recognized that the output of the software is really

only useful if it is complete — if the program runs successfully to the end. Thus,

we decided the software should not write matrices to the output file as they are

discovered, but instead write all of the output to file at once, at the very end of

the program. While this strategy comsumes a little more memory (to store the

output as it is being generated), it saves a huge amount of disk I/O. Testing has

confirmed that this strategy runs much faster, particularly for large hyperplane

arrangements.

We designed the software to run as a standalone program, not as an internet
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application, because it consumes a huge amount of resources and typically takes

far too long to complete for the results to be served over a web request. (Some,

even very reasonably-sized, arrangements can take hours or even days to com-

pute.) See Section 3.3.2 for more information on the problem size limitations of

the software.

3.2.3 Algorithmic Efficiencies

There were a few places where we were able to achieve substantial runtime gains.

For one, we found that by spending a few extra cycles to reduce matrices to the

smallest size possible (for instance, just by eliminating duplicate equations within

a given matrix), it saved a tremendous amount of time in later calculcations.

Also, since the code that solves the matrices is one of the least novel parts

of the software, we originally chose to use an existing software package for this

purpose. However, we later realized the package we were using spent a lot of

cycles trying to compute the exact solution to a given matrix, but we didn’t need

that — we only needed to calculate whether a solution existed. We experienced

a greater than two-fold speed improvement simply by writing our own matrix

solution code.
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3.3 Software Performance

In this section, we will demonstrate that the runtime of the software is exponen-

tial, and therefore, the expected runtime of THAC is heavily dependent upon the

problem size. We’ll first perform a theoretical runtime analysis, and then discuss

some practical benchmarking results.

3.3.1 Theoretical Runtime

Let: n be the number of hyperplanes in the arrangement.

Let: d be the dimension of the arrangement.

Let: num flats be the number of flats in the computed semilattice (we will com-

pute this number later).

Let: flat tests be the number of times the software runs Gaussian elimination to

test for a valid flat.

Then: There are six major steps that the software takes to compute its output.

They are:

1. Reading data in from the input file

2. Initializing the lattice

3. Finding the intersections / building the lattice
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4. Computing the Mobius values

5. Outputting the lattice

6. Outputting the polynomial and regions

Steps 1 and 2 are both achieved in O(n) time, as they both consider the hy-

perplane equations once each. Steps 5 and 6 are achieved in O(num flats), as they

both consider the flats in the semilattice once each. Steps 3 and 4 do the heavy

lifting. We will look at them more closely in a moment, but we need to compute

a few other things first.

The Number of Flats in the Arrangement

The largest semilattice, in terms of number of flats (and therefore our worst case,

in terms of runtime complexity) is created by arrangements in which all hyper-

planes intersect with all others, but no three flats intersect in the same place.

For two hyperplanes to be parallel, their coefficients must be a constant mul-

tiplier of one another, with the exception of the constant (b) term. For example,

the following two hyperplanes are parallel, since the coefficients of the second

equation are a multiple of (-2) of the first, with the exception of the constant term:

5x1 + 2x2 −
3

2
x3 = 5,

−10x1 − 4x2 + 3x3 = 12.
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Given the first equation and the first coefficient of the second equation (the

-10), the only coefficient for x2 in the second equation that would allow these

equations to (possibly) be parallel is (-4), which leaves an infinite number of other

possibilities that would cause these equations to not be parallel. Thus, since we

are only working with finite hyperplane arrangements, the probability of choos-

ing two equations (of at least two variables each) that are parallel is 0.

Likewise, if two flats intersect at some location, the probability that a third

hyperplane (chosen at random) intersects with them at that same location is also

0.

(The software’s Matrix Generator tool gives the user the option to generate

arrangements consisting of random coefficients, to test this random case.)

Getting back to runtime complexity, there is another result of this analysis:

since the random arrangement occurs with probability 1, it is not only our worst

case, but our average case as well. Our best case, in terms of number of flats in the

semilattice, is also the trivial case: the case in which all hyperplanes are parallel

to one another, and therefore, the case in which there are no intersections at all.

In the random arrangement, every matrix will be of full rank — every combi-

nation of hyperplanes will constitute a flat somewhere in the semilattice. So, how

many flats are there in total? Let’s start by looking at the case in which n = d.

In dimension d, there is 1 (or
(

n
0

)
) flat consisting of 0 hyperplanes — the ambi-
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ent space;

In dimension d-1, there are n (or
(

n
1

)
) flats consisting of 1 hyperplane each — the

original hyperplanes;

In dimension d-2, there is one flat for every pair of hyperplanes, or
(

n
2

)
flats;

In dimension d-3, there are
(

n
3

)
flats;

. . .

In dimension d-(n-1), there are
(

n
n−1

)
flats;

In dimension d-n, there is 1 flat — the point formed by the intersection of all hy-

perplane equations.

We add these all together:

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

d

)
= 2n

Take for example a 10-hyperplane random arrangement in R10. The software

produces this summary:

Number of flats per dimension:

Dimension 10: 1

Dimension 9: 10

Dimension 8: 45

Dimension 7: 120

Dimension 6: 210
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Dimension 5: 252

Dimension 4: 210

Dimension 3: 120

Dimension 2: 45

Dimension 1: 10

Dimension 0: 1

These subtotals sum to 1024, which equals 210.

Thus, num flats = 2n for the random arrangement where n = d. And since two

hyperplanes can only intersect with each other in one and only location, and since

the random arrangement produces flats consisting of every possible combination

of hyperplane equations, 2n is an upper-bound for num flats for any hyperplane

arrangement of size n.

The Effect of Dimension

The dimension of the arrangement has an interesting, but not all that surprising

effect on the semilattice. We just saw that in the case where n = d, the semilattice

converged to just a single flat in dimension 0. But what if n 6= d?

Since random arrangements yield flats represented by matrices that are al-

ways of full rank, the intersection of two hyperplanes (each of dimension d-1)

will result in a flat in dimension d-2. Flats in dimension d-3 will consist of three

flats, and so on. Then, if n < d, we would expect the semilattice to converge to
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that single flat, consisting of all n hyperplane equations, in dimension d-n. And

this is exactly what happens.

The software produces the following summary for the same arrangement, but

in R15:

Number of flats per dimension:

Dimension 15: 1

Dimension 14: 10

Dimension 13: 45

Dimension 12: 120

Dimension 11: 210

Dimension 10: 252

Dimension 9: 210

Dimension 8: 120

Dimension 7: 45

Dimension 6: 10

Dimension 5: 1

Dimension 4: 0

Dimension 3: 0

Dimension 2: 0

Dimension 1: 0

Dimension 0: 0
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We see that dimensions 4 down to 0 do not contain any flats. The reason for

this is simple. In dimension 5, there is only one flat — there are no other flats

with which it can intersect.

But what if n > d? The answer is that the semilattice gets cut off before all

hyperplane equations can be intersected with each other. Using the same 10-

hyperplane arrangement from above, but in R5, the semilattice looks like this:

Number of flats per dimension:

Dimension 5: 1

Dimension 4: 10

Dimension 3: 45

Dimension 2: 120

Dimension 1: 210

Dimension 0: 252

In any case, num flats is still bounded by 2n.

Finding Intersections

In the random case, the algorithm discovers 2n actual flats. Being the worst case,

every pair of flats intersects to form a new flat. And while there are never more

than 2 flats that intersect to form each newly-discovered flat, the algorithm doesn’t

know this – it must test for the existence of flats created by the intersection of 3

or more flats.



91

If there are 2n flats in the entire semilattice, we can bound the number of flats

that the algorithm must test at the maximum number of flats in any given dimen-

sion, which in the random case will be
(

n
bn

2
c

)
. To bound a little tighter, we recognize

that since the intersections will be discovered uniformly across each dimension

of flats, on average, the software will need to perform this test on just half of the

flats in that dimension. This yields:

1

2
·
(

n

bn
2
c

)
· 2n

However, for each flat that it discovers, it must also verify that the flat is not a

duplicate of any flat it has already discovered in that dimension. We also bound

the number of potential duplicate flats the algorithm will need to check at 1
2
·
(

n
bn

2
c

)
,

with the same reasoning as above, yielding:

1

2
·
(

n

bn
2
c

)
· 1

2
·
(

n

bn
2
c

)
· 2n

Dropping the constants and combining terms:

flat tests = O

((
n

bn
2
c

)2

· 2n

)
For each flat test, the algorithm performs Gaussian elimination one time. Since

Gaussian elimination consists of 3 nested for loops, each iterating over the vari-

ables (and constant value) of the equations in a matrix, and since the average flat
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to be tested will have (1
2
· n) equations, each with d+1 values, a single instance of

Gaussian elimination has the following runtime complexity:

1

2
· (d + 1)3 = O(d3)

Since the software runs Gaussian elimination once for each flat it tests, we

multiply these two runtimes together to obtain:

O

((
n

bn
2
c

)2

· 2n · d3

)
(3.1)

We can simplify this expression using Stirling’s Approximation, which states

that

lim
n→∞

=
n!√

2πn(n
e
)n

= 1,

or

n! ∼
√

2πn
nn

en
.

The
(

n
bn

2
c

)
term can be rewritten as

(
n

bn
2
c

)
=

n!
n
2
!n
2
!
,

and we apply Stirling’s Approximation:
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(
n

bn
2
c

)
∼

√
2πn(nn

en )

2π(n
2
)

(n
2
)(

n
2 )(n

2
)(

n
2 )

e( n
2 )e( n

2 )

(
n

bn
2
c

)
∼
√

2πn(nn

en )

2π(n
2
)

(n
2
)n

en

(
n

bn
2
c

)
∼
√

2πn(nn)

2π(n
2
)(n

2
)n

(
n

bn
2
c

)
∼

√
2πn

2π(n
2
)(1

2
)n

(
n

bn
2
c

)
∼ 2n

√
2πn

πn

(
n

bn
2
c

)
∼ 2n

√
2√

πn
.

Dropping constants:

(
n

bn
2
c

)
= O

(
2n

√
n

)
And since

√
n grows incredibly slowly compared to 2n, finally we claim:

(
n

bn
2
c

)
= O(2n).
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Substituting into Equation 3.1, we claim that the algorithm to find intersections

runs in time

O(8n · d3).

When quantifying num flats, we learned that, if d > n, the algorithm will find

all of the flats in the semilattice by dimension d-n, but after the first n dimensions,

there’s really no work left to do. And if n > d, the semilattice gets cut off, such

that it does not need to compute all 2n (potential) combintations of hyperplane

equations. Therefore, d3 is bounded by n3, resulting in

O(8n · n3).

Therefore, the running time for finding intersections is

O(8n). (3.2)

Computing Möbius Values

Since computing χ requires the Möbius values of all flats in the semilattice, and

since num flats is exponential with respect to n, computing the Möbius values (to

compute χ) also requires exponential time.

The software must compute Möbius values for as many as 2n flats, and each
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of these computations is bounded by the number of other flats’ Möbius values

the algorithm must sum, which again is 2n. Therefore, the runtime complexity of

computing the Möbius values is:

O(2n · 2n),

or

O(4n). (3.3)

Rate-Limiting Step

Referring to Equations 3.2 and 3.3, we conclude that the runtime for finding the

intersections is the rate-limiting step of the program, and we claim a bound on

the runtime of the program of O(8n).

3.3.2 Practical Runtime

In this section, we will look at how the problem size can grow compared to

growth in dimension, and how this impacts the actual runtime of the software. A

couple interesting trends appear — some things the theoretical analysis doesn’t

predict.
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Growth of the Problem

For this study, we will step away from the random arrangement to use a slightly

more interesting and very well-known hyperplane arrangement, known as the

braid arrangement, as defined by Stanley[3]:

The braid arrangement Bd consists of the hyperplanes:

xi − xj = 0, 1 ≤ i < j ≤ d.

For instance, in R5, the input file for B5 is:

10 6

0 1 -1 0 0 0

0 1 0 -1 0 0

0 1 0 0 -1 0

0 1 0 0 0 -1

0 0 1 -1 0 0

0 0 1 0 -1 0

0 0 1 0 0 -1

0 0 0 1 -1 0

0 0 0 1 0 -1

0 0 0 0 1 -1
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Since the arrangement consists of all of the equations such that each variable

is set equal to each other variable, we can define a function to count the number

of hyperplanes in a braid arrangement in any dimension:

NumHyps(Bd ) = (d− 1) + (d− 2) + · · ·+ 1 + 0 =
d−1∑
i=1

i =
d · (d− 1)

2

We ran tests for the first 7 non-trivial braid arrangements, namely B3 through

B9 . As seen in Figure 3.1, the number of hyperplanes grows according the func-

tion above.

To generate the semilattice of the hyperplane arrangement, the software be-

gins by attempting to intersect each hyperplane with each other hyperplane. To

test each of these combinations, the software creates a matrix consisting of the

intended equations, and tests for a solution of the expected rank using Gaus-

sian elimination. The number of these matrix tests grows exponentially with the

problem size, as seen in Figure 3.2.

There are two reasons for the rapid growth. First, as the dimension (d) grows,

so does the number of hyperplanes (as seen in the first graph, above), and as the

number of hyperplanes grows, the number of combinations of hyperplanes to

test grows geometrically. Second, as d grows, obviously so does the number of

dimensions through which the software must intersect flats — an arrangement in

a higher dimension will generally yield a taller semilattice.
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Figure 3.1: The number of hyperplanes in the braid arrangement, for dimensions
3 through 9.

Timing Actuals

Next, we investigate how long it takes to run the software for these different

problem sizes. Not surprisingly, the runtimes grow rapidly with the number of

matrix tests required. In Figure 3.3, we notice that the curve looks similar to the
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Figure 3.2: The number of matrix tests performed to solve the braid arrange-
ments.

curve showing the growth in the number of matrix tests.

There are a few interesting things happening here. Looking at the first few

data points, we see a logarithmic-like growth in the runtimes per number of ma-

trix tests performed. For instance, the second data point represents about 15 times

the matrix tests of the first data point, but only twice the runtime; the third data



100

Figure 3.3: Observed runtimes for solving the braid arrangements.

point represents about 20 times the matrix tests of the second data point, but only

1.5 times the runtime.

There are two reasons for this behavior. First, the software is achieving effi-

ciency gains at the larger problem sizes, because the percentage of time it spends

on overhead drops. Java requires a small (and more or less fixed) amount of time
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to startup and shutdown; the software requires some amount of time to read in

the input file(s); etc. With such small total runtimes, these overheads can consti-

tute a large percentage of the total runtime. If we subtract out a constant amount

of time from each of these first few data points, the odd growth rate becomes less

pronounced.

Second, we consider the notion of context switching. People typically accom-

plish tasks more efficiently when they repeat the same task many times in suc-

cession, versus when they have to continually stop what they’re doing, attend

to something else, and return to the task. This idea of moving between different

tasks is known as context switching. For small problem sizes, THAC is almost

constantly switching gears, because its loops are so short. For larger problem

sizes, there are more flats at each level — it will attempt to do many matrix tests

in succession, and will therefore lose less time to context switching.

To see this graphically, we divide the number of matrix tests by the runtime,

for each problem size, giving us Figure 3.4.

Not surprisingly, with lower percentages of time being spent on overhead and

context switching, the efficiency of the software rises rapidly. However, this rise

in the curve stops abruptly at dimension 6, falls until the data point at dimension

8. What is happening?

At some point, the number of computations required per matrix test over-

comes these earlier efficiency gains — at some point, the software is just doing
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Figure 3.4: Observed matrix tests per second for solving the braid arrangements.

more work per matrix test! Each equation in dimension 7 has 1 more variable

than each equation in dimension 6. Also, higher-dimension arrangements test

flats that contain more equations each than lower-dimension arrangements. In

other words, matrices in higher-dimension arrangements are taller and wider

than those in lower dimensions.
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But matrix tests took almost twice as long in B7 than they did in B6 . Slightly

larger matrices cannot explain the entire time difference. There must be some-

thing else going on, and in fact there is.

Until now, we have assumed that overhead and matrix tests are the only major

contributors to the total runtime of the application, but there is another contrib-

utor that we have not yet explored. By employing one of the software’s optional

parameters, -t, we receive timing outputs for each step of the work. . . and we see

that the creation of the output file has begun to consume a huge percentage of the

runtime. This shouldn’t be all that surprising, since the sizes of the output files

also grow rapidly, as seen here in Figure 3.5.

Notably, for B6 , approximately 12% of the runtime is spent writing the out-

put, compared to 37% for B7 . Viewed another way, building the semilattice took

31 times longer for B7 than for B6 , but generating the output took 135 times longer.

Since the overhead of the output step grew faster than the step to build the semi-

lattice, the efficiency of the program — as measured by the speed of performing

matrix tests — declined.

Moving from B7 to B8 , the math work grew by a factor of 39, and the output

work grew by only a factor of 66. As we would expect, the efficiency (again,

as measured by the speed of performing matrix tests) further declined, but at a

softer slope, given the proportionately smaller rate of increase in the output work

versus the computational work.
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Figure 3.5: Observed file sizes of the output files for the braid arrangements.

Moving from B8 to B9 , the growth in output work has finally succumbed to

the growth in math work. In other words, the software is able to focus on what it

was meant to do — crunch numbers.
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Upper Limits

As with any exponential problem, THAC reaches its upper limits quickly. For in-

stance, staying with the braid arrangement, we have not successfully completed

the program for B10 . In testing, B9 required over 8 hours to complete, and that

was 28 times longer than B8 . Using the same multiplier, we might estimate B10

to run for 10 days (and that assumes that the machine doesn’t run into memory

limitations).

Similarly, the random arrangement of 10 hyperplanes in R10 ran for 24 hours;

we have not successfully computed the random arrangement of 11 hyperplanes

in R11.



Chapter 4

User’s Manual

THAC is a commandline application, meaning that is run by typing a command

at a prompt. It was written for Windows (to be run at a DOS prompt), but can

be easily modified to run on Linux or Mac systems (see instructions below). It

can be run as a standalone application, called from within another application,

or easily extended for other purposes. THAC comes packaged with documenta-

tion for installing and running the application; the text below comlpiments that

documentation.

4.1 System Requirements

The software runs quickly for small arrangements in low dimension, but since

the problem size grows exponentially, observed runtimes grow rapidly. For more

106
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on hardware requirements, please see section 3.3.2. For now, suffice it to say that

performance appears to be limited by the CPU, not by memory.

THAC is written in Java, and requires a compatible version of Java to be in-

stalled. The application was developed using the version of Java described in

Section 3.2.1. I assume Java to be generally backwards compatible — newer ver-

sions of Java should also work.

If you haven’t already, add Java to your Windows environment variable, so

that you can run commands from the command line without specifying a full

path.

4.2 Installation

To install the software, simply unzip the archive into a directory, navigate to that

directory within a DOS Shell, and run the program using the syntax outlined in

section 4.4.4 below.

THAC was developed in a Windows XP environment. Thanks to Java’s platform-

independent nature, preliminary testing suggests that only a small modification

is necessary to run THAC on a Linux or Mac operating system:

1. In TestSuite.java, replace all double back slashes (“\\”) with single forward

slashes (“/”).

2. Recompile TestSuite.java.
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This change is necessary to account for differences in how the file systems

delimit file paths, because of the way that TestSuite.java interacts with the file

system. Windows uses single back slashes (“\”) to separate portions of a file

path. The software requires another back slash to escape each back slash, since

Java considers “\” to be an escape character — thus the double back slash. The

Linux and Mac operating systems use single forward slashes (“/”) to separate

portions of a file path, and forward slashes are not escape characters in Java, so

an escape character is not necessary.

Note: installation instructions are also included in the documentation pack-

aged with THAC.

4.3 Testing the Installation

THAC contains a basic test suite, that when invoked, runs a battery of various

test inputs and compares them against human-verified output files. To run the

test suite:

java TestSuite

This assumes that the user is in the “hyperplanes” directory (the top-level

directory in the archive). This command will run the software once against each

hyperplane arrangement contained in the “test/input” directory and compare
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the results against the output files located in the “test/output” directory with the

same name (except the file extension is changed from “.txt” for inputs to “.out”

for outputs).

When developing the software, I worked with my adviser to come up with a

somewhat exhaustive set of test cases — a set of test cases that should catch just

about any corner case that could be present in the set of all hyperplane arrange-

ments. For instance, there are cases that contain different configurations of paral-

lel hyperplanes, ones that contain very long decimals (for testing software round-

ing issues), as well as many special cases (e.g., Braid and Shi arrangements), as

identified by Stanley[3] and others.

The TestSuite will test all input files located in the “test/input” directory.

This means that if the user removes input files from that directory it will test

fewer test cases, and therefore may miss some corner case. If the user adds

cases to the “test/input” directory, s/he must also add corresponding files to the

“test/output” directory that contain the expected outputs, which implies that the

user is responsible for verifying the accuracy of any expected output files s/he

adds to the “test/output” directory. The opposite is not true — there does not

need to be a corresponding input file in the “test/input” directory for each output

file in the “test/output” directory. No changes to the Java software are necessary

to change the set of test cases — the user must only create and/or move files into

or out of these two directories.
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For each test case it runs, the software will output a couple of statistics, fol-

lowed by a “Pass” or “FAIL”. Failures are obvious, as they are surrounded by

rows of asterisks (“*”). For example, consider the following output:

C:\Documents and Settings\eetu\workspace\hyperplanes>java

TestSuite

Number of flat tests = 44

Runtime = 0.031s

Pass: unit_test1.txt

----------

Number of flat tests = 28

Runtime = 0.016s

Pass: unit_test2.txt

----------

Number of flat tests = 13

Runtime = 0.015s

************************************

* FAIL: unit_test3.txt

* ERROR: TestSuite: output does not match expected; file

written to: C:\Documents and Settings\eetu\workspace\hyp

erplanes\.\test\output\unit_test3.out.ERROR

************************************
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Number of flat tests = 2

Runtime = 0.0s

Pass: unit_test4.txt

----------

Number of flat tests = 383

Runtime = 0.031s

Pass: unit_test5.txt

----------

Number of flat tests = 41

Runtime = 0.016s

Pass: unit_test6.txt

----------

Number of flat tests = 9

Runtime = 0.015s

Pass: unit_test7.txt

----------

Number of flat tests = 20

Runtime = 0.0s

Pass: unit_test8.txt

----------

Here, unit test3.txt failed, and the other 7 test cases passed. For the test cases
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that passed, the first line of output lists the number of flat tests, or the number

of times the software passed a system of equations to the algorithm that solves

matrices. Second, the output lists the runtime, in seconds, the software required

to execute that test case. Finally, the output gives the name of the input file used

in that test case.

For the test case that failed, the output that was generated by the software did

not match the expected output, so the generated output was written to a new file,

with a file extension of “ERROR”. Note that subsequent failures of the same unit

test will overwrite this “ERROR” output file.

Note that the success of any test case depends on the exact — character-for-

character — match of the results of the test execution and the expected results in

the “test/output” directory. Even an additional <space> character somewhere in

the file can cause the test case to fail. For this reason, the files of expected output

given in the TestSuite do not include timings, since timings will vary across runs.

All other possible output is included however, since it should never vary.

4.4 Running the Software

For its basic usage, the software reads in a text file that specifies a hyperplane

arrangement. When supplying a subspace, the software additionally reads in a

second text file that specifies the subspace. In both cases, the software outputs all

of the flats in the semilattice, followed by some statistical data, the characterstic
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polynomial, and the numbers of regions in the arrangement.

4.4.1 Input Files

Here is an example input matrix:

3 4

2 0 −1 1

6 −3 −1 0

9 −4 0.5 2

The top line describes the dimensions of the matrix. In the top line, the 3

indicates there are 3 equations in the matrix (3 lines following). The 4 indicates

there should be 4 numbers in each line, which implies that that the hyperplane

arrangement is in R3.

Each line after the first represents an equation in the form:

B = −A1 · x1 − A2 · x2 · · · − An · xn

In our example above, n = 3. So, the last equation in the example above (9 -4

0.5 2) translates to:

9 = 4x1 − 0.5x2 − 2x3
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Input files must contain exactly one matrix, including the header line, and the

data in the header line must correctly correspond to the equation data that fol-

lows. If the value that specifies the number of equations is larger than the number

of equations actually present, the software will error; if that number is smaller

than the number of equations present, it will read in that many equations and

ignore the rest. Likewise, the software will error if the header line overpromises

how many values will be provided on each line, and ignore values that exceed the

number specified in the header line. All equations must have the same number

of values for a given input file.

Subspace input files should be given in the same format as any other input

file, and the equations for a given subspace file must be of the same dimension as

the equations of the associated input file, meaning that all equations in both the

input file and the subspace file must have the same number of values.

4.4.2 Output Files

By default, output files are given in plaintext. However, the user can specify an

optional parameter, to instruct the software to give the output in XML format.

We discuss both formats below.

As mentioned earlier, there are several components that comprise the (full)

output of the software. They are, in order:

1. A representation of the semilattice
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2. The numbers of flats that were found in each dimension

3. The characteristic polynomial (χ) of the arrangement

4. The numbers of total regions and bounded regions formed by the arrange-

ment

The first, and longest, component of the output is the representation of the

semilattice. It begins with the dimension of the ambient space, which we will

denote D. D will either be one larger than the dimension of any of the inputted

hyperplanes, or equal to the dimension of the subspace, if a subspace is provided.

Flats are outputted for each dimension down to and including dimension 0. The

dimensions of the semilattice are delimitted by a header that specifies the number

of the dimension and the number of flats that exist in that dimension, which

follow immediately.

How this data is presented depends on the choice of output format.

Plaintext Output

By default, output files are given in plaintext format. Within each dimension,

flats are listed in a format very similar to the input file format. Here is an example

outputted flat:
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2

3 4

2 0 −1 1

6 −3 −1 0

9 −4 0.5 2

The 2 is the Möbius value of the flat. In the second line, the 3 implies that 3

equations follow, and the 4 implies that each equation contains 4 values (1 value

for the B followed by 3 variable coefficients). Finally, the 3 equations of the hy-

perplanes that intersect to form this flat are given.

Despite the format appearing to be very similar to the format of an input file,

the data that comprises an outputted flat means something slightly different. In

an input file, the equations given represent individual hyperplanes — the input

file represents many flats — that the software will attempt to intersect with each

other to find other flats, whereas the equations in an outputted flat are some

subset of the inputted hyperplane equations (and the equations that make up

the subspace, if a subspace is provided), and collectively specify just one flat. A

subspace file is an exception to this rule. A subspace is itself a flat, and therefore

will have the same format (and meaning) as an outputted flat, only without a

Möbius value.

In the example flat above, there are 3 equations given. Note that more than 3
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hyperplanes may actually intersect to form this flat, but only these 3 are required

to specify the flat. (For instance, while only two intersecting lines are required to

form a point, additional lines may also pass through that point — the equations

of those additional lines would not be specified in the flat output.) The value

that specifies how many equations comprise a given flat will equal the number of

equations that are listed (the minimal number of equations necessary to specify

the flat), not the number of hyperplanes that actually intersect in that flat.

There is a snippet of code in the Lattice class, in the latticeArrayTraversal

method, that additionally outputs parent/child relationships between flats, to

give the user a little more insight into the structure of the semilattice. Since the

primary goal of the software is to calculate the characteristic polynomial, we

viewed these relationships as little more than work product toward acheiving

that goal, and therefore, this code is commented out. If the user would like, s/he

can un-comment out this code and recompile the class to generate this output.

The second component of the output is the numbers of outputted flats in each

dimension. This is included purely for the sake of convenience, and is in fact

redundant data, since the same counts are provided in the headers of the dimen-

sions found within the semilattice output.

The third component of the output is the characteristic polynomial, χ, of the

arrangement. Computing this is the primary goal of the software.

Finally, the output contains the number of total regions, and the number of
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bounded regions, formed by the arrangement. These are computed by simply

evaluating χ at (-1) and (+1), respectively.

XML Output

If the user supplies the “-x” parameter, the output will be given in XML format.

The same data is returned and is presented in the same order as in plaintext for-

mat, but data elements are wrapped in XML tags. The tags are self-explanatory, as

we will see in a moment. The only other deviation from the plaintext output for-

mat is the addition of XML comments, to make the output more human-readable.

Here is an example flat:

<flat id="0" mobius="2" equations="2" tokens="4">

<equation id="0"><!-- 0.0 = 1.0*x0 + -1.0*x1 + 0.0*x2 -->

<b>0.0</b><x0>1.0</x0><x1>-1.0</x1><x2>0.0</x2>

</equation>

<equation id="1"><!-- 0.0 = 1.0*x0 + 0.0*x1 + -1.0*x2 -->

<b>0.0</b><x0>1.0</x0><x1>0.0</x1><x2>-1.0</x2>

</equation>

</flat>
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The flat id parameter is just a counter of the flats in this dimension (the next

flat in this dimension would have id = 1). The following three parameters to the

<flat> tag are the same three values supplied in the plaintext format, preceding

the equations, namely, the Möbius value, the number of equations, and the number

of tokens in each equation (which is equal to D + 1).

<equation> tags are numbered with id parameters in the same way as <flat>

tags. Within each <equation> tag, there is a comment containing the human-

readable version of the equation, followed by the XML-formatted version of the

same equation.

4.4.3 Example Input & Output

As an example, if the software were instructed to read in a file containing the

following text:

5 3

0 1 -4

0 1 -2

0 1 -1

0 2 -1

0 4 -1
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it would interpret this input as an arrangement of 5 hyperplanes, where each

equation represents a hyperplane in R2. In plaintext format, the software would

write out the following output to a file named by the user:

DIMENSION = 2 (1 flats)

----------------

1

1 3

0.0 0.0 -0.0

DIMENSION = 1 (5 flats)

----------------

-1

1 3

0.0 1.0 -4.0

-1

1 3

0.0 1.0 -2.0



121

-1

1 3

0.0 1.0 -1.0

-1

1 3

0.0 2.0 -1.0

-1

1 3

0.0 4.0 -1.0

DIMENSION = 0 (1 flats)

----------------

4

2 3

0.0 1.0 -4.0

0.0 1.0 -2.0



122

Number of flats per dimension:

Dimension 2: 1

Dimension 1: 5

Dimension 0: 1

The characteristic polynomial is: tˆ2 - 5t + 4

The total number of regions is: 10

The number of bounded regions is: 0

With XML-formatted output, <flat> tags are wrapped inside <dimension>

tags, which are wrapped inside a single <data> . . . </data> tag. The <data>

. . . </data> tag is followed by the <summary> data, which is the same data

given as in the plaintext output. The following output file represents the same

solution as above, but this time given in XML format:

<output>

<data>

<dimension id="2">

<flat id="0" mobius="1" equations="1" tokens="3">

<equation id="0"><!-- 0.0 = 0.0*x0 + -0.0*x1 -->

<b>0.0</b><x0>0.0</x0><x1>-0.0</x1>
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</equation>

</flat>

</dimension>

<dimension id="1">

<flat id="0" mobius="-1" equations="1" tokens="3">

<equation id="0"><!-- 0.0 = 1.0*x0 + -4.0*x1 -->

<b>0.0</b><x0>1.0</x0><x1>-4.0</x1>

</equation>

</flat>

<flat id="1" mobius="-1" equations="1" tokens="3">

<equation id="0"><!-- 0.0 = 1.0*x0 + -2.0*x1 -->

<b>0.0</b><x0>1.0</x0><x1>-2.0</x1>

</equation>

</flat>

<flat id="2" mobius="-1" equations="1" tokens="3">

<equation id="0"><!-- 0.0 = 1.0*x0 + -1.0*x1 -->

<b>0.0</b><x0>1.0</x0><x1>-1.0</x1>

</equation>

</flat>

<flat id="3" mobius="-1" equations="1" tokens="3">

<equation id="0"><!-- 0.0 = 2.0*x0 + -1.0*x1 -->
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<b>0.0</b><x0>2.0</x0><x1>-1.0</x1>

</equation>

</flat>

<flat id="4" mobius="-1" equations="1" tokens="3">

<equation id="0"><!-- 0.0 = 4.0*x0 + -1.0*x1 -->

<b>0.0</b><x0>4.0</x0><x1>-1.0</x1>

</equation>

</flat>

</dimension>

<dimension id="0">

<flat id="0" mobius="4" equations="2" tokens="3">

<equation id="0"><!-- 0.0 = 1.0*x0 + -4.0*x1 -->

<b>0.0</b><x0>1.0</x0><x1>-4.0</x1>

</equation>

<equation id="1"><!-- 0.0 = 1.0*x0 + -2.0*x1 -->

<b>0.0</b><x0>1.0</x0><x1>-2.0</x1>

</equation>

</flat>

</dimension>

</data>

<summary>
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<flats_per_dimension>

<dimension id="2">1</dimension>

<dimension id="1">5</dimension>

<dimension id="0">1</dimension>

</flats_per_dimension>

<characteristic_polynomial>tˆ2 - 5t + 4

</characteristic_polynomial>

<total_regions>10</total_regions>

<bounded_regions>0</bounded_regions>

</summary>

<output>

As we can see, <dimension> tags follow the same id numbering schema as

the other numbered XML tags, except they count from D down to 0, since these

numbers represent the actual dimensions.

Note: the XML-formatted output files do contain indenting (as seen in the

example above), using single tab characters for each level of indentation.

4.4.4 Basic Use

As noted above, THAC must be executed from a command line. For instance, in

Windows, you would typically use a DOS prompt; in Linux, any shell application
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should do.

THAC is run by executing the main() function found within the Lattice class,

and then supplying an input file and a destination for writing the output file (rel-

ative paths are supported). For example:

java Lattice test/input/input1.txt test/output/output1.out

This assumes that the user is in the “hyperplanes” directory (the top-level

directory in the archive). This command will run the application with the input

file: “test/input/input1.txt”, and write the output of the software invocation to:

“test/output/output1.out”. Note: the application will overwrite any existing file that

has the same directory and filename as the filename supplied as the output location.

4.4.5 Optional Parameters

There is one optional parameter that may be specified to change the way in which

the software executes, and two that may be specified to change the data that is

included in the output file.

• Changes the way the software operates:

1. Append “-s <filename>” to supply a subspace in which to intersect the

hyperplanes, instead of intersecting them in the ambient space. The
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<filename> should reference a file that has the same format as any

input file. However (as noted above), a subspace file will not be treated

as a series of individual hyperplanes, but as a single flat.

• Changes the output:

1. Append “-q” for quiet mode. This will suppress all output of flats and

will save runtime and file size when generating the output.

2. Append “-t” to output timings. This will output the runtimes of sev-

eral steps of the software execution process.

3. Append “-x” to output in XML format.

Therefore, the usage may be summarized:

java Lattice <input file> <output file> [-s <subspace file>] [-q] [-t] [-x]

Optional parameters may be given in any order.

4.5 User Trial

I ran a user trial with an SFSU mathematics graduate student to confirm that

the software was useful and useable by members of the mathematics commu-

nity. He reported that the software documentation we wrote was sufficient for
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installing and running the program — he didn’t have any major problems. But

he suggested adding documentation on how to download and install Java. (As a

computer science researcher, I guess I took this for granted!) I have since updated

the documentation to address this issue.

While the software’s output is scientific (minimalist) in nature, the user re-

ported that the “data in the output file is totally readable and well organized.”

However, he suggested moving some of the summary data (currently at the end

of the output file) to the beginning of the file, since he consistently found himself

scrolling to the bottom of the output file to view the summary data first.

He also reported trying to run the software on some very large arrangements

in high dimension. Arrangements like these are expected to take a great deal

of time to compute, but my documentation did not forewarn the user of this,

such that, as he waited for the software to complete, he was left wondering if the

software was even working properly. I addressed this in two ways: by editing

the software to report certain milestones (a progress meter of sorts) as well as by

updating the documentation to give the user some expectation for runtimes.

All in all, the user was pleased with the software and thankful for the oppor-

tunity to use it in his research.
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Future Work

There are many improvements that can be made to the application, for instance,

to improve its performance or publish its results for reuse. Other researchers are

already using THAC for their study of Magic Squares, Orthogonal Latin Squares,

and various special hyperplane arrangements.

5.1 Distributing the Application

As an NP-hard problem, the most limiting aspect of the current software is com-

puting power and/or the time necessary to run the software for large problem

sizes. One way that other software projects have mitigated this issue is to mod-

ify their applications to run in a distributed fashion. For instance, the SETI project

developed the popular SETI@Home application to allow ordinary computer users

129
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to donate spare computing cycles on their computers to crunching (processor-

intensive) Fourier transforms for them. Likewise, THAC could be modified to

distribute some of its number-crunching to foreign machines.

One way to do this would be to send a copy of all the flats in a given dimen-

sion to each of N machines. Machine 1 would be responsible for finding all the

intersections between flat number 1 and all the flats that follow it; machine num-

ber 2 would search for intersections involving flat number 2 and the ones that

follow it; etc. In this way, (less the overhead of the distribution and collection

of results), the runtime for finding all the intersections within a given dimension

reduces from O(n3) to O(n2). The same process could, of course, be repeated for

each dimension of the semilattice, although more or fewer machines may be of

use in each dimension, depending on the number of flats that are discovered in

each.

5.2 Publishing Results

It might be useful to publish a searchable web library of known hyperplane ar-

rangement results, to avoid repeated work by other researchers. Particularly

since larger problem sizes can take such a long time (and so much computing

power) to solve, publishing one’s results could be very beneficial to colleagues.
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5.3 Subspaces

There are two known issues regarding the use of the software when providing a

subspace. First, if the subspace provided is not of full rank, the software may give

incorrect results. Testing has shown that the software sometimes rejects some

hyperplanes from the arrangement, citing that they are effectively duplicates of

other hyperplanes, when in fact they are not. In other cases, the software may

incorrectly decide that a given hyperplane in fact does not intersect the subspace

at all, and will reject it for this reason. The original algorithms were built on the

premise that the software itself was responsible for removing any unnecessary

equations (equations that cause a given matrix to not be of full rank) from any

valid flat it discovers — at the time it discovers it. In the case of a supplied sub-

space that is not of full rank, the software currently does not perform this check

and reduce the subspace accordingly before proceeding — this responsibility lies

with the user.

The other known issue regarding the use of subspaces is that the TestSuite

does not support test cases that involve subspaces. I added the subspace func-

tionality near the end of my development, and I did not update the TestSuite to

support these test cases. Another researcher is currently using THAC to study

hyperplane arrangements with subspaces — if it would be helpful to him, he and

I can work on this for a future release.

Speaking of test cases, we can always use more, particularly if they test an
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interesting corner case not covered by an existing test case. The more cases that

are run by the TestSuite, the more confident the user can be in his/her results,

and the easier it is to extend the software.
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