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Abstract

The combinatorics of h˚-polynomials of rational polytopes

by

Esme Bajo

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Matthias Beck, Co-chair

Professor Sylvie Corteel, Co-chair

The h˚-polynomial captures the enumeration of lattice points in dilates of rational polytopes.
For various classes of polytopes, there are many potential properties of this polynomial–
including nonnegativity, monotonicity, unimodality, real-rootedness, and palindromicity–
that are of interest within geometric combinatorics. In this dissertation, we investigate
these properties for three variations of the h˚-polynomial: the boundary h˚-polynomial, the
weighted h˚-polynomial, and the local h˚-polynomial. We conclude with an application of
h˚-polynomials to enumerating proper vertex colorings of graphs.
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Chapter 1

Introduction

In this dissertation, we study several variations of h˚-polynomials of rational polytopes, in-
cluding boundary h˚-polynomials, weighted h˚-polynomials, and local h˚-polynomials. Each
of these polynomials captures the enumeration of lattice points in dilates of their associated
polytopes, which are the integral solutions to systems of linear inequalities. Thus, this field
of mathematics can be used to model a wide range of problems in other fields of mathematics
and across the natural and social sciences.

In 1962, Eugene Ehrhart introduced Ehrhart polynomials of lattice polytopes [56]. Given
a lattice polytope P , that is, the convex hull of finitely many points in Zd, the counting
function ehrP pnq “ |nP X Zd| agrees with a polynomial in n of degree dimpP q, called the
Ehrhart polynomial of P [56]. It is helpful to study this polynomial via its generating
function, called the Ehrhart series EhrP pzq of P . If P is a d-dimensional polytope, its
Ehrhart series can be expressed in the form

EhrP pzq :“ 1 `
ÿ

ně1

ehrP pnqzn “
h˚
P pzq

p1 ´ zqd`1
,

where h˚
P pzq is a polynomial in z of degree at most dimpP q, called the h˚-polynomial of P .

Ehrhart theory is an active area of research within combinatorics. Several classes of open
problems arise, including:

1. Classifications – Can we classify which polynomials can be Ehrhart polynomials?
What about which polynomials can be h˚-polynomials? Can we classify which poly-
topes have Ehrhart polynomials with positive coefficients? What about which poly-
topes have unimodal h˚-polynomials or real-rooted h˚-polynomials? Which polytopes
have special properties, e.g., have unimodular triangulations or have the integer de-
composition property? (See, e.g., [22, 39, 46, 73, 84, 85].)

2. Generalizations – Can we create various generalizations of Ehrhart theory (rational,
weighted, etc.)? What classical Ehrhart-theoretic results generalize in these cases?
Can we apply these generalized Ehrhart theories to other fields of mathematics (e.g.,
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enumerative combinatorics and algebraic geometry) in the same ways we can apply
classical Ehrhart theory? (See, e.g., [11, 20, 47, 88, 124].)

3. Applications – What types of questions in related fields of mathematics can be
approached using discrete geometry? For instance, can we construct combinatorially-
defined polytopes (order polytopes, lecture hall simplices, permutahedra, parking func-
tion polytopes, etc.) whose Ehrhart theory will have implications for their underlying
combinatorial objects? (See, e.g., [7, 21, 22, 64, 101].)

In this dissertation, we will tackle problems within each of these classes, mostly by consid-
ering h˚-polynomials (as opposed to Ehrhart polynomials) from a combinatorial perspective.
Stanley proved that the coefficients of the h˚-polynomial are nonnegative, originally via
commutative algebra [115] and later using a shelling argument [111]. There is also a simple
combinatorial proof by giving the coefficients of the h˚-polynomial a combinatorial interpre-
tation in terms of the simplices in a half-open triangulation of the polytope (which we go
through in detail in Chapter 2). This method gives us a natural approach to many lattice-
point enumeration problems, which we use throughout this dissertation. We also explore
how this interpretation holds up across the three variations of the h˚-polynomial, and study
its implications in each case.

In Chapter 2, we formalize the notions of simplices, triangulations, and half-open trian-
gulations. We also define the integer-point transform of a cone and connect this to Ehrhart
theory in order to understand the h˚-polynomial and arrive at this interpretation of its co-
efficients. Much of this chapter follows the presentation of Ehrhart theory given in [25].
Furthermore, we extend the Ehrhart theory of lattice polytopes to rational polytopes, i.e.,
polytopes with rational vertices. Throughout this chapter, we use order polytopes as an ex-
ample to demonstrate the potential of these techniques, and we will also revisit the Ehrhart
theory of this particular class of polytopes in Chapter 6.

In Chapter 3, which is joint work with Matthias Beck, we present our first variation
of the h˚-polynomial, the boundary h˚-polynomial ; this work is published in [8]. We first
define boundary h˚-polynomials and give a combinatorial interpretation of their coefficients
via simplices in half-open boundary triangulations (mirroring the classical result). We then
use these boundary h˚-polynomials to provide an “easy” proof of Stapledon’s symmetric
decomposition of classical h˚-polynomials [123] and Beck, Braun, and Vindas-Meléndez’s
rational generalization [19]:

Theorem 3.1.1. Let P be a full-dimensional rational polytope with denominator q and let
ℓ be the smallest positive integer such that ℓP contains an interior lattice point. Then

1 ` z ` ¨ ¨ ¨ ` zℓ´1

1 ` z ` ¨ ¨ ¨ ` zq´1
h˚
P pzq “ apzq ` zℓbpzq ,

where apzq and bpzq are palindromic polynomials with nonnegative integer coefficients.
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Moreover, we present the implications of this proof to Gorenstein polytopes, a special class
of polytopes with connections to commutative algebra and algebraic geometry. In particular,
we define a more general notion, that of rational Gorenstein polytopes, and prove that:

Theorem 3.5.4. If P is a rational g-Gorenstein polytope with denominator q, then

h˚
P pzq “

1 ` z ` ¨ ¨ ¨ ` zq´1

1 ` z ` ¨ ¨ ¨ ` zg´1
h˚

BP pzq ,

where h˚
BP pzq is the boundary h˚-polynomial of P .

Finally, we discuss the connection between our study of boundary h˚-polynomials and
Beck, Elia, and Rehberg’s rational Ehrhart theory (which studies rational dilates of poly-
topes, as opposed to just integer dilates) [20].

In Chapter 4, which is joint work with Robert Davis, Jesús A. De Loera, Alexey Garber,
Sofía Garzón Mora, Katharina Jochemko, and Josephine Yu, we introduce our second varia-
tion, the weighted h˚-polynomial ; this work is published in [11]. We place a weight function
on our lattice points, generalize the Ehrhart counting functions to weighted versions, and
explore which weights allow us to generalize Stanley’s classical nonnegativity and mono-
tonicity theorems. In particular, we define classes of weights RP (sums of products of linear
forms that are nonnegative on the polytope P ) and SP (sums of nonnegative products of
linear forms on the polytope P ), and prove the following nonnnegativity and monotonicity
theorems:

Nonnegativity Theorem (Theorem 4.2.5). Let P be a rational polytope and let h˚
P,wpzq

be its weighted h˚-polynomial.

1. If the weight w is a homogeneous element of RP , then the coefficients of h˚
P,wpzq are

nonnegative.

2. If the weight w is a homogeneous element of SP , then h˚
P,wpzq ě 0 for z ě 0.

First Monotonicity Theorem (Theorem 4.2.7). Let P,Q Ď Rd be rational polytopes,
P Ď Q, and let g be a common multiple of the denominators δpP q of P and δpQq of Q.
Then, for all weights w P RQ,

p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
dimP`m`1h˚

P,wpzq ĺ p1 ` zδpQq
` ¨ ¨ ¨ ` zg´δpQq

q
dimQ`m`1h˚

Q,wpzq

(where ĺ indicates coefficient-wise inequality).

Second Monotonicity Theorem (Theorem 4.2.8). Let P,Q Ď Rd be rational polytopes
of the same dimension D “ dimP “ dimQ, P Ď Q, and let g be a common multiple of the
denominators δpP q of P and δpQq of Q. Then, for all weights w P SQ,

p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
D`m`1h˚

P,wpzq ď p1 ` zδpQq
` ¨ ¨ ¨ ` zg´δpQq

q
D`m`1h˚

Q,wpzq

for all z ě 0.
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We also give some evidence for the tightness of these results by producing counterexam-
ples when these restraints on the weight function w are relaxed.

In Chapter 5, which is joint work with Benjamin Braun, Giulia Codenotti, Johannes
Hofscheier, and Andrés R. Vindas-Meléndez, we explore our third and final variation, the
local h˚-polynomial (sometimes called the box polynomial) of a simplex; a preprint of this
work can be found in [10]. Local h˚-polynomials have already been a point of interest within
Ehrhart theory, specifically as they relate the unimodality of classical h˚-polynomials. (We
call a polynomial with nonnegative coefficients unimodal if its vector of coefficients has one
peak.) In this chapter, we restrict ourselves to the study of “one-row Hermite normal form
simplices,” that is, simplices whose Hermite normal form expression has only one nontrivial
row, and characterize the conditions for the unimodality of the local h˚-polynomials of two
subclasses: the “all ones” simplices and the “geometric sequence” simplices.

Theorem 5.3.1. For the d-dimensional simplex S in one-row Hermite normal form with
last row p1, . . . , 1, Nq, where N “ pd´2qq`r for some 0 ď r ď d´3, the local h˚-polynomial
is unimodal if and only if r P t0, 1, 2, d ´ 3u.

Theorem 5.3.9. For any integers q ě 2 and k ě 2, the simplex S with non-trivial row
`

1, qk´1, . . . , q, 1, qk
˘

has a unimodal local h˚-polynomial.

Additionally, we look at the asymptotic behavior of the coefficients of the local h˚-
polynomials of these one-row Hermite normal form simplices as the normal volume of the
simplices tends to infinity.

In Chapter 6, which is joint work with Matthias Beck and Andrés R. Vindas-Meléndez,
we conclude with an application of Ehrhart theory to graph colorings; a preprint of this
work can be found in [9]. The chromatic polynomial of a graph can be expressed as a sum
of Ehrhart polynomials of order polytopes, and more generally, the principal specialization
of Stanley’s chromatic symmetric function [108] can be expressed as a sum of Chapoton’s
q-analog Ehrhart polynomials [47] of order polytopes, which yields the following structural
result:

Theorem 6.1.1. For any graph G “ pV,Eq and linear form λ : V Ñ Zą0, there exists a
polynomial χ̃λ

Gpq, xq P Qpqqrxs such that

χ̃λ
Gpq, rnsqq “

ÿ

c

q
ř

vPV λpvqcpvq ,

where the sum is over all proper n-colorings of V and rnsq :“ 1 ` q ` ¨ ¨ ¨ ` qn´1.

We mainly let λ “ 1, in which case we refer to χ̃λ
Gpq, xq as the “q-analog chromatic

polynomial.” We use methods from Ehrhart theory (inside-out polytopes and h˚-bases) to
obtain two expressions for the leading coefficient c1T pqq of the q-analog chromatic polynomial
of a tree:
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Corollary 6.4.2. Given a tree T “ pV,Eq on d vertices, the leading coefficient of χ̃1
T pq, nq

equals

c1T pqq “ pq ´ q2qd
ÿ

SĎE

ź

CPP pSq

1

1 ´ qΛC

“
1

rdsq!

ÿ

pϱ,σq

qd`majσ,

where P pSq denotes the collection of vertex sets of the connected components of the graph
pV, Sq and where the latter sum ranges over all pairs of acyclic orientations ϱ of T and linear
extensions σ of the poset induced by ϱ.

From these expressions, we study Stanley’s conjecture that the chromatic symmetric func-
tion XGpx1, x2, . . .q distinguishes trees [108], as well as Loehr and Warrington’s refinement
that XGp1, q, . . . , qd, 0, 0, . . .q already does [87], from a geometric perspective. We further
conjecture that:

Conjecture 6.1.3. The leading coefficient of the q-chromatic polynomial χ̃1
T pxq distinguishes

trees.

Moreover, we generalize this principal specialization to a q, λ-analog chromatic polyno-
mial (which does not align with Stanley’s original chromatic symmetric function but which
does arise naturally from our geometric perspective). This q, λ-analog chromatic polyno-
mial comes with a deletion-contraction formula, which enables us to construct a recursive
algorithm to compute it (see Figure 6.3).
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Chapter 2

Background

2.1 Polytopes and faces
A polytope P Ď Rd is the convex hull of finitely many points in Rd, equivalently a bounded
intersection of finitely many hyperspaces (see, e.g., Theorem 1.1 in [128]). For example, the
triangle T with vertices p0, 0q, p3, 0q, and p0, 3q can be expressed with vertex description

T “ convtp0, 0q, p3, 0q, p0, 3qu

or with hyperplane description

T “

$

&

%

px1, x2q P R2 :

»

–

´1 0
0 ´1
1 1

fi

fl

„

x1

x2

ȷ

ď

»

–

0
0
3

fi

fl

,

.

-

, (2.1)

as shown in Figure 2.1.
In order to define the faces of a polytope P , we need to define the notion of a supporting

hyperplane. Given a polytope P Ď Rd, we call a hyperplane

H “ tx P Rd : a1x1 ` ¨ ¨ ¨ ` adxd “ bu

supporting if P falls on one side of the hyperplane (including the hyperplane itself), that
is, if

P Ď tx P Rd : a1x1 ` ¨ ¨ ¨ ` adxd ď bu or P Ď tx P Rd : a1x1 ` ¨ ¨ ¨ ` adxd ě bu.

The set of faces of P is the set of intersections of P with a supporting hyperplane. We
also define the empty face ∅ and the polytope P to be faces. For example, the faces of the
triangle T are: the empty face, the zero-dimensional faces p0, 0q, p3, 0q, and p0, 3q, the three
edges of the triangle, and T itself (see Figure 2.2 for an example of a supporting hyperplane
for each nontrivial face). The zero-dimensional faces of a polytope are its vertices and the
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p0, 0q p3, 0q

p0, 3q

Figure 2.1: The vertex and hyperplane descriptions of the triangle

convtp0, 0q, p0, 3q, p3, 0qu “ tx1 ě 0u X tx2 ě 0u X tx1 ` x2 ď 3u

Figure 2.2: A supporting hyperplane for each nontrivial face of the triangle in Figure 2.1



CHAPTER 2. BACKGROUND 8

pd ´ 1q-dimensional faces (or codimension 1 faces) are its facets. The supporting hyper-
planes that witness the facets of a polytope are called its facet-defining hyperplanes.
The facet-defining hyperplanes constitute a minimal hyperplane description for P (see, e.g.,
equation 2.1) [24].

In this dissertation, we will primarily study lattice polytopes, i.e., polytopes whose ver-
tices have integer coordinates, and rational polytopes, i.e., polytopes whose vertices have
rational coordinates. An important quantity for a rational polytope P is its denominator,
or the smallest positive integer q ě 1 such that its qth dilate qP is a lattice polytope.

2.2 Simplices and triangulations
We will often study polytopes by decomposing them into simpler polytopes, usually sim-
plices. A simplex is a d-dimensional polytope with d`1 vertices (equivalently, d`1 facets),
e.g., a triangle, a tetrahedron, and so on.

Definition 2.2.1. T is a triangulation of a d-dimensional polytope P if T is a finite
collection of d-dimensional simplices t∆1, . . . ,∆mu such that

P “

m
ď

i“1

∆i

and such that for every ∆i,∆j P T , ∆i X ∆j is a face of both ∆i and ∆j.

It is a well-known (and extremely useful) theorem that every polytope admits a trian-
gulation. Moreover, such a triangulation can be constructed using no additional vertices,
implying that every lattice polytope has a triangulation into lattice simplices (sometimes
called a lattice triangulation). Constructions of various such triangulations (including
pulling triangulations and pushing triangulations) can be found in [25].

Moreover, we will frequently take advantage of the existence of disjoint triangulations
of polytopes into half-open simplices (that is, simplices with zero or more facets removed).
Such triangulations will allow us to avoid making inclusion-exclusion arguments.

Construction 2.2.2. Any triangulation T of P Ď Rd can be made into a disjoint triangu-
lation using what is commonly referred to as a “visibility argument.” Choose a point q in
the interior of P that is generic relative to the triangulation T , that is, a point q that is not
contained in any of the facet-defining hyperplanes of any of the simplices in T . Pass through
each simplex ∆ P T one at a time and do the following: for each facet F of ∆, if q is on
the opposite side of F ’s defining hyperplane as ∆ (i.e., if q’s “view” of F is not blocked by
∆), remove the facet F from ∆. An example of this procedure is shown in Figure 2.3 and a
more technical description via tangent cones is given in [25].

We will end this section with the construction of a very combinatorial disjoint triangula-
tion of an important class of polytopes, called order polytopes.
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q

Figure 2.3: Making a triangulation disjoint via a visibility construction. Closed facets (or
facets that are “blocked” from q by the simplex containing them) are shown in blue and open
facets (or facets that are “visible” from q) are shown in orange.

Definition 2.2.3. Given a finite poset Π with base set t1, . . . , du and order relation ĺ, the
order polytope OpΠq is the polytope

OpΠq :“ tpx1, . . . , xdq P r0, 1s
d : xi ď xj if i ĺ ju.

For example, the order polytope of the antichain is the unit cube and the order polytope
of a chain is a simplex. The order polytope OpΠq can be triangulated using the linear
extensions of the underlying poset, in particular, into the simplices

∆σ :“ tpx1, . . . , xdq P r0, 1s
d : 0 ď xσ1 ď . . . ď xσd

ď 1u,

where σ is a linear extension of Π. By a linear extension, we mean a permutation such that
in its one-line notation σ “ σ1 . . . σd, i appears before j if i ă j. We will be assuming
our underlying poset is naturally labelled, that is, we assume that the identity is a linear
extension of Π.

We can make this triangulation of OpΠq disjoint by using the descents of the linear
extensions to decide which simplices’ facets to remove (this is equivalent to choosing the
generic point q in Construction 2.2.2 to be in the simplex corresponding to the identity
permutation). This yields the following disjoint lattice triangulation of the order polytope:

OpΠq “
ě

σPJHpΠq

"

px1, . . . , xdq P Rd :
0 ď xσ1 ď . . . ď xσd

ď 1,
xσi

ă xσi`1
if σi ą σi`i

*

, (2.2)
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where JHpΠq is used to denote the set of linear extensions of the poset. This triangulation
is a special type of lattice triangulation called a unimodular triangulation, which will prove
very useful for the Ehrhart theory in the following sections.

2.3 Integer-point transforms of half-open simplicial
cones

Throughout the following chapters, we will be studying integer points in dilates of polytopes,
and this will prove easiest to accomplish for simplices. This is because we can think of integer
points in dilates of polytopes as integer points in a cone called the “homogenization” of the
polytope. When the polytope is a simplex, this homogenization is a simplicial cone. The
geometry of this type of cone makes organizing the integer points in the cone into an easily
enumerable set much simpler.

In this section, we will define this cone and give the enumeration (called an integer-point
transform) in the simplicial case, and later in this chapter, we will reconcile this with the
Ehrhart theory of general polytopes.

Definition 2.3.1. Given a polytope P Ď Rd, its homogenization (sometimes referred to
as the cone over P ) is

hompP q :“ tptp, tq : p P P, t ě 0u Ď Rd`1.

Equivalently, it is the cone generated by the vectors
"ˆ

v
1

˙

: v a vertex of P
*

.

Our goal in this section is to enumerate the lattice points in the homogenizations of
half-open lattice (and rational) simplices. Specifically, we wish to find a rational function
description of the generating function

σhomp∆qpz1, . . . , zd`1q :“
ÿ

xPhomp∆qXZd`1

zx1
1 ¨ ¨ ¨ z

xd`1

d`1 ,

which is called the integer-point transform of homp∆q. In order to do this, we take
advantage of the fact that homp∆q is a simplicial cone when ∆ is a simplex. That is,
its generators are d ` 1 linearly independent vectors that form a basis (over Z) for some
sublattice of Zd`1. Therefore, we are able to uniquely express every lattice point in homp∆q

as a sum of an integral linear combination of the generators and a point in its fundamental
parallelepiped:

Definition 2.3.2. Let ∆ “ convtv1, . . . , vd`1u Ď Rd be a d-dimensional half-open rational
simplex with denominator q with the facets opposite v1, . . . , vr removed (for some 0 ď r ď
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d ` 1), i.e. suppose

∆ “

$

&

%

d`1
ÿ

i“1

λivi :
λ1 ` ¨ ¨ ¨ ` λd`1 “ 1,
λ1, . . . , λr ą 0,
λr`1, . . . , λd`1 ě 0

,

.

-

.

The half-open fundamental parallelepiped of homp∆q is

□p∆q :“

#

d`1
ÿ

i“1

λi

ˆ

qvi
q

˙

:
0 ă λ1, . . . , λr ď 1,
0 ď λr`1, . . . , λd`1 ă 1

+

.

For example, Figure 2.4 shows the fundamental parallelepiped of the homogenization of
the half-open integer line segment p1, 3s and the fundamental parallelepiped of the homoge-
nization of the closed rational line segment r0.5, 2.5s (with denominator q “ 2).

Figure 2.4: The fundamental parallelepipeds of the homogenizations of the line segments
p1, 3s and r0.5, 2.5s

The half-open fundamental parallelepiped is defined so that the homogenization homp∆q

can be tiled with integral translates of □p∆q, that is,

homp∆q “
ě

k1,...,kd`1PZě0

˜

□p∆q `

d`1
ÿ

i“1

ki

ˆ

qvi
q

˙

¸

.
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In other words, any point x P homp∆q X Zd`1 can be uniquely written as the sum of an
integer point in □p∆q and a nonnegative integral linear combination of the generators of
homp∆q. This allows us to compute the integer-point transform of homp∆q (which enu-
merates infinitely many lattice points) just in terms of the (finitely many) integer points in
the fundamental parallelepiped. We denote the coordinates of each vi by pvi,1, . . . , vi,dq, and
compute:

σhomp∆qpz1, . . . , zd`1q “
ÿ

xPhomp∆qXZd`1

zx1
1 ¨ ¨ ¨ z

xd`1

d`1

“
ÿ

yP□p∆qXZd`1

¨

˝

ÿ

k1,...,kd`1PZě0

z
y1`

řd`1
i“1 kiqvi,1

1 ¨ ¨ ¨ z
yd`

řd`1
i“1 kiqvi,d

d z
yd`1`

řd`1
i“1 kiq

d`1

˛

‚

“
ÿ

yP□p∆qXZd`1

zy11 ¨ ¨ ¨ z
yd`1

d`1

ÿ

k1,...,kd`1PZě0

d`1
ź

j“1

pz
qvj,1
1 ¨ ¨ ¨ z

qvj,d
d zqd`1q

kj

“

ÿ

yP□p∆qXZd`1

zy11 ¨ ¨ ¨ z
yd`1

d`1

p1 ´ z
qv1,1
1 ¨ ¨ ¨ z

qv1,d
d zqd`1q ¨ ¨ ¨ p1 ´ z

qvd`1,1

1 ¨ ¨ ¨ z
qvd`1,d

d zqd`1q
, (2.3)

where the final equality comes from recognizing the inner sum as a product of d ` 1 infinite
geometric series. That is,

σhomp∆qpz1, . . . , zd`1q “

ÿ

yP□p∆qXZd`1

zy

p1 ´ zw1q ¨ ¨ ¨ p1 ´ zwd`1q
, (2.4)

where wi denotes the cone generator pqvi, qq and zx denotes the monomial zx1
1 ¨ ¨ ¨ z

xd`1

d`1 . For
example, using the fundamental parallelepipeds in Figure 2.4, we can compute

σhompp1,3sqpz1, z2q “
z21z2 ` z31z2

p1 ´ z1z2qp1 ´ z31z2q
and

σhompr0.5,2.5sqpz1, z2q “
1 ` z2pz1 ` z21q ` z22pz21 ` z31 ` z41q ` z32pz41 ` z51q

p1 ´ z1z22qp1 ´ z51z
2
2q

.

2.4 Ehrhart theory of lattice polytopes
Classical Ehrhart theory is the study of lattice-point enumeration in dilates of lattice poly-
topes. In particular, given any d-dimensional polytope P Ď Rd, define the counting function

ehrP pnq :“ |nP X Zd
|,

where nP “ tnx : x P P u. For example, if P is the standard 2-simplex convt0, e1, e2u shown
in Figure 2.5, ehrP pnq counts the number of nonnegative integer solutions to x1 ` x2 ď n,
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which is
ˆ

n ` 2

2

˙

“
1

2
n2

`
3

2
n ` 1. (2.5)

It is no coincidence that this is a polynomial of degree 2, in fact,

Figure 2.5: Dilates of the standard 2-simplex

Theorem 2.4.1 (Ehrhart, [56]). If P is a lattice polytope, ehrP pnq is a polynomial in n of
degree dimpP q, called the Ehrhart polynomial of P .

One way to see this is to study its generating function

EhrP pzq “
ÿ

ně0

ehrP pnqzn,

called the Ehrhart series of P (we define ehrP p0q to be 1 for closed polytopes and 0
otherwise). Choose any disjoint lattice triangulation T of P , as in Section 2.2, and express

EhrP pzq “
ÿ

∆PT
Ehr∆pzq.

The homogenization homp∆q is defined to exactly contain the nth dilate n∆ of ∆ at “height”
xd`1 “ n (see Figure 2.6), therefore the Ehrhart series enumerates all integer points x in the
cone homp∆q, weighted by zxd`1 . Thus, by equation 2.4,

Ehr∆pzq “ σhomp∆qp1, . . . , 1, zq “

ÿ

yPhomp∆qXZd`1

zyd`1

p1 ´ zqd`1
. (2.6)
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1∆ at x3 “ 1

2∆ at x3 “ 2

3∆ at x3 “ 3

Figure 2.6: The nth dilate of a polytope is the slice of its homogenization at xd`1 “ n,
therefore the Ehrhart series is an enumeration of the integer points in the homogenization
of a polytope.

Therefore, for any d-dimensional polytope P and any disjoint triangulation T of P ,

EhrP pzq “

ÿ

∆PT

¨

˝

ÿ

yPhomp∆qXZd`1

zyd`1

˛

‚

p1 ´ zqd`1
. (2.7)

The numerator of this rational function (i.e., p1´zqd`1 EhrP pzq) is called the h˚-polynomial
of P and is denoted h˚

P pzq. From the combinatorial interpretation of the coefficients of the
h˚-polynomial in equation 2.7, the fact that its degree is at most d ` 1 (d for a closed
polytope) is immediate, as are the following two classical results of Stanley:

Theorem 2.4.2 (Nonnegativity, [107]). For any lattice polytope P , the coefficients of h˚
P pzq

are nonnegative integers.
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Theorem 2.4.3 (Monotonocity, [107]). For any lattice polytopes P and Q such that P Ď Q,
h˚
P pzq ď h˚

Qpzq, coefficient-wise.

Moreover, being able to compute the h˚-polynomial h˚
P pzq “ h˚

dz
d ` ¨ ¨ ¨ ` h˚

1z ` h˚
0 from

the integer points in the fundamental parallelepipeds of the simplices in a triangulation of
P also enables us to explicitly compute the Ehrhart polynomial of P . By extracting the
coefficient of zn on both sides of the equation

EhrP pzq “
h˚
dz

d ` ¨ ¨ ¨ ` h˚
1z ` h˚

0

p1 ´ zqd`1
“ ph˚

dz
d

` ¨ ¨ ¨ ` h˚
1z ` h˚

0q
ÿ

ně0

ˆ

n ` d

d

˙

zn, (2.8)

we obtain

ehrP pnq “

d
ÿ

i“0

h˚
i

ˆ

n ` d ´ i

d

˙

.

Comparing this expression to the standard 2-simplex example in equation 2.5, we see that
in this case we had a very simple h˚-polynomial of 1. This polytope is an example of a
unimodular simplex, that is, a d-dimensional lattice simplex for which the generators of
its homogenization form a lattice basis for Zd`1 (equivalently, a lattice simplex with volume
1{d!). The fundamental parallelepiped of the cone of a unimodular simplex only contains 1
lattice point (in particular, the sum of the generators corresponding to the vertices that are
opposite the removed facets), thus

Theorem 2.4.4. If ∆ is a d-dimensional unimodular simplex with k removed facets, its
h˚-polynomial is h˚

∆pzq “ zk.

When a polytope has a unimodular triangulation, or a triangulation into unimodular
simplices, this makes computing its h˚-polynomial very quick. For example, every order
polytope has a unimodular triangulation (namely, the one given in equation 2.2). The
simplex corresponding to the linear extension σ has desσ many facets removed, therefore

h˚
OpΠqpzq “

ÿ

σPJHpΠq

zdesσ.

2.5 Ehrhart theory of rational polytopes
Since we can also express integer-point transforms of rational simplices in terms of their
(slightly larger) fundamental parallelepipeds, this generalizes to an Ehrhart theory of rational
polytopes. Given a rational polytope Q Ď Rd with denominator q ě 1, define its Ehrhart
series to be

EhrQpzq “
ÿ

ně0

|nQ X Zd
|zn.

Just as in the lattice case, EhrQpzq enumerates all lattice points in the homogenization of
Q, therefore

EhrQpzq “ σhompQqp1, . . . , 1, zq.
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There exists a triangulation T of Q into rational simplices of denominator q 1, and by
equation 2.4, the Ehrhart series of such a simplex ∆ will be equal to

Ehr∆pzq “

ÿ

yP□p∆qXZd`1

zyd`1

p1 ´ zqqd`1

(for □p∆q its fundamental parallelepiped formed using the generators at last coordinate q).
Now the last coordinate of an integer point in such a fundamental parallelepiped can be at
most qpd ` 1q, thus the Ehrhart series of Q can be expressed in the form

EhrQpzq “
h˚
Qpzq

p1 ´ zqqd`1
,

for h˚
Qpzq a polynomial of degree at most qpd ` 1q (and at most qpd ` 1q ´ 1 if Q is closed).

Again, h˚
Qpzq is called the h˚-polynomial of Q. Note that in the rational case, we have to

be slightly careful; we define the h˚-polynomial to be the numerator when the denominator
of the Ehrhart series is p1 ´ zqqd`1 (even if the rational function EhrQpzq can be simplified).
For this definition h˚

Qpzq :“ p1´ zqqd`1 EhrQpzq, Stanley’s classical nonnegativity and mono-
tonicity results generalize using the same combinatorial interpretation of the coefficients of
the h˚-polynomial. These results will be stated and explored much further in Chapter 4.

As the Ehrhart series of a rational polytope is more complicated when q ą 1, the counting
function |nQXZd| ends up being more complicated as well. The same method of expanding
out the Ehrhart series (as in equation 2.8) and collecting the coefficient of zn on both sides
also reveals that |nQ X Zd| agrees with a polynomial in n, but which polynomial it agrees
with depends on the value of n mod q. See, for example, the rational triangle in Figure 2.7,
which has denominator 2 and an Ehrhart quasipolynomial of period 2.

1Here, there is a subtlely in the denominator of the simplices. Because not all original vertices will be
used in every simplex, some simplices may end up having a smaller denominator. But we can always choose
to use a larger fundamental parallelepiped for such simplices, in particular the one with generators of last
coordinate q, effectively forcing each simplex’s Ehrhart series to still have denominator p1 ´ zqqd`1.
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ehrQpnq “

$

’

’

’

&

’

’

’

%

9

8
n2

`
9

4
n ` 1 if n ” 0 mod 2

9

8
n2

`
3

2
n `

3

8
if n ” 1 mod 2

Figure 2.7: The Ehrhart quasipolynomial of the rational triangle convtp0, 0q, p0, 1.5q, p1.5, 0qu

Theorem 2.5.1. If Q Ď Rd is a rational d-dimensional polytope with denominator q, then
ehrQpnq :“ |nQXZd| agrees with a quasipolynomial in n. That is, there exist polynomials
p0pxq, . . . , pq´1pxq of degree d such that

ehrQpnq “

$

’

’

’

’

&

’

’

’

’

%

p0pnq if n ” 0 mod q

p1pnq if n ” 1 mod q
...

...
pq´1pnq if n ” q ´ 1 mod q.

(Note that a particular polytope’s quasipolynomial might end up being periodic in some k|q
many polynomials. If k ă q, this is referred to as “period collapse.”)
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Chapter 3

Boundary h˚-polynomials

In this chapter, we follow up Construction 2.2.2 with an analogous construction of a disjoint
triangulation for the boundary of a polytope, which allows us to define the boundary h˚-
polynomial. We then use the boundary h˚-polynomial to revisit a theorem of Stapledon [123]
from a new lens and to develop new results for Gorenstein polytopes and rational dilations
of polytopes.

3.1 Introduction
Stanley’s theorem that h˚-polynomials of rational polytopes have nonnegative coefficients
was refined by Stapledon [123] (for lattice polytopes, i.e., q “ 1) and Beck–Braun–Vindas-
Meléndez [19] (for rational polytopes), who showed that the h˚-polynomial can be decom-
posed using palindromic polynomials with nonnegative coefficients. A palindromic polyno-
mial fpzq “

ř

fiz
i has symmetric coefficients, that is, fi “ fdegpfq´i for i “ 0, . . . , degpfq;

equivalently, zdegpfqfp1
z
q “ fpzq.

Theorem 3.1.1. Let P be a full-dimensional rational polytope with denominator q and let
ℓ be the smallest positive integer such that ℓP contains an interior lattice point. Then

1 ` z ` ¨ ¨ ¨ ` zℓ´1

1 ` z ` ¨ ¨ ¨ ` zq´1
h˚
P pzq “ apzq ` zℓ bpzq ,

where apzq and bpzq are palindromic polynomials with nonnegative integer coefficients.

We remark that our assumption that P is full dimensional and our convention for h˚
P pzq

imply that h˚
P pzq is divisible by 1`z`¨ ¨ ¨`zq´1, because the leading coefficient of ehrP pnq is

constant (namely, the volume of P ) and thus z “ 1 is the unique pole with maximal order of
the rational function EhrP pzq; see, e.g., [113, Theorem 4.1.1]. Thus the decomposition of the
polynomial 1`z`¨¨¨`zℓ´1

1`z`¨¨¨`zq´1 h
˚
P pzq into two palindromic polynomials as in Theorem 3.1.1 is unique

and an easy exercise. The point of Theorem 3.1.1 is that apzq and bpzq have nonnegative
coefficients.
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As was pointed out in [19], Theorem 3.1.1 immediately implies the inequalities

h˚
0 ` ¨ ¨ ¨ ` h˚

j`1 ě h˚
qpd`1q´1 ` ¨ ¨ ¨ ` h˚

qpd`1q´1´j , j “ 0, . . . ,
Y

qpd`1q´1
2

]

´ 1 ,

h˚
s ` ¨ ¨ ¨ ` h˚

s´j ě h˚
0 ` ¨ ¨ ¨ ` h˚

j , j “ 0, . . . , s ,

where s :“ deg h˚
P pzq. For the case q “ 1 (i.e., lattice polytopes), they go back to Hibi [68,

71] and Stanley [116].
The case q “ ℓ “ 1 of Theorem 3.1.1 was proved much earlier by Betke–McMullen [29].

Writing a (combinatorially defined) polynomial as a sum of two palindromic polynomials
as in Theorem 3.1.1 is often referred to as a symmetric decomposition and has applications
beyond a refinement of nonnegativity; we mention one representative (much more can be
found, e.g., in [36]): ppzq “ apzq ` z bpzq, with apzq and bpzq palindromic, is alternatingly
increasing (i.e., the coefficients of ppzq satisfy 0 ď p0 ď pd ď p1 ď pd´1 ď ¨ ¨ ¨ ) if and only
if the coefficients of both apzq and bpzq are nonnegative and unimodal (i.e., the coefficients
increase up to some index and then decrease).

Betke–McMullen’s, Stapledon’s, as well as Beck–Braun–Vindas-Meléndez’s proofs use
local h-vectors of a triangulation, their nonnegativity, and the Dehn–Sommerville relations.
Our main goal is to give an “easy” conceptual proof of Theorem 3.1.1—in particular, one
that is independent of local h-vectors (though they are hiding under the surface). Our ansatz
is to study the h˚-polynomial of the boundary of a rational polytope, and our second goal
is to exhibit that such a study is worthwhile, with the hope for further applications. The
connection to Theorem 3.1.1 is that the h˚-polynomial of the boundary of P , defined via

EhrBP pzq :“ 1 `
ÿ

ně1

ehrBP pnqzn “
h˚

BP pzq

p1 ´ zqqd
, (3.1)

equals apzq, for any q and ℓ;1 as we will see below, this equality follows from the uniqueness
of the symmetric decomposition and the palindromicity (3.2) of h˚

BP pzq. We remark that,
a priori, it is not clear that we can always represent the generating function of ehrBP pnq in
the form (3.1); in particular, we will see below (where we will show that this form always
exists) that h˚

BP pzq has degree qd, contrary to the degree of h˚
P pzq, and so the quasipolynomial

ehrBP pnq does not have constant term 1.
To illustrate the philosophy behind our approach, here is a do-it-yourself proof setup for

Theorem 3.1.1 in the case q “ ℓ “ 1:

• fix a (half-open) triangulation T of the boundary BP and extend T to a (half-open)
triangulation of P by coning over an interior lattice point x;

• convince yourself that apzq “ h˚
BP pzq is palindromic with nonnegative (in fact, as we

will show in Theorem 3.2.4, positive) coefficients;
1We suspect that this fact is well known to the experts, but we could not find it in the literature. We

thank Katharina Jochemko for pointing it out to us.
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• realize that the h˚-polynomial of each half-open simplex ∆ P T is coefficient-wise less
than or equal to the h˚-polynomial of convp∆,xq, and thus h˚

P pzq´apzq has nonnegative
coefficients.

It turns out that this philosophy works for general q and ℓ, with slight modifications (for
example, for ℓ ą 1, the interior point x cannot be a lattice point). To state our ansatz from
a different angle, we approach Theorem 3.1.1 by giving (1) a (positive, symmetric) interpre-
tation of apzq and (2) an explicit construction which shows that apzq ď 1`z`¨¨¨`zℓ´1

1`z`¨¨¨`zq´1 h
˚
P pzq.

This point of view has consequences beyond a (somewhat short) proof of Theorem 3.1.1.
One of these consequences is an inequality among the two leading coefficients of an Ehrhart
polynomial which seems to be novel.

Corollary 3.1.2. Let P be a full-dimensional lattice d-polytope and let ℓ be the smallest pos-
itive integer such that ℓP contains an interior lattice point. Then the two leading coefficients
of ehrP pnq “ kd n

d ` kd´1 n
d´1 ` ¨ ¨ ¨ ` k0 satisfy

ℓ d

2
kd ě kd´1 .

Betke–McMullen [29, Theorem 6] gave upper bounds for each kj in terms of kd and Stirling
numbers of the first kind. For j “ d ´ 1 they yield

`

d`1
2

˘

kd ě kd´1, which Corollary 3.1.2
improves upon.2

The structure of this chapter is as follows. Section 3.2 serves as a point of departure for
our study of h˚

BP pzq. We prove several inequalities for the coefficients of h˚
BP pzq, among them

a lower bound result (Theorem 3.2.4), which in particular shows that h˚
BP pzq has positive

coefficients.
Section 3.3 gives a construction for certain half-open triangulations we will need for our

proof of Theorem 3.1.1 in Section 3.4; this section also contains a proof of Corollary 3.1.2.
In Section 3.5 we discuss reflexive and Gorenstein polytopes, as well as their rational

analogues, and implications for these polytopes from the viewpoint of h˚
BP pzq. Our main

result in this section (Theorem 3.5.4) says that if P is a rational polytope with denominator
q such that gP is reflexive, then

h˚
P pzq “

1 ` z ` ¨ ¨ ¨ ` zq´1

1 ` z ` ¨ ¨ ¨ ` zg´1
h˚

BP pzq .

In Section 3.6 we prove an analogue of Theorem 3.1.1 for rational (or, equivalently, real)
Ehrhart dilations.

2We thank Martin Henk for reminding us about the Betke–McMullen inequalities and asking whether
they could be improved using our setup.
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3.2 h˚-polynomials of boundaries of polytopes
We start by addressing some of the subtleties in defining the Ehrhart series (and thus the
h˚-polynomial) of BP , especially when we ultimately compute the Ehrhart series using a half-
open triangulation of the boundary. The reason for the convention (3.1) that EhrBP pzq (and
therefore also h˚

BP pzq) has constant term 1 is Ehrhart–Macdonald reciprocity (see, e.g., [25,
Corollary 5.4.5]): it says that the rational generating functions EhrP pzq and

EhrP ˝pzq :“
ÿ

ně1

ehrP ˝pnqzn “
h˚
P ˝pzq

p1 ´ zqqd`1

are related via
EhrP ˝p1

z
q “ p´1q

d`1 EhrP pzq

or, equivalently,
zqpd`1q h˚

P ˝p1
z
q “ h˚

P pzq .

As EhrBP pzq “ EhrP pzq ´ EhrP ˝pzq, we obtain

h˚
BP pzq “

h˚
P pzq ´ h˚

P ˝pzq

1 ´ zq

and thus h˚
BP pzq is palindromic, i.e.,

zqd h˚
BP p1

z
q “ h˚

BP pzq . (3.2)

(See [25, Proposition 5.6.3] for connections to more general self-reciprocal complexes and the
Dehn–Sommerville relations.)

So h˚-polynomials of boundaries of polytopes are in a sense more restricted than h˚-
polynomials of polytopes. Even further, as we will show in Theorem 3.2.4 below, h˚

BP pzq has
no internal zero coefficients, which is far from true for h˚

P pzq (see, e.g., [75]).
On the other hand, there is the following alternative extension of nonnegativity of h˚

P pzq

due to Stanley [107] (we state only the version for lattice polytopes):

Theorem 3.2.1. Let P and Q be lattice polytopes with P Ď Q. Then h˚
P pzq ď h˚

Qpzq

coefficient-wise.

Monotonicity does not hold for h˚
BP pzq, as the following example exhibits.

Example 3.2.2. Let

P “ convtp0, 0q, p0, 2q, p2, 0q, p2, 2qu and Q “ convtp0, 0q, p0, 2q, p2, 0q, p3, 3qu.

Then
h˚

BP pzq “ 1 ` 6z ` z2 and h˚
BQpzq “ 1 ` 4z ` z2.

Thus P Ď Q but h˚
BP pzq ě h˚

BQpzq coefficient-wise.
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Moreover, even though BP Ď P , it is not always true that h˚
BP pzq ď h˚

P pzq: while h˚
BP pzq

always has degree qd, there are many polytopes for which h˚
P pzq has lower degree. On the

other hand, the ℓ “ q “ 1 case of Theorem 3.1.1 implies

h˚
P pzq “ h˚

BP pzq ` z bpzq ,

thus when P is a lattice polytope containing an interior lattice point, it is true that h˚
BP pzq ď

h˚
P pzq. The rational version gives us a more general necessary condition in terms of ℓ and q

for h˚
BP pzq ď h˚

P pzq to hold (again, assuming Theorem 3.1.1):

Corollary 3.2.3. Let P Ă Rd be a rational polytope with denominator q, and let ℓ ě 1 be
the smallest dilate of P that contains an interior lattice point. If ℓ ď q, then h˚

BP pzq ď h˚
P pzq.

(In particular, when P is a lattice polytope, ℓ “ 1 suffices.)

Proof. By Theorem 3.1.1 (with the interpretation apzq “ h˚
BP pzq) and the assumption ℓ ď q,

h˚
BP pzq ď p1 ` z ` ¨ ¨ ¨ ` zℓ´1

q
h˚
P pzq

1 ` z ` ¨ ¨ ¨ ` zq´1
ď p1 ` z ` ¨ ¨ ¨ ` zq´1

q
h˚
P pzq

1 ` z ` ¨ ¨ ¨ ` zq´1

coefficient-wise.

The following lower-bound result is a restatement of a theorem of Stapledon [123, Theo-
rem 2.14] (and a simplified proof) in our language:

Theorem 3.2.4. If P is a lattice d-polytope with boundary h˚-polynomial h˚
BP pzq “ h˚

BP,dz
d`

¨ ¨ ¨ ` h˚
BP,1z ` h˚

BP,0 then

1 “ h˚
BP,0 ď h˚

BP,1 ď h˚
BP,j for j “ 2, . . . , d ´ 1.

In particular, h˚
BP pzq has positive coefficients.

This result parallels a lower-bound theorem of Hibi [68], who proved that if P is a d-
dimensional lattice polytope with h˚-polynomial h˚

P pzq “ h˚
P,dz

d ` ¨ ¨ ¨ `h˚
P,1z`h˚

P,0 of degree
d (i.e., P contains an interior lattice point), then 1 “ h˚

P,0 ď h˚
P,1 ď h˚

P,j for j “ 2, . . . , d ´ 1.
Our proof mirrors that of Hibi; it turns out that adapting it for h˚

BP pzq simplifies the proof.

Proof of Theorem 3.2.4. Let T be a triangulation of BP that uses every lattice point in BP
(i.e., every lattice point in BP is a vertex of a simplex in T ), with h-vector ph0, . . . , hdq

defined, as usual, via

hd x
d

` hd´1 x
d´1

` ¨ ¨ ¨ ` h0 “

d´1
ÿ

k“´1

fk x
k`1

p1 ´ xq
d´1´k

where fk denotes the number of k-simplices in T and f´1 “ 1. The definitions of h and h˚

imply
h1 “ f0 ´ d “

ˇ

ˇBP X Zd
ˇ

ˇ ´ d “ h˚
BP,1 . (3.3)
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(Stanley [110] proved much more about relations between h and h˚.) Barnette’s famous
lower bound theorem [15] (see also [69, Theorem 13.1]) says

h1 ď hj for j “ 2, . . . , d ´ 1. (3.4)

Finally, we apply a theorem of Betke and McMullen [29, Theorem 2] to our situation: it
yields

hj ď h˚
BP,j for j “ 0, . . . , d. (3.5)

(Betke–McMullen [29] prove much more, giving a formula for h˚ in terms of local h-vectors.)
The inequalities (3.3), (3.4), and (3.5) line up to complete our proof.

We finish this section by recalling, for the record, another set of inequalities for h˚
BP pzq in

the special (and important) case that P admits a regular unimodular boundary triangulation,
once more due to Stapledon [123, Theorem 2.20]:

1 “ h˚
BP,0 ď h˚

BP,1 ď ¨ ¨ ¨ ď h˚

BP,t d
2

u
and h˚

BP,j ď

ˆ

h˚
BP,1 ` j ´ 1

j

˙

.

3.3 Half-open boundary triangulations
Our approach is to triangulate BP into disjoint half-open simplices of dimension d´1, in order
to avoid inclusion–exclusion arguments. There is a subtlety stemming from our convention
that the h˚-polynomial of BP has constant term 1, which we need to address here.

Before introducing the half-open boundary triangulations we will use in the later proofs,
we recall the Ehrhart series of a half-open simplex. Let ∆ Ď Rd be the simplex with vertices
v1, . . . ,vd`1 P 1

q
Zd, where the facets opposite v1, . . . ,vr are missing. That is, let

∆ “

$

&

%

λ1v1 ` ¨ ¨ ¨ ` λd`1vd`1 :
λ1, . . . , λr ą 0
λr`1, . . . , λd`1 ě 0
λ1 ` ¨ ¨ ¨ ` λd`1 “ 1

,

.

-

.

Its Ehrhart series is
Ehr∆pzq :“

ÿ

ně0

ehr∆pnqzn,

with constant term 1 if and only if ∆ is closed, therefore it is possible for its expression as
a rational function to be improper. That is, as seen in the construction below, the Ehrhart
series can still be expressed in the form

Ehr∆pzq “
h˚
∆pzq

p1 ´ zqqd`1
,

but it is possible for the h˚-polynomial to have degree equal to qpd` 1q. The following tiling
argument of the homogenization of a rational simplex will also be crucial to the proof of
Theorem 3.1.1 in the next section.
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Construction 3.3.1. We follow [25, Section 4.6] and define the homogenization of ∆ to be
the half-open cone

homp∆q :“
r
ÿ

j“1

Rą0

ˆ

vj

1

˙

`

d`1
ÿ

j“r`1

Rě0

ˆ

vj

1

˙

Ă Rd`1.

Observe that the intersection of homp∆q with the hyperplane xd`1 “ n gives precisely a copy
of the nth dilate of ∆, whence

Ehr∆pzq “
ÿ

xPhomp∆qXZd`1

zxd`1 .

Define the fundamental parallelepiped of ∆ to be

F∆ :“
r
ÿ

j“1

p0, 1s

ˆ

qvj

q

˙

`

d`1
ÿ

j“r`1

r0, 1q

ˆ

qvj

q

˙

.

Because the generators of homp∆q are linearly independent, homp∆q can be tiled with trans-
lates of F∆. More precisely, every point in homp∆q can be uniquely expressed as the sum of
a nonnegative integral combination of the

`

qvj

q

˘

and an integral point in F∆. This yields

Ehr∆pzq “
ÿ

k1,...,kd`1PZě0

ÿ

mPF∆XZd`1

zqk1`¨¨¨`qkd`1`md`1 “

ř

mPF∆XZd`1 zmd`1

p1 ´ zqqd`1
.

Observe that we chose the fundamental parallelepiped to have generators each with last
coordinate q, however it is not necessary for this to be the case. For example, suppose
q1, . . . , qd`1 are such that vj P 1

qj
Zd`1. Then we can tile homp∆q with translates of the

fundamental parallelepiped

F 1
∆ :“

r
ÿ

j“1

p0, 1s

ˆ

qjvj

qj

˙

`

d`1
ÿ

j“r`1

r0, 1q

ˆ

qjvj

qj

˙

to obtain the expression for the Ehrhart series

Ehr∆pzq “
ÿ

k1,...,kd`1PZě0

ÿ

mPF 1
∆XZd`1

zq1k1`¨¨¨`qd`1kd`1`md`1 “

ř

mPF 1
∆XZd`1 zmd`1

p1 ´ zq1q ¨ ¨ ¨ p1 ´ zqd`1q
.

Therefore, the denominator in our resulting expression of the Ehrhart series depends on
our choice of fundamental parallelepiped, a subtlety that will be important in the following
section.

Naturally, we would like to construct a triangulation of BP such that

h˚
BP pzq “

ÿ

∆PT

h˚
∆pzq (3.6)

when T is a disjoint half-open triangulation of BP . We achieve this as follows:
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• For a d-dimensional rational polytope P with denominator q, choose a rational tri-
angulation T of BP into pd ´ 1q-dimensional simplices with denominators dividing q.
This can be accomplished, for example, by picking a triangulation that uses only the
vertices of P .

• Use the convention to express the Ehrhart series as if each simplex ∆ P T has denom-
inator q, i.e., define

h˚
∆pzq “ p1 ´ zqqd Ehr∆pzq .

This guarantees that we will already have a common denominator when adding up the
Ehrhart series of the simplices in the boundary triangulation.

• Apply Construction 3.3.2 below to turn T into a disjoint triangulation with exactly
one closed simplex. This guarantees that the constant term of EhrBP pzq will match the
constant term of the sum of the Ehrhart series of the simplices in T .

Once we are able to construct such a disjoint boundary triangulation T with exactly one
closed simplex, we will obtain

ÿ

∆PT

h˚
∆pzq

p1 ´ zqqd
“

ÿ

ně0

ÿ

∆PT

ehr∆pnqzn “ 1 `
ÿ

ně1

ehrBP pnq “
h˚

BP pzq

p1 ´ zqqd
,

as desired.
Fortunately, the following construction gives a disjoint boundary triangulation T into

half-open pd ´ 1q-simplices, exactly one of which is closed; for such a T , we will have (3.6).

x

y

Figure 3.1: Making a boundary triangulation disjoint via a visibility construction. Closed
facets are shown in blue and open facets are shown in orange.

Construction 3.3.2. Fix a rational polytope P and a rational triangulation T of BP into
pd´ 1q-dimensional simplices. We will construct, from this given T , a disjoint boundary tri-
angulation into half-open simplices. Choose any point x P P ˝ and let T 1 be the triangulation
of P given by coning over T , i.e.,

T 1 :“ tPyrpx,∆q : ∆ P T u
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where for
∆ “

"

λ1v1 ` ¨ ¨ ¨ ` λdvd :
λ1, . . . , λd ě 0
λ1 ` ¨ ¨ ¨ ` λd “ 1

*

we define

Pyrpx,∆q :“

"

λ1v1 ` ¨ ¨ ¨ ` λdvd ` λd`1x :
λ1, . . . , λd`1 ě 0
λ1 ` ¨ ¨ ¨ ` λd`1 “ 1

*

.

Choose a point y P P that is generic with respect to T 1, i.e., y is not contained in any
facet-defining hyperplane of any simplex in T 1. For each simplex ∆1 P T 1, remove all facets of
∆1 that are visible from y, i.e., remove all facets F of ∆1 such that y is not in the halfspace
corresponding to F that defines ∆1 (see, e.g., [25, Chapter 5] for more details about half-open
triangulations using a visibility construction). This makes T 1 into a disjoint triangulation
of P , which restricts to a disjoint triangulation of BP . Moreover, the only closed simplex in
the disjoint triangulation of BP is the one corresponding to ∆1 that contains y. An example
is shown in Figure 3.1.

Remark 1. We note that if T is a disjoint lattice triangulation with exactly one closed
simplex, then h˚

BP,k is at least the number of simplices in T with k missing faces (since the
fundamental parallelepiped of such a simplex has a lattice point equal to the sum of the
k generators opposite those missing faces). In the example in Figure 3.1, if T is a lattice
triangulation, we learn that h˚

BP pzq ě 1 ` 3z ` z2, coefficient-wise.

3.4 Symmetric decompositions of h˚-polynomials
We will now prove Theorem 3.1.1 using a half-open triangulation of the boundary of the
polytope. The geometric interpretation of the coefficients of the h˚-polynomial of a half-
open simplex in Construction 3.3.1 allows us to compare h˚-polynomials of simplices via their
fundamental parallelepipeds, which will ultimately allow us to compare h˚

P pzq and h˚
BP pzq.

In the lattice case, we will see the finite geometric series 1 ` z ` ¨ ¨ ¨ ` zℓ´1 arise naturally
as the correction between the denominator of the Ehrhart series of a lattice polytope and
the denominator of the Ehrhart series of a rational polytope with all integral vertices except
for one vertex with denominator ℓ. In the rational case, we will see the term 1`z`¨¨¨`zℓ´1

1`z`¨¨¨`zq´1

arise as the correction between the denominator of the Ehrhart series of a rational polytope
with denominator q and the denominator of the Ehrhart series of a rational polytope with
all denominator-q vertices except for one vertex with denominator ℓ.

Proof of Theorem 3.1.1. Let T be a disjoint triangulation of BP into pd ´ 1q-dimensional
rational half-open simplices with denominator q. By Construction 3.3.2, we may assume
that exactly one simplex in T is closed. Let x P P ˝ be such that ℓx P pℓP q˝ X Zd; by
the minimality of ℓ, we know that x has denominator ℓ. Given ∆ P T , let Pyrpx,∆q be
the corresponding half-open d-simplex. These simplices give rise to the disjoint rational
triangulation T 1 :“ tPyrpx,∆q : ∆ P T u of P .
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We first claim that for any ∆ P T ,

h˚
Pyrpx,∆qpzq “ h˚

∆pzq ` zℓ b∆pzq (3.7)

for some polynomial b∆pzq with nonnegative coefficients. To see this, let v1, . . . ,vd P Qd

be the vertices of ∆ (so qv1, . . . , qvd P Zd). Relabel the vertices such that the facets of ∆
opposite v1, . . . ,vr are missing and the facets of ∆ opposite vr`1, . . . ,vd are present in ∆.

Now we apply Construction 3.3.1 with the half-open parallelepiped

F∆ :“
r
ÿ

j“1

p0, 1s

ˆ

qvj

q

˙

`

d
ÿ

j“r`1

r0, 1q

ˆ

qvj

q

˙

yielding

Ehr∆pzq “

ř

mPF∆XZd`1 zmd`1

p1 ´ zqqd
.

Meanwhile, Pyrpx,∆q is a d-dimensional simplex with vertices v1, . . . ,vd,x, with missing
facets opposite v1, . . . ,vr and included facets opposite vr`1, . . . ,vd,x. Then we again apply
Construction 3.3.1 (noting the choice of fundamental parallelepiped) to obtain a tiling of

hompPyrpx,∆qq “

r
ÿ

j“1

Rą0

ˆ

vj

1

˙

`

d
ÿ

j“r`1

Rě0

ˆ

vj

1

˙

` Rě0

ˆ

x
1

˙

with translates of the half-open parallelepiped

FPyrpx,∆q :“
r
ÿ

j“1

p0, 1s

ˆ

qvj

q

˙

`

d
ÿ

j“r`1

r0, 1q

ˆ

qvj

q

˙

` r0, 1q

ˆ

ℓx
ℓ

˙

giving

EhrPyrpx,∆qpzq “
ÿ

k1,...,kd`1PZě0,

mPFPyrpx,∆qXZd`1

zqk1`¨¨¨`qkd`ℓkd`1`md`1 “

ř

mPFPyrpx,∆qXZd`1 zmd`1

p1 ´ zqqdp1 ´ zℓq
.

Now let m be a lattice point in FPyrpx,∆q, say

m “ α1

ˆ

qv1

q

˙

` ¨ ¨ ¨ ` αd

ˆ

qvd

q

˙

` β

ˆ

ℓx
ℓ

˙

(3.8)

with 0 ă α1, . . . , αr ď 1 and 0 ď αr`1, . . . , αd, β ă 1. If β “ 0, then m P F∆. If β ą 0, then
the first d coordinates of m are given by

α1qv1 ` ¨ ¨ ¨ ` αdqvd ` βℓx ,
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and since β ą 0, this is a lattice point in md`1pPyrpx,∆qz∆q, where

md`1 “ α1q ` ¨ ¨ ¨ ` αdq ` βℓ .

But by the minimality of ℓ, we know that jpPyrpx,∆qz∆q contains no lattice points for
j “ 1, . . . , ℓ ´ 1; thus, md`1 ě ℓ. Therefore,

h˚
Pyrpx,∆qpzq “

ÿ

mPFPyrpx,∆qXZd`1

zmd`1 “
ÿ

mPF∆XZd`1

zmd`1 ` zℓ b∆pzq

“ h˚
∆pzq ` zℓ b∆pzq

for some polynomial b∆pzq with nonnegative integral coefficients, which proves claim (3.7).
Summing over all ∆ P T now yields

EhrP pzq “
ÿ

∆PT

EhrPyrpx,∆qpzq “

ř

∆PT h˚
Pyrpx,∆q

pzq

p1 ´ zqqdp1 ´ zℓq
“

ř

∆PT

`

h˚
∆pzq ` zℓ b∆pzq

˘

p1 ´ zqqdp1 ´ zℓq
.

Define bP pzq :“
ř

∆PT b∆pzq, which we know to be a polynomial with nonnegative integral
coefficients. Thus

EhrP pzq “
h˚
P pzq

p1 ´ zqqd`1
“

h˚
BP pzq ` zℓ bP pzq

p1 ´ zqqdp1 ´ zℓq

and so
1 ` z ` ¨ ¨ ¨ ` zℓ´1

1 ` z ` ¨ ¨ ¨ ` zq´1
h˚
P pzq “ h˚

BP pzq ` zℓ bP pzq .

By (3.2), h˚
BP pzq is palindromic with zqd h˚

BP p1
z
q “ h˚

BP pzq, and the palindromicity of

bP pzq “

1´zℓ

1´zq
h˚
P pzq ´ h˚

BP pzq

zℓ

follows from this, h˚
P pzq “ h˚

P ˝pzq ` p1 ´ zqqh˚
BP pzq, and Ehrhart–Macdonald reciprocity:

zqd´ℓbP p1
z
q “ zqd´ℓ

1´ 1

zℓ

1´ 1
zq

h˚
P p1

z
q ´ h˚

BP p1
z
q

1
zℓ

“ zqd
ˆ

1 ´ 1
zℓ

1 ´ 1
zq

´

h˚
P ˝p1

z
q ` p1 ´ 1

zq
qh˚

BP p1
z
q

¯

´ h˚
BP p1

z
q

˙

“ zqd
ˆ

1 ´ 1
zℓ

1 ´ 1
zq

h˚
P ˝p1

z
q ` p1 ´ 1

zℓ
qh˚

BP p1
z
q ´ h˚

BP p1
z
q

˙

“
1

zℓ

ˆ

zℓ ´ 1

zq ´ 1
zqpd`1q h˚

P ˝p1
z
q ´ zqd h˚

BP p1
z
q

˙

“
1

zℓ

ˆ

1 ´ zℓ

1 ´ zq
h˚
P pzq ´ h˚

BP pzq

˙

“ bP pzq .
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Remark 2. If P Ă Rd´1 is a lattice polytope, it is well known that h˚
P pzq equals the h˚-

polynomial of Pyrped, P q Ă Rd. Our above proof implies for more general pyramids

h˚
P pzq ď h˚

Pyrpx,P qpzq

coefficient-wise, for any x P Zd not in the affine span of P . Moreover, the proof reveals a
rational analogue:

Corollary 3.4.1. Let P Ă Rd´1 be a rational polytope with denominator q. Then

h˚
P pzq “ h˚

Pyrped,P qpzq ,

where h˚
P pzq “ p1 ´ zqqd EhrP pzq and h˚

Pyrped,P q
pzq “ p1 ´ zqqdp1 ´ zqEhrPyrped,P qpzq. If

x P 1
r
Zd, then

h˚
P pzq ď h˚

Pyrpx,P qpzq ,

where h˚
P pzq “ p1 ´ zqqd EhrP pzq and h˚

Pyrpx,P q
pzq “ p1 ´ zqqdp1 ´ zrqEhrPyrpx,P qpzq.

We finish this section with proving Corollary 3.1.2.

Proof of Corollary 3.1.2. It is well known that h˚
P p1q

d!
equals the volume of P , which in turn

equals kd; this follows, e.g., by writing ehrP pnq in terms of the binomial-coefficient basis
`

n
d

˘

,
`

n`1
d

˘

, . . . ,
`

n`d
d

˘

(and then the coefficients are precisely the coefficients of h˚
P pzq; see, e.g.,

[24, Section 3.5]). By the same reasoning, h˚
BP p1q

pd´1q!
equals the sum of the volumes of the facets

of P , each measures with respect to the sublattice in the affine span of the facet. This sum,
in turn, is well known to equal 2 kd´1. Putting it all together,

ℓ d! kd “ ℓ h˚
P p1q ě h˚

BP p1q “ 2pd ´ 1q! kd´1 ,

where the inequality follows from specializing Theorem 3.1.1 (with the interpretation apzq “

h˚
BP pzq) at z “ 1.

3.5 Symmetric decompositions of h˚-polynomials of
Gorenstein polytopes

A d-dimensional polytope P is reflexive if it is a lattice polytope that contains the origin in
its interior and one of the following (equivalent) statements holds:

1. the dual polytope of P , i.e.,

P ˚ :“ tx P Rd : x ¨ y ď 1 for all y P P u ,

is a lattice polytope;
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2. P “ tx P Rd : Ax ď 1u, where A is an integral matrix and 1 is a vector of all 1s.

Since h˚-polynomials are invariant under integral translation, we allow translates of re-
flexive polytopes. Now we need not require that 0 P P ˝, and the following statements are
all equivalent to being an integral translate of a reflexive polytope:

1. |P ˝ X Zd| “ 1 and pt ` 1qP ˝ X Zd “ tP X Zd for all t P Zą0;

2. P contains a unique interior lattice point that is lattice distance 1 away from each facet
of P ;

3. zd h˚
P p1

z
q “ h˚

P pzq .

If P is a lattice polytope and there exists an integer g ě 1 such that gP is reflexive, we
say that P is g-Gorenstein.

By retracing the steps in the proof of Theorem 3.1.1 but observing that there is no β ą 0
case if P is reflexive, we can obtain a relationship between h˚

P pzq and h˚
BP pzq. Similarly,

we can do this for Gorenstein polytopes. Both relationships quickly imply that h˚
P pzq is

palindromic since h˚
BP pzq is. In this section we will see these results as corollaries of more

general theorems for rational polytopes.
Fiset and Kasprzyk generalized the notion of being reflexive to rational polytopes in [57].

They define a polytope P Ď Rd to be rational reflexive if it is the convex hull of finitely
many rational points in Qd, contains the origin in its interior, and has a lattice dual polytope.
Equivalently, a rational polytope P is rational reflexive if it has a hyperplane description
P “ tx P Rd : Ax ď 1u, where A is an integral matrix.

Fiset and Kasprzyk prove the following:

Theorem 3.5.1. If P is a rational reflexive polytope, then h˚
P pzq is palindromic.

In their proof, they define the “h˚-polynomials” corresponding to each of the components
of the Ehrhart quasipolynomial of the rational polytope, show (using reciprocity) that the ith
such polynomial is equal to the pq´1´iqth polynomial with coefficients read backwards, and
finally show that the h˚-polynomial of the rational polytope can be written in terms of these
smaller polynomials. This is a generalized version of Hibi’s proof [70] that lattice polytopes
with lattice duals have symmetric h˚-polynomials. Our proof in the previous section shows
the lattice version in an alternative way, and in this section, we will show the rational version.
By (3.2), Fiset–Kasprzyk’s theorem is an immediate corollary of the following:

Theorem 3.5.2. If P is a rational reflexive polytope with denominator q, then

h˚
P pzq “

`

1 ` z ` ¨ ¨ ¨ ` zq´1
˘

h˚
BP pzq .

Proof. Fix a disjoint half-open triangulation T of BP into pd´1q-dimensional simplices using
the vertices of P . Fix ∆ P T , say ∆ “ convpv1, . . . ,vdq with v1, . . . ,vd P 1

q
Zd, where the
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facets of ∆ opposite v1, . . . ,vr are missing and the facets opposite vr`1, . . . ,vd are included.
We now follow the steps in our proof of Theorem 3.1.1 using the fundamental parallelepiped

F∆ :“
r
ÿ

j“1

p0, 1s

ˆ

qvj

q

˙

`

d
ÿ

j“r`1

r0, 1q

ˆ

qvj

q

˙

yielding

Ehr∆pzq “

ř

mPF∆XZd`1 zmd`1

p1 ´ zqqd

and

FPyrp0,∆q :“
r
ÿ

j“1

p0, 1s

ˆ

qvj

q

˙

`

d
ÿ

j“r`1

r0, 1q

ˆ

qvj

q

˙

` r0, 1q

ˆ

0
1

˙

giving

EhrPyrp0,∆qpzq “

ř

mPFPyrp0,∆qXZd`1 zmd`1

p1 ´ zqqdp1 ´ zq
.

Fix a point p P FPyrp0,∆q, say

p “

d
ÿ

j“1

αj

ˆ

qvj

q

˙

` β

ˆ

0
1

˙

,

with 0 ă α1, . . . , αr ď 1 and 0 ď αr`1, . . . , αd, β ă 1. The simplex ∆ is contained in some
facet-defining hyperplane of P , say

H “
␣

x P Rd : a1x1 ` ¨ ¨ ¨ ` adxd “ 1
(

,

where a1, . . . , ad P Z. Consider the value of a1p1 ` ¨ ¨ ¨ ` adpd (where p1, . . . , pd`1 are the
coordinates of p). If vi,j denotes the jth coordinate of vi, then

a1p1 ` ¨ ¨ ¨ ` adpd “ a1pα1qv1,1 ` ¨ ¨ ¨ ` αdqvd,1q ` ¨ ¨ ¨ ` adpα1qvd,1 ` ¨ ¨ ¨ ` αdqvd,dq

“ qα1pa1v1,1 ` ¨ ¨ ¨ ` adv1,dq ` ¨ ¨ ¨ ` qαdpa1vd,1 ` ¨ ¨ ¨ ` vd,dq .

Since each of v1, . . . ,vd P H, this is equal to

qα1 ` ¨ ¨ ¨ ` qαd “ pd`1 ´ β .

If p is a lattice point in FPyrp0,∆q, then both a1p1 ` ¨ ¨ ¨ ` adpd and pd`1 are integers, so β
must also be an integer. This forces β “ 0 and thus

FPyrp0,∆q X Zd`1
“ F∆ X Zd`1. (3.9)

Therefore,

EhrPyrp0,∆qpzq “
h˚
∆pzq

p1 ´ zqqdp1 ´ zq
.
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Summing over all ∆, we obtain

EhrP pzq “
h˚

BP pzq

p1 ´ zqqdp1 ´ zq

and so h˚
P pzq “ p1 ` z ` ¨ ¨ ¨ ` zq´1qh˚

BP pzq.

Observe that a (lattice) reflexive polytope is a rational reflexive polytope that happens
to be a lattice polytope, so letting q “ 1 yields the following result:

Corollary 3.5.3. If P is a (lattice) reflexive polytope, then h˚
P pzq “ h˚

BP pzq.

Remark 3. We note that for rational reflexive polytopes (as opposed to lattice reflexive
polytopes) it is not necessarily the case that P “ tx P Rd : Ax ď 1u implies that the origin
is lattice distance 1 away from each facet-defining hyperplane of P . It is possible for a given
facet-defining hyperplane to not contain any lattice points and thus be lattice distance less
than 1 from the origin. However, the equality (3.9) between the sets of lattice points in the
two fundamental parallelepipeds still holds.

We extend the definition of a rational reflexive to a rational Gorenstein polytope in a
natural way. Let P be a rational polytope and let g ě 1 be an integer. We say that P is
rational g-Gorenstein if gP is an integral translate of a (lattice) reflexive polytope. We allow
gP to be a translate of a reflexive polytope so that we do not force P to have an interior
point. Also note that, if we have a rational g-Gorenstein polytope with denominator q, we
must have q|g.

Theorem 3.5.4. If P is a rational g-Gorenstein polytope with denominator q, then

h˚
P pzq “

1 ` z ` ¨ ¨ ¨ ` zq´1

1 ` z ` ¨ ¨ ¨ ` zg´1
h˚

BP pzq .

Sketch of Proof. The unique interior lattice point of gP is lattice distance 1 away from the
facet-defining hyperplanes of gP , so there is some polynomial fpzq such that

EhrBP pzq “
fpzq

p1 ´ zgqd
and EhrP pzq “

fpzq

p1 ´ zgqd`1
.

On the other hand, h˚
BP pzq and h˚

P pzq are such that

EhrBP pzq “
h˚

BP pzq

p1 ´ zqqd
and EhrP pzq “

h˚
P pzq

p1 ´ zqqd`1
.

Therefore,

h˚
BP pzq “

p1 ´ zqqd

p1 ´ zgqd
fpzq “

p1 ´ zqqd

p1 ´ zgqd

p1 ´ zgqd`1

p1 ´ zqqd`1
h˚
P pzq

“
1 ´ zg

1 ´ zq
h˚
P pzq “

1 ` z ` ¨ ¨ ¨ ` zg´1

1 ` z ` ¨ ¨ ¨ ` zq´1
h˚
P pzq .
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Observe that a (lattice) g-Gorenstein polytope is a rational g-Gorenstein polytope that
happens to be lattice, so letting q “ 1 yields the following generalization of Corollary 3.5.3.

Corollary 3.5.5. If P is a (lattice) g-Gorenstein polytope, then

h˚
BP pzq “ p1 ` z ` . . . ` zg´1

qh˚
P pzq .

Due to the palindromicity of h˚
BP pzq, these relations immediately imply that reflexive,

Gorenstein, rational reflexive, and rational Gorenstein polytopes all have palindromic h˚-
polynomials.

3.6 A generalization to rational Ehrhart theory
In the last decade, several works have been devoted to an Ehrhart theory of rational poly-
topes where we now allow rational (or, equivalently, real) dilation factors. The fundamental
structure of the Ehrhart counting function in the rational parameter λ ą 0 is that

ehrQpP ;λq :“
ˇ

ˇλP X Zd
ˇ

ˇ

is a quasipolynomial in λ; this was first shown by Linke [83], who proved several other results
about ehrQpP ;λq, including an analogue of Ehrhart–Macdonald reciprocity; see also [13, 99,
122, 124]. Our goal in this section is to prove an analogue of Theorem 3.1.1 in this setting.

To this end, we first recall rational Ehrhart series, which were introduced only re-
cently [20]. Suppose the full-dimensional rational polytope P Ă Rd is given by the irre-
dundant halfspace description

P “
␣

x P Rd : Ax ď b
(

,

where A P Znˆd and b P Zn such that the greatest common divisor of bj and the entries in
the jth row of A equals 1, for every j P t1, . . . , nu. We define the codenominator r of P to
be the least common multiple of the nonzero entries of b. It turns out that ehrQpP ;λq is
fully determined by evaluations at rational numbers λ with denominator 2r; if 0 P P then
we actually need to know only evaluations at rational numbers λ with denominator r [20,
Corollary 5]. This motivates a study of the two generating functions

EhrQ pP ; zq :“ 1 `
ÿ

ně1

ehrQpP ; n
r
q z

n
r

and
EhrrefQ pP ; zq :“ 1 `

ÿ

ně1

ehrQpP ; n
2r

q z
n
2r ,

which have the following rational form, as shown in [20, Theorem 12].

Theorem 3.6.1. Let P be a rational d-polytope with codenominator r.
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(a) Let m P Zą0 be such that m
r
P is a lattice polytope. Then

EhrQ pP ; zq “
h˚
QpP ; z;mq

p1 ´ z
m
r qd`1

where h˚
QpP ; z;mq is a polynomial in Zrz

1
r s of degree ă mpd`1q with nonnegative integral

coefficients.

(b) Let m P Zą0 be such that m
2r
P is a lattice polytope. Then

EhrrefQ pP ; zq “
h˚ref
Q pP ; z;mq

p1 ´ z
m
2r qd`1

where h˚ref
Q pP ; z;mq is a polynomial in Zrz

1
2r s of degree ă mpd ` 1q with nonnegative

integral coefficients.

Possibly more important than this theorem are the consequences one can derive from it,
and [20] (re-)proved several previously-known and novel results in rational Ehrhart theory.
The latter include the facts that h˚

QpP ; z;mq is palindromic if 0 P P ˝ and that, if r|m,
extracting the terms with integer exponents from h˚

QpP ; z;mq returns h˚
P pzq, which results

in yet another proof of the Betke–McMullen version of Theorem 3.1.1 (the ℓ “ 1 case).
Theorem 3.6.1 is based on the observation that

h˚
QpP ; z;mq “ h˚

1
r
P

pz
1
r q and h˚ref

Q pP ; z;mq “ h˚
1
2r

P
pz

1
2r q;

note that m is implicitly included in the h˚-polynomial, as we really mean the numerator of
the Ehrhart series of 1

r
P (respectively, 1

2r
P ) when the denominator is p1´ zmqd`1. The same

observation yields the following variant of Theorem 3.1.1 for rational Ehrhart theory.

Corollary 3.6.2. Let P be a rational polytope with codenominator r.

(1) If 0 P P ˝, then h˚
QpP ; z;mq is palindromic.

(2) If 0 P BP , let m P Zą0 be such that m
r
P is a lattice polytope and let ℓ ě 1 be the

smallest dilate of 1
r
P that contains an interior point. Then

1 ´ z
ℓ
r

1 ´ z
m
r

h˚
QpP ; z;mq “ apzq ` z

ℓ
r bpzq

where apzq “ h˚
QpBP ; z;mq and bpzq are palindromic polynomials in Zrz

1
r s with non-

negative integer coefficients.
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(3) If 0 R P , let m P Zą0 be such that m
2r
P is a lattice polytope and let ℓ ě 1 be the smallest

dilate of 1
2r
P that contains an interior point. Then

1 ´ z
ℓ
2r

1 ´ z
m
2r

h˚ref
Q pP ; z;mq “ apzq ` z

ℓ
2r bpzq

where apzq “ h˚ref
Q pBP ; z;mq and bpzq are palindromic polynomials in Zrz

1
2r s with non-

negative integer coefficients.

Example 3.6.3. Let P “ convtp0, 0q, p0, 2q, p5, 2qu, alternatively the intersection of the
halfspaces

tx1 ě 0u X tx2 ď 2u X t5x2 ´ 2x1 ě 0u.

From this, we can see that P has codenominator r “ 2. Since 0 P BP , we look at the rational
dilate

1
2
P “ convtp0, 0q, p0, 1q, p5

2
, 1qu.

The first dilate of 1
2
P containing an interior lattice point is the ℓ “ 2nd dilate, which contains

the points p1, 1q and p2, 1q. We choose m “ r “ 2 minimal, and we compute the associated
h˚-polynomial of 1

2
P :

h˚
1
2
P

pzq “ p1 ´ z2q
3 Ehr 1

2
P pzq “ 1 ` 4z ` 7z2 ` 6z3 ` 2z4

and so

h˚
QpP ; z; 2q “ 1 ` 4z

1
2 ` 7z ` 6z

3
2 ` 2z2

“ p1 ` 4z
1
2 ` 6z ` 4z

3
2 ` z2q ` zp1 ` 2z

1
2 ` zq .

We can check that the first polynomial in the decomposition is equal to

h˚
QpP ; z; 2q “ h˚

pB 1
2
P ; z

1
2 q “

h˚p1
2
P ; z

1
2 q ´ h˚p1

2
P ˝; z

1
2 q

1 ´ pz
1
2 q2

“ 1 ` 4z
1
2 ` 6z ` 4z

3
2 ` z2.

Moreover, the power in front of the second polynomial is z “ z
2
2 “ z

ℓ
r and both polynomials

are palindromic.3

3We thank Sophie Rehberg for suggesting this example and helping with computing it.
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Chapter 4

Weighted h˚-polynomials

In this chapter, we explore the idea of adding weights to our lattice, and we generalize
Ehrhart polynomials, Ehrhart series, and (mostly) h˚-polynomials to weighted versions. Of
particular interest to us is classifying which weight functions preserve Stanley’s classical
nonnegativity and monotonicity results.

4.1 Introduction
Let P Ď Rd be a rational convex polytope, that is, a polytope with vertices in Qd, and let
w : Rd Ñ R be a polynomial function, often called a weight function. A computational
problem arising throughout the mathematical sciences is to compute, or at least estimate,
the sum of the values wpxq :“ wpx1, . . . , xdq over the set of integer points belonging to P ,
namely

ehrpP,wq “
ÿ

xPPXZd

wpxq.

Weighted sums of the above type are also a classical topic in convex discrete geometry
where they have been studied for a long time under the name polynomial valuations [2,
33, 91, 97]. They appear in the work of Brion and Vergne [44], who used weighting in the
context of Euler-Maclaurin formulas. Other ideas of what it means to be weighted have
been proposed later on, for instance, by Chapoton [47], who developed a related q-theory for
the case when wpxq is a linear form, also by Stapledon [125], who explored a grading with
piece-wise linear functions, and by Ludwig and Silverstein [88], who introduced and studied
Ehrhart tensor polynomials based on discrete moment tensors.

Important applications of such weighted problems appear, for instance, in enumerative
combinatorics [6, 53], statistics [49, 55], non-linear optimization [52], and weighted lattice
point sums, which have played a key role in the computation of volumes and integrals over
polytopes [12].

The sum of the weighted integer points in the nth dilate of the rational polytope P for
nonnegative integers n P N is given by the weighted Ehrhart function ehrpnP,wq. The main
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object of this chapter is the generating function

EhrpP,w; zq “
ÿ

ně0

ehrpnP,wqzn

called the weighted Ehrhart series. The fact that the weighted Ehrhart series is a rational
function has been known for a long time, e.g., it has been used in computational software for
at least ten years ([14, 45]). For our purposes we see in Proposition 4.2.4 why EhrpP,w; zq

is a rational function of the form

EhrpP,w; zq “
h˚
P,wpzq

p1 ´ zqqr`m`1

whenever P is an r-dimensional rational polytope; here m “ degpwq, h˚
P,wpzq is a polynomial

of degree at most qpr `m` 1q ´ 1, and q denotes the smallest positive integer such that qP
has vertices in Zd, called the denominator of P .

We say that the empty polytope has denominator 1. We call h˚
P,wpzq the weighted h˚-

polynomial of P and its list of coefficients the weighted h˚-vector of P with respect to the
weight w.

From the rationality of EhrpP,w; zq, it follows that the weighted Ehrhart function
ehrpnP,wq is a quasipolynomial in n, that is, it has the form

ehrpnP,wq “

d`m
ÿ

i“0

Eipnqni

where the coefficients Ei : N Ñ R are periodic functions with periods dividing the denomi-
nator of P . The leading coefficient of the h˚-polynomial is equal to the integral of the weight
w over the polytope P ; these integrals were studied in [16], [18] and [12]. If w “ 1, that is, if
ehrpnP,wq “ |nP XZd|, then we recover the classical Ehrhart theory counting lattice points
in dilates of polytopes. Even in this case, it is an NP-hard problem to compute all of the
coefficients Ei. See [17, 24] for excellent introductions to this topic.

In the classical case of w “ 1, a fundamental theorem by Richard P. Stanley, often called
Stanley’s nonnegativity theorem, states that the h˚-polynomial of any rational polytope has
only nonnegative integer coefficients [112]. Even stronger, for rational polytopes P and
Q such that P Ď Q, Stanley proved h˚

P,1pzq ĺ h˚
Q,1pzq where ĺ denotes coefficient-wise

comparison. This last property has been known as h˚ monotonicity property. For details
and proofs see e.g., [26, 107, 112].

Positivity and nonnegativity of coefficients is important in algebraic combinatorics (see
e.g., [118] and its references), but we must stress that one nice aspect of our results is they
connect to the nonnegativity of the associated h˚-polynomial as real-valued functions. This
is a topic that goes back to the work on real algebraic geometry by Hilbert, Pólya, Artin and
others (see [90, 96]), and it has seen renewed activity in the classical methods of moments,
real algebraic geometry, and sums of squares decompositions for polynomials because it
provides a natural approach for optimization algorithms (see [30, 90]).
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Motivated by this prior work and context, this chapter discusses the nonnegativity and
monotonicity properties of the coefficients of weighted h˚-polynomials, as well as their non-
negativity as real-valued functions.

Our Contributions

In contrast to its classical counterpart, the weighted h˚-polynomial may have negative co-
efficients, even when the weight function is nonnegative over the polytope and all of its
nonnegative dilates. For example, when P is the line segment r0, 1s Ď R, one can calculate
that

EhrpP, 1; zq “
1

p1 ´ zq2
and EhrpP, x2; zq “

z2 ` z

p1 ´ zq4
,

and so their sum is
EhrpP, x2

` 1; zq “
2z2 ´ z ` 1

p1 ´ zq4
.

As can be seen in this simple example, adding Ehrhart series corresponding to weights of
different degrees may introduce negative coefficients to the h˚-polynomial since the rational
functions have different denominators. We therefore focus on homogeneous polynomials as
weight functions. For an investigation of how to deal with more general weights see [53].

We now consider the following, slightly more general setup, where the weight function
w may depend not only on the coordinates of the points nP X Zd but also on the scaling
factor n. For any rational polytope P Ď Rd, the cone over P (or, as defined in Chapter 2,
the homogenization of P ) is the rational polyhedral cone in Rd`1

CpP q :“ conepP ˆ t1uq “ tcpp, 1q | c ě 0, p P P u.

For any polynomial w in d ` 1 variables we consider the weighted Ehrhart series

EhrpP,w; zq “
ÿ

xPCpP qXZd`1

wpxqzxd`1 .

Let CpP q˚ be the cone consisting of the linear functions on Rd`1 that are nonnegative on
CpP q. If the cone CpP q is defined by linear inequalities ℓ1 ě 0, . . . , ℓm ě 0, then CpP q˚ is
a polyhedral cone generated by nonnegative linear combinations of ℓ1, . . . , ℓm. We focus on
the following two families of polynomials in d ` 1 variables as weights functions:

(i) the semiring RP consisting of sums of products of linear forms in CpP q˚. Each element
of RP has the form c1ℓ

a1 ` ¨ ¨ ¨ ` ckℓ
ak where c1, . . . , ck are positive real numbers and

ℓa1 , . . . , ℓak are monomials in the generators ℓ1, . . . , ℓm of CpP q˚; and

(ii) the semiring SP consisting of sums of nonnegative products of linear forms on P . If a
product of linear forms is nonnegative on P , then each of the linear forms involved is
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either nonnegative on all of P or appears with an even power; otherwise the product
would change sign across the hyperplane where the linear form vanishes. Therefore, an
element of SP has the form s1ℓ

a1 `¨ ¨ ¨`skℓ
ak where s1, . . . , sk are squares of products of

any linear forms and ℓa1 , . . . , ℓak are monomials in the generators ℓ1, . . . , ℓm of CpP q˚.

In RP each of the linear forms involved are nonnegative on P . In contrast, in SP ,
each product is nonnegative but the individual linear forms may have negative values in
P . Thus we have RP Ď SP . Both semirings are contained in the preordering generated by
ℓ1, . . . , ℓm consisting of elements of the form s1ℓ

a1 ` ¨ ¨ ¨ `skℓ
ak where si are arbitrary squares

of polynomials instead of just squares of products of linear forms. See, for example, [90].
The main results of this chapter are the following.

Nonnegativity Theorem. (Theorem 4.2.5). Let P be a rational polytope, CpP q its cone,
and CpP q˚ the dual cone of linear functions on Rd`1 which are nonnegative on CpP q. Let
RP and SP be, respectively, the semirings of sums of products of linear forms in CpP q˚ and
of sums of nonnegative products of linear forms on P .

1. If the weight w is a homogeneous element of RP , then the coefficients of h˚
P,wpzq are

nonnegative.

2. If the weight w is a homogeneous element of SP , then h˚
P,wpzq ě 0 for t ě 0.

As we mentioned before Stanley also showed that the classical h˚-polynomials satisfy a
monotonicity property: for lattice polytopes P and Q, of possibly different dimension, such
that P Ď Q, we have h˚

P pzq ĺ h˚
Qpzq where ĺ denotes the coefficient-wise inequalities [107].

This can be seen as a generalization of the nonnegativity theorem when we set P “ H in
which case the Ehrhart series and thus the h˚-polynomial is zero. Now we are able to prove
the following:

First Monotonicity Theorem. (Theorem 4.2.7). Let P,Q Ď Rd be rational polytopes,
P Ď Q, and let g be a common multiple of the denominators δpP q of P and δpQq of Q.
Then, for all weights w P RQ,

p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
dimP`m`1h˚

P,wpzq ĺ p1 ` zδpQq
` ¨ ¨ ¨ ` zg´δpQq

q
dimQ`m`1h˚

Q,wpzq .

In particular, if P Ď Q are polytopes with the same denominator, then taking g “ δpP q “

δpQq gives
h˚
P,wpzq ĺ h˚

Q,wpzq. (4.1)

Second Monotonicity Theorem. (Theorem 4.2.8). Let P,Q Ď Rd be rational polytopes
of the same dimension D “ dimP “ dimQ, P Ď Q, and let g be a common multiple of the
denominators δpP q of P and δpQq of Q. Then, for all weights w P SQ,

p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
D`m`1h˚

P,wpzq ď p1 ` zδpQq
` ¨ ¨ ¨ ` zg´δpQq

q
D`m`1h˚

Q,wpzq
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for all t ě 0. In particular, if P Ď Q are polytopes with the same denominator and dimension,
then taking g “ δpP q “ δpQq gives

h˚
P,wpzq ď h˚

Q,wpzq for all t ě 0. (4.2)

We wish to emphasize that while Theorem 4.2.5 is a generalization of Stanley’s nonneg-
ativity theorem, Theorem 4.2.7 is closer in spirit to Pólya’s theorem on positive polynomials
which says that if a homogeneous polynomial f P RrX1, . . . , Xns is strictly positive on the
standard simplex

∆n :“ tpx1, . . . , xnq P Rn
| x1, . . . , xn ě 0, x1 ` ¨ ¨ ¨ ` xn “ 1u,

then for sufficiently large N , all of the nonzero coefficients of pX1 ` ¨ ¨ ¨ `XnqNfpX1, . . . , Xnq

are strictly positive. Note also, the semiring RP is a homogenized version of the semiring
appearing in Handelman’s theorem [65] which says that all polynomials strictly positive on
a polytope P lie in the semiring generated by the linear forms which are nonnegative on the
polytope. We remark that all homogeneous polynomials are sums of (unrestricted) products
of linear forms and it is an important problem to find such decompositions (see [3, 92,
98] and references therein). Thus our restriction to RP and SP is a natural approach to
understanding nonnegativity and bringing us close to the best possible result.

To study the limitations of our results we focus on the case when the weight is given by
a single arbitrary linear form. In this case we strengthen our results for two dimensional
lattice polygons.

Theorem 4.3.3. For every (closed) convex lattice polygon P and every linear form ℓ, the
h˚-polynomial of P with respect to wpxq “ ℓ2pxq has only nonnegative coefficients.

In particular, this shows that the weighted h˚-polynomial of any convex lattice polygon
has nonnegative coefficients, even when the linear form takes negative values on the polygon.
Furthermore, we provide examples that show that this result is no longer true if the assump-
tions on the polytope or weight are relaxed. In particular, we construct a 20-dimensional
lattice simplex and a linear form such that the h˚-polynomial with respect to the square of
the linear form has a negative coefficient (Example 4.3.7). These results have interpreta-
tions and implications in terms of generating functions of Ehrhart tensor polynomials. In
particular, the example mentioned above gives a counterexample to a conjecture of Berg,
Jochemko and Silverstein [28, Conjecture 6.1] on the positive semi-definiteness of h2-tensor
polynomials of lattice polytopes (Corollary 4.4.4).

Unlike the classical results of Stanley for w “ 1, where techniques from commutative
algebra can be applied since the Ehrhart series is actually the Hilbert series of a graded alge-
bra, we do not see an obvious connection to commutative algebra methods. Instead, to prove
Theorems 4.2.5 and 4.2.7 we consider the cone homogenization of polytopes and half-open
decompositions and follow a variation of the triangulation ideas first outlined by Stanley
in [112]. While this methodology has been used by many authors since then [8, 26, 79], we
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require a careful analysis of the properties of the semirings RP and SP . For this we consider
multivariate generating functions for half-open cones and provide explicit combinatorial in-
terpretations using generalized q-Eulerian polynomials [126]. The q-Eulerian polynomials
and their relatives frequently appear in enumerative and geometric combinatorics [22, 34,
43, 63].

This chapter is organized as follows. In Section 4.2 we give an explicit formula for the
weighted multivariate generating function for half-open simplicial cones (Lemma 4.2.2). This
formula then allows us to show the rationality of the (univariate) weighted Ehrhart series
(Proposition 4.2.4) as well as the first part of Theorem 4.2.5 by specialization and using
half-open decompositions. The second part of Theorem 4.2.5 is obtained by considering
subdivisions of the polytope induced by the linear forms involved in the weight function. A
more refined analysis then also allows us to prove the monotonicity Theorems 4.2.7 and 4.2.8.
In Section 4.3 we focus on the case when the weight function is given by a square of a single
linear form and prove Theorem 4.3.3. We also show that the assumptions on convexity,
denominator, dimension and degree are necessary by providing examples. In Section 4.4 we
describe the connections and implications of our results to Ehrhart tensor polynomials. In
particular, we show that weighted Ehrhart polynomials can be seen as certain evaluations of
Ehrhart tensor polynomials (Proposition 4.4.1), and thus, positive semi-definiteness of h2-
tensor polynomials is equivalent to nonnegativity of weighted h˚-polynomials with respect
to squares of linear forms (Proposition 4.4.2). In particular, Example 4.3.7 disproves [28,
Conjecture 6.1] (Corollary 4.4.4).

4.2 Nonnegativity and monotonicity of weighted
h˚-polynomials

Generating series

Let P Ď Rd be a rational polytope of dimension r with denominator q and let w : Rd Ñ R be
a polynomial of degree m. In this section we will see that EhrpP,w; zq is a rational function
of the form

EhrpP,w; zq “
h˚
P,wpzq

p1 ´ zqqr`m`1
,

where h˚
P,wpzq is a polynomial of degree at most qpr `m` 1q ´ 1. Our main goal is to study

positivity properties of the numerator polynomial. Our approach uses general multivariate
generating series of half-open simplicial cones and specializing to obtain the univariate gen-
erating function of the homogenization CpP q following ideas outlined in [112] but requiring
careful analysis of the semirings RP and SP .

For a polynomial wpxq in d variables, the multivariate weighted lattice point generating
function of the cone C is

ř

xPCXZd wpxqzx where zx “ zx1
1 ¨ ¨ ¨ zxd

d is a monomial in d variables.
We will now show that this generating function is a rational function and give an explicit
formula when the weight is a product of linear forms.
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Our expression uses the following parametrized generalization of Eulerian polynomials.
For λ P r0, 1s, let Aλ

dpzq be the polynomial defined by

ÿ

ně0

pn ` λq
dzn “

Aλ
dpzq

p1 ´ zqd`1
.

If λ “ 1, then this is the usual Ehrhart series of a d-dimensional unit cube, and A1
dpzq is the

Eulerian polynomial, all of whose roots are real and nonpositive. If λ “ 1
r

for some integer
r ě 1 then rdAλ

dpzq equals the r-colored Eulerian polynomial [126]. For each λ P r0, 1s the
polynomial Aλ

dpzq also has only real, nonpositive roots [42, Theorem 4.4.4]. In particular, all
of its coefficients are nonnegative. We formally record this in a lemma.

Lemma 4.2.1 ([42, Theorem 4.4.4]). For any integer d ě 1 and real number λ P r0, 1s, the
coefficients of Aλ

dpzq are nonnegative.

Our computations additionally use some concepts which we now introduce. For consis-
tency, we assume that the polytopes live in the d-dimensional space Rd while cones live in
the ambient space Rd`1.

Let C be a half-open pr ` 1q-dimensional simplicial cone in Rd`1 generated by nonzero
integer vectors v1, . . . , vr`1 P Zd`1 with the first k facets removed where 0 ď k ď r`1. More
precisely,

C “ tc1v1 ` ¨ ¨ ¨ ` cr`1vr`1 | c1, . . . , ck ą 0, ck`1, . . . , cr`1 ě 0u.

Since C is simplicial, every point α P C can be written uniquely as

α “ x ` s1v1 ` ¨ ¨ ¨ ` sr`1vr`1

where s1, . . . , sr`1 are nonnegative integers, and x is in the half-open parallelepiped

Π “ tλ1v1 ` ¨ ¨ ¨ ` λr`1vr`1 | 0 ă λ1, . . . , λk ď 1, 0 ď λk`1, . . . , λr`1 ă 1u.

We obtain the following explicit formula for the multivariate generating function of a
half-open simplicial cone if the weight is a product of linear forms. Since every polynomial
is a sum of product of linear forms, namely monomials, this gives a formula to compute the
generating function for any polynomial weight.

Proposition 4.2.2. Let C be an pr ` 1q-dimensional half-open simplicial cone in Rd`1 with
generators v1, . . . , vr`1 in RP . Let w “ ℓ1 ¨ ¨ ¨ ℓm be a product of linear forms in d`1 variables.
Then

ÿ

αPCXZd`1

wpαqzα “
ÿ

xPΠXZd`1

¨

˝zx
ÿ

I1Z¨¨¨ZIr`1“rms

ź

iPI1

ℓipv1q ¨ ¨ ¨
ź

iPIr`1

ℓipvr`1q

r`1
ź

j“1

A
λjpxq

|Ij |
pzvjq

p1 ´ zvjq|Ij |`1

˛

‚

(4.3)
where Π is the half-open parallelepiped as above and each x P Π is written x “ λ1pxqv1 `

¨ ¨ ¨ ` λr`1pxqvr`1. The innermost sum runs over all the ordered partitions of rms into r ` 1
(possibly empty) parts and I1 Z ¨ ¨ ¨ Z Ir`1 denotes the disjoint union of these parts.
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Note that when m “ 0 and the weight is constant, there is only the partition into empty
sets where by definition the products are all 1 (empty products) and the Eulerian polynomials
are all 1.

Proof. Using that any α P C is α “ x` s1v1 ` ¨ ¨ ¨ sr`1vr`1 for x P Π, the generating function
is

ÿ

αPCXZd`1

wpαqzα “
ÿ

αPCXZd`1

˜

m
ź

i“1

ℓipαq

¸

zα

“
ÿ

xPΠXZd`1

ÿ

s1ě0

¨ ¨ ¨
ÿ

sr`1ě0

m
ź

i“1

ℓipx ` s1v1 ` ¨ ¨ ¨ ` sr`1vr`1q

l jh n

p˚q

zx`s1v1`¨¨¨`sr`1vr`1 .

Since x P Π is x “ λ1pxqv1 ` ¨ ¨ ¨ ` λr`1pxqvr`1, using linearity of each ℓi we can expand out

p˚q “
ÿ

I1Z¨¨¨ZIr`1“rms

«

ź

iPI1

ℓipps1 ` λ1pxqqv1q

ff

¨ ¨ ¨

«

ź

iPIr`1

ℓippsr`1 ` λr`1pxqqvr`1q

ff

“
ÿ

I1Z¨¨¨ZIr`1“rms

«

ź

iPI1

ℓipv1q

ff

¨ ¨ ¨

«

ź

iPIr`1

ℓipvr`1q

ff

ps1 ` λ1pxqq
|I1|

¨ ¨ ¨ psr`1 ` λr`1pxqq
|Ir`1|.

where i P Ij represents the term psj ` λjpxqqvj being chosen from ℓi when multiplying out.
Placing this into our original series, we obtain

ÿ

αPCXZd`1

wpαqzα “
ÿ

xPΠXZd`1

zx
ÿ

I1Z¨¨¨ZIr`1“rms

ź

iPI1

ℓipv1q ¨ ¨ ¨
ź

iPIr`1

ℓipvr`1q

r`1
ź

j“1

˜

ÿ

sjě0

psj ` λjpxqq
|Ij |zsjvj

¸

. (4.4)

For the innermost sum on the right, we can write for each j

ÿ

sjě0

psj ` λjpxqq
|Ij |

pzvjqsj “
A

λjpxq

|Ij |
pzvjq

p1 ´ zvjq|Ij |`1
. (4.5)

This completes the proof.

In order to show that EhrpP,w; zq is a rational function for any rational polytope P we
consider partitions into half-open simplices. Given affinely independent vectors u1, . . . , ur`1 P

Rd, the half-open simplex with the first k P t0, 1, . . . , r ` 1u facets removed is defined as

∆ “

#

r`1
ÿ

i“1

ciui | c1, . . . ck ą 0, ck`1, . . . , cr`1 ě 0,
r`1
ÿ

i“1

λi “ 1

+

,
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and the homogenization of ∆ is the half-open simplicial cone

Cp∆q “ tc1v1 ` ¨ ¨ ¨ ` cr`1vr`1 | c1 ą 0, . . . , ck ą 0, ck`1 ě 0, . . . , cr`1 ě 0u

where vi “ pui, 1q for all i.
Given an r-dimensional polytope P and a triangulation, we can partition P into half-

open simplices in the following way. Let q be a generic point in the relative interior of P
and let S “ convtu1, . . . , ur`1u be a maximal cell in the triangulation where convt¨u denotes
the convex hull. We say that a point p P S is visible from q if pp, qs X S “ H. A half-open
simplex, denoted HqS, is then obtained by removing all points that are visible from q, which
can be seen to be equal to

HqS “ tc1u1 ` ¨ ¨ ¨ ` cr`1ur`1 P S | ci ą 0 for all i P Iqu

where Iq “ ti P rr ` 1s | ui not visible from qu.
The following is a special case of a result of Köppe and Verdoolaege [81].

Theorem 4.2.3 ([81]). Let P be a polytope, q P aff P be a generic point and S1, . . . , Sm be
the maximal cells of a triangulation of P . Then

P “ HqS1 Z HqS2 Z ¨ ¨ ¨ Z HqSm

is a partition into half-open simplices.

With the notation as in the previous theorem, it follows that

CpP q “ CpHqS1q Z CpHqS2q Z ¨ ¨ ¨ Z CpHqSmq, (4.6)

that is, the homogenization CpP q of P can be partitioned into half-open simplicial cones.
This, together with Proposition 4.2.2, allows us to show rationality of EhrpP,w; zq.

Proposition 4.2.4. For any rational polytope P of dimension r and any degree-m form w
on CpP q, the weighted Ehrhart series is a rational function of the form

EhrpP,w; zq “
h˚
P,wpzq

p1 ´ zqqr`m`1

where q is a positive integer such that qP has integer vertices and h˚
P,wpzq is a polynomial of

degree at most qpr ` m ` 1q ´ 1.

Proof. Let S1, . . . , Sm be the maximal cells of a triangulation of P using no new vertices,
that is, for all i, the vertex set of Si is contained in the vertex set of P . Let

P “ HqS1 Z HqS2 Z ¨ ¨ ¨ Z HqSm
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be a partition into half-open simplices, and let

EhrpHqSi, w; zq “
ÿ

xPCpHqSiqXZd`1

wpxqzxd`1

for all i. By equation (4.6), we have

EhrpP,w; zq “ EhrpHqS1, w; zq ` ¨ ¨ ¨ ` EhrpHqSm, w; zq.

It thus suffices to prove the claimed rational form for all half-open simplices in the partition.
Let ∆ “ HqSi be a rational half-open simplex in the partition. Let v1, . . . , vr`1 P Zd`1

be generators of the half-open simplical cone Cp∆q. Since the triangulation of P used only
vertices of P , we can choose v1, . . . , vr`1 P Zd`1 such that their last coordinates are all equal
to q.

Since every degree-m form is a sum of monomials, each of which is a product of linear
forms, it furthermore suffices to consider the case when w is a product of linear forms. The
weighted Ehrhart series is obtained by substituting z1 “ ¨ ¨ ¨ “ zd “ 1 and zd`1 “ t into the
generating function in Proposition 4.2.2. Thus

Ehrp∆, w; zq “
ÿ

xPΠXZd`1

¨

˝zxd`1

ÿ

I1Z¨¨¨ZIr`1“rms

ź

iPI1

ℓipv1q ¨ ¨ ¨
ź

iPIr`1

ℓipvr`1q

r`1
ź

j“1

A
λjpxq

|Ij |
pzqq

p1 ´ zqq|Ij |`1

˛

‚.

where Π is the half-open parallelepiped in Cp∆q and each x P Π is written x “ λ1pxqv1 `

¨ ¨ ¨ ` λr`1pxqvr`1.
Since |I1| ` ¨ ¨ ¨ |Ir`1| ` r ` 1 “ m ` r ` 1, we have

r`1
ź

j“1

1

p1 ´ zqq|Ij |`1
“

1

p1 ´ zqqm`r`1
. (4.7)

Then we have

h˚
∆,wpzq “

ÿ

xPΠXZd`1

zxd`1

ÿ

I1Z¨¨¨ZIr`1“rms

ź

iPI1

ℓipv1q ¨ ¨ ¨
ź

iPIr`1

ℓipvr`1q

r`1
ź

j“1

A
λjpxq

|Ij |
pzqq. (4.8)

Thus the claim follows with h˚
P,wpzq “ h˚

HqS1,w
pzq ` ¨ ¨ ¨ ` h˚

HqSm,wpzq.

Remark 4. In the multivariate version of the weighted Ehrhart rational function, the denom-
inators do not simplify nicely as in (4.7). When bringing all constituents of the multivariate
generating function of CpP q in a common denominator this affects the positivity of the
numerator polynomial.
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Nonnegativity

We are now ready to prove the main theorem stated in the introduction. Recall that RP is
the semiring consisting of sums of products of nonnegative linear forms on P and SP is the
semiring consisting of sums of nonnegative products of linear forms on P .

Theorem 4.2.5 (Nonnegativity Theorem). Let P be a rational polytope.

1. If the weight w is a homogeneous element of RP , then the coefficients of h˚
P,wpzq are

nonnegative.

2. If the weight w is a homogeneous element of SP , then h˚
P,wpzq ě 0 for t ě 0.

Proof. Let P be a rational polytope of dimension r.
For (1), it suffices to prove the statement when the weight is a product of nonnegative

linear forms on CpP q. The proof follows from the argument given in the proof of Proposi-
tion 4.2.4 where h˚

P,wpzq is expressed as a sum of polynomials h˚
∆,wpzq as given in Equation 4.8

where ∆ ranges over all half-open simplices in a half-open triangulation of P . Each of the
vectors vi in Equation 4.8 is a generator of CpP q. Thus, if w P RP , h˚

∆,wpzq has nonnegative
coefficients and so does h˚

P,wpzq as a sum of these polynomials.
For (2), let w be a product of linear forms ℓ1, . . . , ℓm on CpP q, and assume w is nonnegative

on P . First suppose ℓ1, . . . , ℓm all have rational coefficients. Subdivide P into rational
polytopes using the hyperplanes ℓ1 “ 0, . . . , ℓm “ 0. Let s be a positive integer such that sQ
has integer coordinates for every r-dimensional polytope Q that is part of the subdivision.
Then s is divisible by the denominator q “ δpP q of P . On each such polytope Q, each linear
form ℓi is either entirely nonnegative or entirely nonpositive, and the number of nonpositive
ones is even because their product w is nonnegative. Thus after changing the signs of an
even number of the linear forms on Q, which does not change w, we can apply the part (1)
result to obtain that

EhrpQ,w; zq “
hQpzq

p1 ´ zsqr`m`1
“

h˚
Q,wpzqp1 ` zδpQq ` . . . ` zs´δpQqqr`m`1

p1 ´ zδpQqqr`m`1p1 ` zδpQq ` . . . ` zs´δpQqqr`m`1

where hQpzq has nonnegative coefficients for every polytope Q in the subdivision since h˚
Q,wpzq

has nonnegative coefficients by part (1). The weight w is zero on the boundaries where the
polytopes overlap in the subdivision, so the Ehrhart series of P is the sum of Ehrhart series
of the r-dimensional polytopes in the subdivision. Summing them up gives

EhrpP,w; zq “
hpzq

p1 ´ zsqr`m`1
,

for some polynomial hpzq with nonnegative coefficients. Since s is divisible by the denomi-
nator q of P , we have

h˚
P,wpzq

p1 ´ zqqr`m`1
“

hpzq

p1 ´ zsqr`m`1
“

hpzq

pp1 ´ zqqp1 ` zq ` z2q ` ¨ ¨ ¨ ` zs´qqqr`m`1
,
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so
h˚
P,wpzqp1 ` zq ` z2q ` ¨ ¨ ¨ ` zs´q

q
r`m`1

“ hpzq.

The polynomial hpzq has nonnegative coefficients, so hpzq ą 0 for t ą 0. It follows that
h˚
P,wpzq ą 0 for all t ą 0. This proves part (2) when the linear forms have rational coefficients.

To deal with irrational coefficients, note that for a fixed polytope P , the map that sends
a weight w to the corresponding h˚-polynomial h˚

P,wpzq is a linear, hence continuous, map
from the vector space of homogeneous degree m polynomials to the vector space of degree
ď r ` m polynomials. The set of polynomials h˚ satisfying h˚pzq ě 0 when t ě 0 is a closed
set. Thus we obtain the result (2) for linear forms with irrational coefficients as well.

Monotonicity

In this subsection we generalize Stanley’s monotonicity result for the h˚-polynomial for
rational polytopes to a weighted version by proving Theorem 4.2.7. Our proof follows a
similar structure as the proof of nonnegativity. We start by proving a version of the claim
for pyramids over half-open simplices and then extend it to all rational polytopes. This will
become useful when comparing h˚-polynomials of polytopes of different dimension in the
general case.

Given a half-open r-dimensional rational simplex F Ď Rd, say

F “ tλ1v1 ` ¨ ¨ ¨ ` λr`1vr`1 | λ1, . . . , λk ě 0, λk`1, . . . , λr`1 ą 0, λ1 ` ¨ ¨ ¨ ` λr`1 “ 1u ,

and a rational point u P Rd not in the affine span of F , we let the pyramid of u over F be

Pyrpu, F q :“ tµu ` λ1v1 ` ¨ ¨ ¨ ` λr`1vr`1 |

µ, λ1, . . . , λk ě 0, λk`1, . . . , λr`1 ą 0, µ ` λ1 ` ¨ ¨ ¨ ` λr`1 “ 1u.

We denote the s-fold pyramid of u1, . . . , us P Qd over F by

Pyrpsq
pu1, . . . , us, F q :“ Pyrpu1,Pyrpu2, . . .Pyrpus, F qqq,

now a half-open simplex of dimension s ` r.

Lemma 4.2.6. Let F Ď Rd be a half-open r-dimensional rational simplex with denominator
δpF q and let ∆ be an s-fold pyramid over F with denominator δp∆q. For all g ě 1 divisible
by δp∆q and all w “ ℓ1 ¨ ¨ ¨ ℓm P R∆,

p1 ` zδpF q
` ¨ ¨ ¨ ` zg´δpF q

q
r`m`1h˚

F,wpzq ĺ p1 ` zδp∆q
` ¨ ¨ ¨ ` zg´δp∆q

q
s`r`m`1h˚

∆,wpzq.

Proof. Let v1, . . . , vr`1 P 1
δpF q

Zd be vertices of F , labeled such that

F “ tλ1v1 ` ¨ ¨ ¨ ` λr`1vr`1 | λ1, . . . , λk ě 0, λk`1, . . . , λr`1 ą 0, λ1 ` ¨ ¨ ¨ ` λr`1 “ 1u .
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Suppose u1, . . . , us P 1
δp∆q

Zd are such that ∆ “ Pyrpsq
pu1, . . . , us, F q, that is, suppose

∆ “ tµ1u1 ` ¨ ¨ ¨ ` µsus ` λ1v1 ` ¨ ¨ ¨ ` λr`1vr`1 |

µ1, . . . , µs, λ1, . . . , λk ě 0, λk`1, . . . , λr`1 ą 0, µ1 ` ¨ ¨ ¨ ` µs ` λ1 ` ¨ ¨ ¨ ` λr`1 “ 1u.

Considering the cone CpF q with generators of last coordinate g and fundamental paral-
lelepiped

ΠgpF q “

"

λ1

ˆ

gv1
g

˙

` ¨ ¨ ¨ ` λr`1

ˆ

gvr`1

g

˙

| 0 ď λ1, . . . , λk ă 1, 0 ă λk`1, . . . , λr`1 ď 1

*

,

we obtain by Proposition 4.2.2

EhrpF,w; zq “

ÿ

xPΠgpF qXZd`1

zxd`1

ÿ

I1Z¨¨¨ZIr`1“rms

ź

iPI1

ℓipgv1q ¨ ¨ ¨
ź

iPIr`1

ℓipgvr`1q

r`1
ź

j“1

A
λjpxq

|Ij |
pzgq

p1 ´ zgqr`m`1
.

(4.9)
Analogously, considering the cone Cp∆q with generators of last coordinate g and funda-

mental parallelepiped

Πgp∆q “

"

µ1

ˆ

gu1

g

˙

` ¨ ¨ ¨ ` µs

ˆ

gus

g

˙

` λ1

ˆ

gv1
g

˙

` ¨ ¨ ¨ ` λr`1

ˆ

gvr`1

g

˙

|

0 ď µ1, . . . , µs, λ1, . . . , λk ă 1, 0 ă λk`1, . . . , λr`1 ď 1

*

,

we obtain by Proposition 4.2.2

Ehrp∆, w; zq (4.10)

“

ÿ

xPΠgp∆qXZd`1

zxd`1

ÿ

I1Z¨¨¨ZIs`r`1“rms

ź

iPI1

ℓipgv1q ¨ ¨ ¨
ź

iPIr`1

ℓipgvr`1q
ź

iPIr`2

ℓipgu1q ¨ ¨ ¨
ź

iPIs`r`1

ℓipgusq

s`r`1
ź

j“1

A
λjpxq

|Ij |
pzgq

p1 ´ zgqs`r`m`1
.

Observe that ΠgpF q Ď Πgp∆q. In particular, the points in ΠgpF q are those in Πgp∆q with
µ1 “ ¨ ¨ ¨ “ µs “ 0. Therefore, for every x P ΠgpF q XZd`1, each term in the inner sum of the
numerator of (4.9) appears as a term of the numerator of (4.10) with Ir`2 “ ¨ ¨ ¨ “ Is`r`1 “ ∅
(where λr`1pxq “ ¨ ¨ ¨ “ λs`r`1pxq “ 0). Thus, since w P R∆, the nonnegativity of the
remaining terms implies that

p1 ´ zgq
r`m`1 EhrpF,w; zq ĺ p1 ´ zgq

s`r`m`1 Ehrp∆, w; zq.

Recalling that the denominators of the Ehrhart series EhrpF,w; zq and Ehrp∆, w; zq are
p1 ´ zδpF qqr`m`1 and p1 ´ zδp∆qqs`r`m`1, respectively, we cancel these denominators and get
the desired claim

p1 ` zδpF q
` ¨ ¨ ¨ ` zg´δpF q

q
r`m`1h˚

F,wpzq ĺ p1 ` zδp∆q
` ¨ ¨ ¨ ` zg´δp∆q

q
s`r`m`1h˚

∆,wpzq.
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We are now ready to prove the monotonicity theorems stated in the introduction. Recall
that RQ is the semiring consisting of sums of products of nonnegative linear forms on Q.

Theorem 4.2.7 (First Monotonicity Theorem). Let P,Q Ď Rd be rational polytopes, P Ď Q,
and let g be a common multiple of the denominators δpP q of P and δpQq of Q. Then, for
all weights w P RQ,

p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
dimP`m`1h˚

P,wpzq ĺ p1 ` zδpQq
` ¨ ¨ ¨ ` zg´δpQq

q
dimQ`m`1h˚

Q,wpzq .

In particular, if P Ď Q are polytopes with the same denominator, then taking g “ δpP q “

δpQq gives
h˚
P,wpzq ĺ h˚

Q,wpzq (4.11)

Proof. If P is empty, then h˚
P,wpzq “ 0, so the statement becomes part (1) of the Nonneg-

ativity Theorem (Theorem 4.2.5) above. Now let us assume that P is nonempty. We can
extend a half-open triangulation of P to a half-open triangulation of Q as follows.

Let T be a half-open triangulation of P into simplices of dimension dimP with denom-
inators dividing δpP q. Choose u1, . . . , us P Q X 1

g
Zd, where s “ dimQ ´ dimP , so that for

each F P T the s-fold pyramid ∆F “ Pyrpsq
pu1, . . . , us, F q Ď Q is a half-open simplex of

dimension dimQ. This is always possible by, for example, starting with a triangulation of P
using no new vertices and choosing u1, . . . , us successively from the vertices of Q that do not
lie on the affine hull of the previous ones together with P . Let Pyrpsq

pP q denote the union
of the ∆F which form a half-open triangulation. By Lemma 4.2.6, for every F P T ,

p1 ` zδpF q
` ¨ ¨ ¨ ` zg´δpF q

q
dimP`m`1h˚

F,wpzq ĺ p1 ` zδp∆F q
` ¨ ¨ ¨ ` zg´δp∆F q

q
dimQ`m`1h˚

∆F ,wpzq.
(4.12)

The left-hand side of (4.12) is equal to p1´zgqdimP`m`1 EhrpF,w; zq and the right-hand side
of (4.12) is equal to p1 ´ zgqdimQ`m`1 Ehrp∆F , w; zq. Therefore, summing over all F P T
yields

p1 ´ zgq
dimP`m`1 EhrpP,w; zq ĺ p1 ´ zgq

dimQ`m`1 EhrpPyrpsq
pP q, w; zq. (4.13)

Next we extend the half-open triangulation of Pyrpsq
pP q to a half-open triangulation T 1 of

the entire polytope Q. This can be done by using a sequence of pushings (or placings) of
the vertices of Q that are not in P to extend the triangulation of Pyrpsq

pP q to Q; see page
96 and Section 4.3 of [54] for more details. Using a generic point in Theorem 4.2.3 to be in
the interior of Pyrpsq

pP q the resulting triangulation of Q becomes half-open. Each half-open
simplex in T 1 has dimension dimQ and denominator dividing g. By Proposition 4.2.4, for
each ∆ P T 1, p1 ´ zgqdimQ`m`1 Ehrp∆, w; zq is a polynomial with nonnegative coefficients.
Therefore,

p1 ´ zgq
dimQ`m`1 EhrpPyrpsq

pP q, w; zq ĺ p1 ´ zgq
dimQ`m`1 EhrpQ,w; zq. (4.14)

From (4.13) and (4.14) it follows that

p1 ´ zgq
dimP`m`1 EhrpP,w; zq ĺ p1 ´ zgq

dimQ`m`1 EhrpQ,w; zq.
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Equivalently,

p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
dimP`m`1h˚

P,wpzq ĺ p1 ` zδpQq
` ¨ ¨ ¨ ` zg´δpQq

q
dimQ`m`1h˚

Q,wpzq.

Theorem 4.2.8 (Second Monotonicity Theorem). Let P,Q Ď Rd be rational polytopes of
the same dimension D “ dimP “ dimQ, P Ď Q, and let g be a common multiple of the
denominators δpP q of P and δpQq of Q. Then, for all weights w P SQ,

p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
D`m`1h˚

P,wpzq ď p1 ` zδpQq
` ¨ ¨ ¨ ` zg´δpQq

q
D`m`1h˚

Q,wpzq

for all t ě 0. In particular, if P Ď Q are polytopes with the same denominator and dimension,
then taking g “ δpP q “ δpQq gives

h˚
P,wpzq ď h˚

Q,wpzq for all t ě 0. (4.15)

Proof. Let w be a product of linear forms ℓ1, ..., ℓm on the homogenization CpP q such that w
is nonnegative on P and ℓ1, . . . , ℓm have rational coefficients. Now, let us use the hyperplanes
ℓ1 “ 0, ..., ℓm “ 0, as in the proof of Theorem 4.2.5 (2), to subdivide P and Q into rational
polytopes P 1

1, . . . , P
1
k and Q1

1, . . . , Q
1
k, P 1

i Ď Q1
i, respectively. Note, if any of these polytopes

in the subdivision has dimension smaller than D then it is included in one of the hyperplanes
and thus its h˚-polynomial is zero. Thus, we can compute the Ehrhart series of P and Q by
summing up the series of those subpolytopes P 1

i s and Q1
is where dimpP 1

i q “ dimpQ1q “ D,
and we may assume that each P 1

i in the subdivision of P that we consider is contained in a
unique polytope Q1

i in the subdivision of Q.
As before, every linear form ℓi with 1 ď i ď m is either entirely nonpositive or entirely

nonnegative on each such polytope P 1
i Ď Q1

i. Hence, we can change the signs of an even
number of linear forms on P 1

i and Q1
i without changing the weight w since the product of

these linear forms is nonnegative.
Let g1 be a positive integer multiple of all the denominators of P 1

i s and Q1
is in the sub-

divisions that additionally is also a multiple of g. We may now apply Theorem 4.2.7 to all
P 1
i Ď Q1

i and obtain that

p1 ` zδpP 1
i q

` ¨ ¨ ¨ ` zg
1´δpP 1

i q
q
D`m`1h˚

P 1
i ,w

pzq ĺ p1 ` zδpQ1
iq ` ¨ ¨ ¨ ` zg

1´δpQ1
iqq

D`m`1h˚
Q1

i,w
pzq .

We can rewrite this as

p1 ´ zg
1

q
D`m`1 EhrpP 1

i , w; zq ĺ p1 ´ zg
1

q
D`m`1 EhrpQ1

i, w; zq .

Since the weight w is zero on the boundaries of the subdivision given by the linear forms
ℓ1, . . . , ℓm, we can add up the inequalities for all pairs of polytopes Pi Ď Qi obtaining the
following

p1 ´ zg
1

q
D`m`1 EhrpP,w; zq ĺ p1 ´ zg

1

q
D`m`1 EhrpQ,w; zq . (4.16)
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The left hand side of the inequality (4.16) equals

p1 ` zg ` ¨ ¨ ¨ ` zg
1´g

q
D`m`1

p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
D`m`1h˚

P,wpzq

and similarly for Q. Thus, we obtain that the polynomial p1`zg`¨ ¨ ¨`zg
1´gqD`m`1 multiplied

with

p1 ` zδpQq
` ¨ ¨ ¨ ` zg´δpQq

q
D`m`1h˚

Q,wpzq ´ p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
D`m`1h˚

P,wpzq (4.17)

has only nonnegative coefficients. In particular, evaluations at t ě 0 of the product are
nonnegative. Since p1 ` zg ` ¨ ¨ ¨ ` zg

1´gqD`m`1 ą 0 the nonnegativity of the evaluation of
the second factor at nonnegative reals follows.

For linear forms with irrational coefficients as well as for an arbitrary element of SP , we
can argue again by linearity and continuity of the coefficients of the h˚-polynomials as in the
proof of Theorem 4.2.7.

Unlike the unweighted case of Stanley [107] the following example shows that the mono-
tonicity in (4.15) need not hold when the polytopes do not have the same dimension:

Example 4.2.9. Consider w “ ℓ2 for ℓpxq “ 2x1 ` 3x2, v1 “ p3,´2q, v2 “ p2,´2q, v3 “

p2,´1q, P “ convpv1, v2q, Q “ convpv1, v2, v3q. We have ℓpv1q “ 0, ℓpv2q “ ´2, ℓpv3q “

1. Both P and Q are unimodular simplices, thus there is only one lattice point in the
fundamental parallelepiped, namely 0. Thus, by Lemma 4.3.1 with all λi “ 0, we obtain

h˚
Q,wpzq “ z2pℓpv1q ` ℓpv2q ` ℓpv3qq

2
` zpℓpv1q

2
` ℓpv2q

2
` ℓpv3q

2
q “ z2 ` 5t

h˚
P,wpzq “ z2pℓpv1q ` ℓpv2qq

2
` zpℓpv1q

2
` ℓpv2q

2
q “ 4z2 ` 4t

Thus, the coefficients of the h˚ polynomials are not monotone, and neither are the values
since h˚

Q,wp1q “ 6 ă 8 “ h˚
P,wp1q.

Remark 5. As was shown in Example 4.2.9, the monotonicity in (4.15) does not need to
hold for rational polytopes P,Q Ď Rd, P Ď Q, of different dimension. In this case, the same
arguments as in the proof of Theorem 4.2.8 nevertheless yield the existence of an integer g
divisible by δpP q and δpQq such that

p1 ` zδpP q
` ¨ ¨ ¨ ` zg´δpP q

q
dimP`m`1h˚

P,wpzq ď p1 ` zδpQq
` ¨ ¨ ¨ ` zg´δpQq

q
dimQ`m`1h˚

Q,wpzq

for all t ě 0 if the linear forms involved in the weight function have rational coefficients.
Here we are no longer able to choose any g divisible by δpP q and δpQq, as the integer g
depends on linear forms involved.



CHAPTER 4. WEIGHTED h˚-POLYNOMIALS 52

4.3 Squares of arbitrary linear forms
In this section we focus on weights given as squares of arbitrary linear forms, not necessarily
in RP and h˚-polynomials of polygons in the plane, and strengthen Theorem 4.2.5 in this
special case. We prove that if P is a convex lattice polygon and the weight wpxq “ ℓpxq2

is given by a square of a linear form ℓpxq then the coefficients of h˚
P,wpzq are nonnegative,

regardless of whether ℓpxq is nonnegative on P or not. This result is established in Theorem
4.3.3 below. This is a reformulation of results on the positivity of Ehrhart tensor polynomials
of lattice polytopes considered in [28]. See Section 4.4 below. Here, we present a proof that
is arguably more elementary. We also present examples that show the limitations of our
results if the conditions on the degree, dimension, denominator or convexity are removed.

Lattice polygons

We begin by providing the following more concise version of Equation (4.8) in the case of
the weight being given as a square of a linear form that holds in any dimension.

Lemma 4.3.1. Let ℓ : Rd Ñ R be a linear form. The h˚-polynomial h˚
∆,wpzq with respect to

the weight w “ ℓ2 of any rational simplex ∆ “ convtu0, . . . , uru with denominator q is given
by the sum of the contributions

q2
`

p
ř

p1 ´ λiqℓpuiqq
2 z2q `

`
ř

ℓ2puiq ` p
ř

ℓpuiqq
2

´ p
ř

λiℓpuiqq
2

´ p
ř

p1 ´ λiqℓpuiqq
2
˘

zq ` p
ř

λiℓpuiqq
2
˘

zxd`1 (4.18)

of each lattice point x “
ř

λipxqpqui, qq P Πp∆q X Zd`1 in the fundamental parallelepiped
where all summations are taken for indices i from 0 to r.

Proof. If wpxq “ ℓpxq2 then the weight is a product of m “ 2 linear forms and the contri-
butions of each lattice point in the fundamental parallelepiped given in Equation (4.8) is a
linear combination of products of Aλ

0pzq “ 1,

Aλ
2pzq “ p1 ´ λq

2z2 ` p1 ` 2λ ´ 2λ2
qz ` λ2 and Aλ

1pzq “ p1 ´ λqz ` λ

for 0 ď λ ď 1. More precisely, we use the homogenized linear form ℓ1 associated with ℓ that
takes in account the scaling factor in Equation (4.8). Then ℓ1pqui, qq “ qℓ1pui, 1q “ qℓpuiq

and we get that the contribution of any such point x “
ř

λipqui, qq is

q2

˜

ÿ

0ďiďr

Aλi
2 pzqqℓ2puiq ` 2

ÿ

0ďiăjďr

Aλi
1 pzqqA

λj

1 pzqqℓpuiqℓpujq

¸

zxd`1 ,

where the first sum corresponds to the ordered partitions r2s “ I0 Z I1 Z ¨ ¨ ¨ Z Ir into r ` 1
parts where |Ii| “ 2 for some i and the second sum corresponds to partitions for which
|Ii| “ |Ij| “ 1 for some i ‰ j.

The factor q2 is present in both cases. The coefficients of z2q and 1 (times zxd`1) of the
polynomial above are easily seen. Indeed, the first sum contributes

ř

p1´λiq
2ℓ2puiq and the
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second sum contributes 2
ř

p1 ´ λiqp1 ´ λjqℓpuiqℓpuiq to the coefficient of z2q. Combining
these, we obtain p

ř

p1 ´ λiqℓpuiqq
2 as claimed. Analogous arguments yield the coefficient of

1 of every contribution.
A similar analysis gives that the coefficient of zq is equal to

ÿ

i

p1 ` 2λi ´ 2λ2
i qℓ

2
puiq ` 2

ÿ

iăj

´

p1 ´ λiqλj ` p1 ´ λjqλi

¯

ℓpuiqℓpujq

“
ÿ

i

p1 ` 2λi ´ 2λ2
i qℓ

2
puiq ` 2

˜

ÿ

i

λiℓpuiq

¸˜

ÿ

j

p1 ´ λjqℓpujq

¸

´ 2
ÿ

i

λip1 ´ λ1qℓ
2
puiq

“
ÿ

i

ℓ2puiq ` 2

˜

ÿ

i

λiℓpuiq

¸˜

ÿ

j

p1 ´ λjqℓpujq

¸

.

By squaring both sides of the identity

ÿ

i

ℓpuiq “

˜

ÿ

i

λiℓpuiq

¸

`

˜

ÿ

j

p1 ´ λjqℓpujq

¸

we get the claimed coefficient of zq.

Lemma 4.3.2. Let ∆ Ď R2 be a half-open triangle with vertices in Z2, let ℓ : R2 Ñ R
be a linear form and let wpxq “ ℓ2pxq. If the h˚-polynomial h˚

∆,wpzq of ∆ with respect to
wpxq “ ℓ2pxq has negative coefficients then the following two conditions must both be satisfied.

(i) ∆ is neither completely closed nor completely open, and

(ii) the line ker ℓ intersects the relative interior of two sides of ∆ that are either both “open”
or both “closed”.

Proof. Let u0, u1, u2 be the vertices of ∆. We argue by induction over the area of ∆.
We begin by assuming that ∆ has area 1{2, the minimal area among all triangles with

vertices in the integer lattice. In this case, the half-open fundamental parallelepiped Πp∆q

contains exactly one lattice point x “ λ0pu0, 1q`λ1pu1, 1q`λ2pu2, 1q where λ0, λ1, λ2 P t0, 1u.
If ∆ is completely closed then λ0 “ λ1 “ λ2 “ 0 and by Lemma 4.3.1,

h˚
∆,wpzq “

´

ÿ

ℓpviq
¯2

z2 `

´

ÿ

ℓpviq
2
¯

t .

Similarly, if ∆ is completely open, then λ0, λ1 “ λ2 “ 1 and

h˚
∆,wpzq “

´

ÿ

ℓpuiq

¯2

z3 `

´

ÿ

ℓpuiq
2
¯

z4

In particular, in both cases we see that the h˚-polynomial has only nonnegative coefficients.
Thus, if a half-open lattice triangle has a negative coefficient condition (i) needs to be
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satisfied, that is, ∆ is neither completely open nor closed. In this case, λ0, λ1, λ2 are not all
equal.

We consider the case λ0 “ λ1 “ 0 and λ2 “ 1. Then, by Lemma 4.3.1,

h˚
∆,wpzq “

pℓpu0q ` ℓpu1qq2z3 `

´

ℓ2pu0q ` ℓ2pu1q ` ℓ2pu2q ` pℓpu0q ` ℓpu1q ` ℓpu2qq2 ´ ℓ2pu2q ´ pℓpu0q ` ℓpu1qq2
¯

z2 ` ℓ2pu2qt.

The first and last coefficient are squares and thus always nonnegative. The coefficient of z2
can be simplified to

pℓpu0q ` ℓpu2qq
2

` pℓpu1q ` ℓpu2qq
2

´ ℓ2pu2q .

We observe that if ℓpu2q has the same sign as ℓpuiq, i “ 0, 1, then pℓpuiq`ℓpu2qq2 ´ℓ2pu2q ě 0
and thus the coefficient is nonnegative. It follows that h∆,wpzq can have a negative coefficient
only if ℓpu2q has a different sign than both ℓpu0q and ℓpu1q, that is, ker ℓ separates u2 from
u0 and u1 as claimed. The case λ0 “ λ1 “ 1 and λ2 “ 0 follows analogously. This proves the
claim if ∆ has minimal area.

Now we assume that ∆ has area greater than 1{2 and that the result has already been
proved for all ∆ of smaller area. In order to prove the claim it suffices to show that if ∆ does
not satisfy at least one of the conditions (i) or (ii) then it can be partitioned into half-open
triangles that have h˚-polynomials with only nonnegative coefficients; then, by additivity
also the h˚-polynomial of ∆ is nonnegative and the proof will follow.

If ∆ has area greater than 1{2 then it contains at least one lattice point aside of its vertices,
either in the relative interior of a side or in the interior of the triangle. By coning over the
sides in which this point is not contained we obtain a subdivision into two or three smaller
lattice triangles. By induction hypothesis it suffices to show that this subdivision can be
made half-open in such a way that the half-open triangles in the partition do not satisfy
both condition (i) and (ii).

This is indeed always possible. In Figure 4.1 the case of an interior lattice point and a
subdivision into three smaller triangles is considered. The first row shows how to partition a
completely closed triangle into smaller triangles that violate conditions (i) or (ii), depending
on the position of ker ℓ. If ∆ is completely open, then open and closed sides are flipped.
The second row shows how such a partition is established in case ∆ is half-open but ker ℓ
intersects in an open and a closed side. The non-intersected side can be removed in the case
that it is excluded.

The case of a partition into two triangles can be treated in a similar way.

Theorem 4.3.3. For every (closed) convex lattice polygon P and every linear form ℓ, the
h˚-polynomial of P with respect to wpxq “ ℓ2pxq has only non-negative coefficients.

Proof. If ker ℓ does not intersect the interior of P , then the statement follows from Theo-
rem 4.2.5. Otherwise, ker ℓ intersects the boundary of P twice: either in two vertices, or in
a vertex and the interior of a side, or the interior of two sides.
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Figure 4.1: A subdivision of a triangle using an interior lattice point. Each edge is marked
with ` or ´ to indicate which simplex includes it; the simplex containing ` contains the
edge and the simplex containing ´ excludes it.

If ker ℓ intersects the boundary of P in two vertices, then the h˚-polynomial of P is the
sum of the h˚-polynomials of the two (closed) lattice polygons ker ℓ divides P into. This
is because lattice points in ker ℓ are weighted with 0. The h˚-polynomial of both lattice
polygons in the subdivision have only nonnegative coefficients by Theorem 4.2.5 and so does
their sum.

In the other two cases, if ker ℓ intersects in a vertex and the interior of a side, or in the
interior of two sides, the polygon can be subdivided into half-open triangles that do not
satisfy the conditions (i) and (ii) in Lemma 4.3.2 as depicted in Figure 4.2: if the convex
hull of the corresponding vertex and side/the two sides is a triangle, we take this closed
triangle and extend it to a half-open triangulation as shown in the picture; if the convex hull
of the two intersected sides i a quadrilateral, we partition this quadrilateral into a closed
triangle and a half-open one along its diagonal; the rest of the polygon is again subdivided
into half-open triangles that do not intersect ker ℓ, as depicted.

In all cases, the half-open triangles used in the half-open triangulation violate the con-
ditions given in Lemma 4.3.2. Thus their h˚-polynomial have only nonnegative coefficients
and so does their sum.
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Figure 4.2: Half-open triangulations of a polygon in the cases where ker ℓ intersects the
boundary of the polygon in a vertex and the interior of a side (left) or two sides (mid-
dle/right). Removed/open faces are denoted by “´”, closed/non-removed faces with “+”.
The convex hull of the corresponding vertex/sides is depicted in gray. All half-open triangles
violate conditions (i) and (ii) of Lemma 4.3.2.

Negative examples

In this section we provide examples that show that most assumptions in Theorem 4.3.3 are
necessary and cannot be further relaxed. Our examples are explicit and can be computed
either by applying Equation (4.8) and/or by using LattE ([14]).

We begin with an example that shows that the nonnegativity of the h˚-polynomial for
lattice polygons does not extend to weight functions that are squares of degree higher than
2.

Example 4.3.4. Let wpxq “ p2x1 ´ x2q
2p2x2 ´ x1q

2 and P be the standard triangle with
vertices v0 “ p0, 0q, v1 “ p1, 0q, and v2 “ p0, 1q. Then

h˚
P,wpzq “ tp8 ` 81z ´ 6z2 ` z3q.

While the classical Ehrhart theory deals with convex polytopes, in the two-dimensional
case, Stanley’s nonnegativity theorem and our Theorem 4.2.5 can be extended to non-convex
polygons without holes as any such polygon can be dissected into (half-open) triangles. Next
we give an example of a non-convex quadrilateral and weight given by a square of a linear
form that shows that Theorem 4.3.3 does not extend to non-convex quadrilaterals.

Example 4.3.5. Let wpxq “ ℓpxq2 where ℓpxq “ x1 and P “ v0v1v2v3 be the non-convex
quadrilateral with vertices v0 “ p1, 0q, v1 “ p´3,´1q, v2 “ p2, 0q, v3 “ p´3, 1q as depicted in
Figure 4.3. Then

h˚
P,wpzq “ tp23 ´ 4z ` 9z2q.

Next, we note that Theorem 4.3.3 does not hold for rational polygons, not even in the
case of “primitive” triangles as illustrated in the next example.



CHAPTER 4. WEIGHTED h˚-POLYNOMIALS 57

v0

v1

v2

v3

ker ℓ

Figure 4.3: An example of a non-convex lattice quadrilateral that has an h˚-polynomial with
negative coefficients with respect to the weight function wpxq “ x2

1

Example 4.3.6. For any integer q ě 1, let ∆q Ď R2 be the rational triangle with vertices

u0 “ p1, 1q , u1 “

ˆ

1,
q ´ 1

q

˙

and u2 “

ˆ

q ` 1

q
, 1

˙

that has denominator q. Let ℓq : R2 Ñ R be the linear form defined by ℓqpxq “ 2qp1´ qqx1 `

qp2q ´ 1qx2. Then

ℓqpu0q “ q

ℓqpu1q “ 1 ´ q

ℓqpu2q “ 2 ´ q .

The half-open fundamental parallelepiped spanned by pqu0, qq, pqu1, qq, pqu2, qq contains
exactly q lattice points, namely

yi “ pi, i, iq for all 0 ď i ď q ´ 1 .

By Lemma 4.3.1 we see that every non-zero coefficient of the h˚-polynomial of ∆ with
respect to wqpxq “ ℓqpxq2 arises from the contribution of exactly one of the yis, namely
yi contributes to the coefficient of zj if and only if j ” i mod q. Thus, h˚

∆q ,wq
pzq has a

negative coefficient if and only if the contribution of one of the lattice points in the half-open
parallelepiped has a negative coefficient.

We focus on

yq´1 “ pq ´ 1, q ´ 1, q ´ 1q “
q ´ 1

q
pqu0, qq ` 0 ¨ pqu1, qq ` 0 ¨ pqu2, qq.

By Lemma 4.3.1, the second term in the contribution of yq´1, and therefore the coefficient
of z2q´1, is equal to q2 times

q2 ` p1 ´ qq2 ` p2 ´ qq2 ` pq ` p1 ´ qq ` p2 ´ qqq2 ´

´

q´1
q
q
¯2

´

´

1
q
q ` p1 ´ qq ` p2 ´ qq

¯2
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which is equal to ´q4 ` 6q3 ´ 3q2. This evaluates to a negative number for all integers q ě 6.
As a consequence, the h˚-polynomial of ∆q with respect to the weight wqpxq “ ℓqpxq2 has
a negative coefficient in front of z2q´1 for all integers q ě 6. For example, if q “ 6 then
h˚
∆q ,wq

pzq equals

2304z17 ` 1764z16 ` 1296z15 ` 900z14 ` 576z13 ` 324z12 ´ 108z11 ` 756z10

`1476z9 ` 2052z8 ` 2484z7 ` 2772z6 ` 900z5 ` 576z4 ` 324z3 ` 144z2 ` 36z

Last but not least, we show that the assumption on the dimension cannot be removed in
Theorem 4.3.3 by providing an example of a 20-dimensional lattice simplex P and a linear
form such that h˚

P,wpxq has a negative coefficient where wpxq “ ℓpxq2. This also establishes
a counterexample to a conjecture of Berg, Jochemko, Silverstein [28], see Section 4.4 below
for details.

Example 4.3.7. We consider the 19-dimensional simplex ∆ “ convtu0, . . . , u19u where u0

is the origin, u1, . . . , u18 are the standard basis vectors e1, . . . , e18 and

u19 “ p1, 1, 1, 1, 1, 1, 1, 1, 1,´1,´1,´1,´1,´1,´1,´1,´1,´1, 3q

“ 3e19 ` e1 ` . . . ` e9 ´ e10 ´ . . . ´ e18.

and the pyramid ∆1 “ conv p0 Y ∆ ˆ 1q P R20 which is a 20-dimensional simplex with vertices
0 and vi :“ pui, 1q, 0 ď i ď 19. Let ℓ : R20 Ñ R be the linear functional defined by

ℓpviq “

#

1 if 0 ď i ď 9

´1 if 10 ď i ď 19 .

We claim that the h˚-polynomial of ∆1 with respect to wpxq “ ℓpxq2 has a negative coefficient
in front of z11.

To see this, we observe that the determinant of the matrix with columns vi, 0 ď i ď

19 equals ´3, that is, the normalized volume of ∆1 is 3 and the half-open fundamental
parallelepiped Πp∆1q contains exactly three lattice points. Those are y0 “ 0,

y1 “
2

3

9
ÿ

i“0

pvi, 1q `
1

3

19
ÿ

i“10

pvi, 1q “ p1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 10q ,

y2 “
1

3

9
ÿ

i“0

pvi, 1q `
2

3

19
ÿ

i“10

pvi, 1q “ p1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 10, 10q .

By Lemma 4.3.1, the coefficient of z11 in the contribution of yj, j “ 1, 2, equals
ÿ

ℓ2pviq ` p
ÿ

ℓpviqq
2

´ p
ÿ

λiℓpviqq
2

´ p
ÿ

p1 ´ λiqℓpviqq
2
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where λ0 “ ¨ ¨ ¨ “ λ9 “ 2{3 and λ10 “ ¨ ¨ ¨ “ λ19 “ 1{3 for y1, and for y2 the values are
flipped. In both cases, the term evaluates to

20 ` p0q
2

´

ˆ

2

3
¨ 10 `

1

3
¨ p´10q

˙2

´

ˆ

1

3
¨ 10 `

2

3
¨ p´10q

˙2

“
´20

9
.

Note that y0 “ 0 does not contribute to the z11-coefficient of the h˚-polynomial. In summary,
the coefficient of z11 equals 2 ¨ ´20

9
ă 0 and is thus negative.

4.4 Ehrhart tensor polynomials
In this section we discuss the results of the previous section in relation to results and conjec-
ture on Ehrhart tensor polynomials which were introduced by Ludwig and Silverstein [88].

For any integer r P N, let Tr be the vector space of symmetric tensors of rank r on Rd.
The discrete moment tensor of rank r of a lattice polytope P Ă Rd is defined as

Lr
pP q “

ÿ

xPPXZd

xbr ,

where xbr “ xb¨ ¨ ¨bx and xb0 :“ 1. Discrete moment tensors were introduced by Böröczky
and Ludwig [33]. Note that for r “ 0 we recover the number of lattice points in P , |P XZd|.
Ludwig and Silverstein [88, Theorem 1] showed that there exist maps Lr

i , 0 ď i ď d ` 1,
from the family of lattice polytopes to Tr such that

Lr
pnP q “

d`r
ÿ

i“0

Lr
i pP qni

for all integers n ě 0, that is, the discrete moment tensor LrpnP q is given by a polynomial
in the nonnegative integer dilation factor. The polynomial is called the Ehrhart tensor
polynomial. Equivalently, if P is a d-dimensional lattice polytope,

ÿ

ně0

Lr
pnP qzn “

hr
0pP q ` hr

1pP qz ` ¨ ¨ ¨ ` hr
d`rpP qzr`d

p1 ´ zqd`r`1

for tensors hr
0pP q, hr

1pP q, . . . , hr
r`dpP q P Tr. The numerator polynomial is called the hr-tensor

polynomial of P [28]. Observe that for r “ 0 we recover the usual Ehrhart and h˚-polynomial
of a lattice polytope.

The vector space of symmetric tensors Tr is isomorphic to the vector space of multi-
linear functionals pRdqr Ñ R that are invariant under permutations of the arguments. In
particular, for any v1, . . . , vr P Rd,

Lr
pP qpv1, . . . , vrq “

ÿ

xPPXZd

pxTv1q ¨ ¨ ¨ pxTvrq .

Thus, weighted Ehrhart polynomials can be seen as evaluations of Ehrhart tensor polynomials
in the following sense.
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Proposition 4.4.1. Let wpxq “ ℓ1pxq ¨ ¨ ¨ ℓrpxq be a product of linear forms where each linear
form ℓi : Rd Ñ R is given by ℓipxq “ xTvi for some vi P Rd. Let P be a d-dimensional lattice
polytope. Then

ehrpnP,wq “

d`r
ÿ

i“0

Lr
pP qpv1, . . . , vrqn

i

and, equivalently,

h˚
P,wpzq “

d`r
ÿ

i“0

hr
i pP qpv1, . . . , vrqz

i .

Proof. For any integer n ě 0,

ehrpnP,wq “
ÿ

xPnPXZd

xTv1 ¨ ¨ ¨ xTvr “ Lr
pnP qpv1, . . . , vrq “

d`r
ÿ

i“0

Lr
i pnP qpv1, . . . , vrqn

i .

The claim for the h˚-polynomials follows similarly.

In the case that r “ 2, symmetric tensors can be identified with symmetric matrices
via their values on pairs of standard vectors. Via this identification, a tensor is called
positive semi-definite if the corresponding matrix is positive semi-definite. In particular,
L2pP q “

ř

xPPXZd xxT is always positive semi-definite. However, the coefficients of the
Ehrhart tensor polynomial and the h2-tensor polynomial need not be in general [28], similarly
as the coefficients of the usual Ehrhart polynomial are not positive in general. The following
relation between the positivity of weighted h˚-polynomials and the positive semi-definiteness
of the coefficients of the h2-tensor polynomial is a consequence of Proposition 4.4.1.

Proposition 4.4.2. For any lattice polytope P Ă Rd, the h2-tensor polynomial of P has
only positive semi-definite coefficients if and only if h˚

P,wpzq has only nonnegative coefficients
for each weight that is a square of a linear form wpxq “ ℓ2pxq.

Proof. Let Mi “ h2
i pP q P R2ˆ2 be the coefficients of the h2-polynomial of P . By Proposi-

tion 4.4.1, for any linear form ℓpxq “ vTx on Rd, h˚
P,wpzq “

ř

i v
TMivz

i. Thus, h˚
P,wpzq has

only nonnegative coefficients for all weights wpxq “ ℓpxq2 if and only if the matrices Mi are
all positive semi-definite.

In [28] Berg, Jochemko and Silverstein investigated when h2-tensor polynomials have
only positive semi-definite coefficients. They proved that the coefficients are indeed positive
semi-definite for lattice polygons [28, Theorem 5.2] and conjectured that this holds more
general in arbitrary dimensions [28, Conjecture 6.1]. By Proposition 4.4.2, it follows that
Theorem 4.3.3 is equivalent to [28, Theorem 5.2]; the proof given in Section 4.3 is arguably
simpler.

Corollary 4.4.3 ([28, Theorem 5.2]). The h2-tensor polynomial of any lattice polygon has
only positive semi-definite coefficients.
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Furthermore, Example 4.3.7 provides a 20-dimensional lattice polytope together with
a weight wpxq “ ℓpxq2 that is a square of a linear form such that hP,wpzq has a negative
coefficient. By Proposition 4.4.2 this establishes a counterexample to [28, Conjecture 6.1].

Corollary 4.4.4. There exists a 20-dimensional lattice polytope whose h2-tensor polyno-
mial has a coefficient that is not positive semi-definite. In particular, this disproves [28,
Conjecture 6.1]

4.5 Open question
In Theorem 4.2.5 we have proved sufficient conditions on the homogeneous weight function
that yield nonnegative coefficients of the h˚-polynomial. We also have shown our results are
tight, in particular, in Section 4.3 we have seen that Theorem 4.2.5 can fail if the assumptions
are relaxed, even in the simple case of a square of a single linear form.

We end this chapter posing a natural question.

Question 4.5.1. Can we precisely characterize the family of homogeneous weights that yield
nonnegative coefficients of the h˚-polynomial?
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Chapter 5

Local h˚-polynomials

In this chapter, we take interest in the connection between the unimodality of h˚-polynomials
of lattice polytopes and the unimodality of the local h˚-polynomials of the simplices in their
triangulations, and therefore try to classify some specific simplices that have unimodal local
h˚-polynomials.

5.1 Introduction

Background

Given a lattice polytope P , there is another invariant related to counting the number of
integer points in integer dilates of P : the local h˚-polynomial. Recently there has been
renewed interest in the study of this polynomial, which is more complicated to define and
has not been as extensively studied as the classical h˚-polynomial. This invariant, which we
denote by BpP ; zq, is the primary focus of this chapter.

The local h˚-polynomial has arisen in multiple contexts using different notation. For a
detailed survey regarding local h˚-polynomials, see Section 2 of the recent paper by Borger,
Kretschmer, and Nill [31]. The local h˚-polynomial was defined in substantial generality by
Stanley in [119, Example 7.13], extending work first presented by Betke and McMullen [29].
Local h˚-polynomials were also studied by Borisov and Mavlyutov in connection to Calabi-
Yau complete intersections in Gorenstein toric Fano varieties, where they were referred to
as S̃-polynomials [32]. Local h˚-polynomials for simplices are sometimes referred to as box
polynomials ; these were studied by Gelfand, Kapranov, and Zelevinsky [60], who identified
the importance of lattice simplices with vanishing local h˚-polynomials. Lattice polytopes
with vanishing local h˚-polynomials are called thin polytopes, and these have recently been
further investigated by Borger, Kretschmer, and Nill [31]. A key observation due to Nill and
Schepers [31, 93] is that any lattice polytope admitting a regular unimodular triangulation
has a unimodal local h˚-polynomial. This result was recently strengthened by Adiprasito,
Papadakis, Petrotou, and Steinmeyer [1], who proved that lattice polytopes with the integer
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decomposition property (defined in Subsection 5.3) have unimodal local h˚-polynomials.
Unimodality of local h˚-polynomials also plays a role in the study of unimodality for h˚-

polynomials. Schepers and Van Langenhoven [102] introduced the concept of a box unimodal
triangulation, which is a lattice triangulation T of a lattice polytope for which every face of T
has a unimodal local h˚-polynomial. The motivation for the term “box unimodal” is the “box
polynomial” nomenclature used by Gelfand, Kapronov, and Zelevinsky. Schepers and Van
Langenhoven proved that if a reflexive lattice polytope has a box unimodal triangulation,
then it has a unimodal h˚-polynomial. This generated interest in determining which simplices
have unimodal local h˚-polynomials, since these are the simplices appearing in box unimodal
triangulations. As one example of results in this direction, Solus and Gustafsson proved that
every s-lecture hall order polytope admits a box unimodal triangulation [62].

Lattice simplices and our contributions

Motivated by the above context, our focus in this work is to investigate unimodality of local
h˚-polynomials for lattice simplices.

The local h˚-polynomial of lattice simplices has the following beautiful geometric inter-
pretation, which for the rest of this chapter we take as the definition. Let tv1, . . . , vd`1u be
the vertices of a lattice simplex S, and let

ΠS :“

#

ÿ

i

λip1, viq : 0 ă λi ă 1

+

define the open parallelepiped for t1u ˆ S. Then the local h˚-polynomial is

BpS; zq :“
ÿ

pm0,...,mdqPΠS

zm0 ,

i.e., BpS; zq encodes the distribution of lattice points through the open parallelepiped of
t1u ˆ S with respect to the 0-th coordinate, which we refer to as the height of the point. To
emphasize this distributional perspective, and to allow us to consider the shape of coefficient
vectors of different local h˚-polynomials, we primarily consider in this work the coefficients
of

BpS; zq{BpS; 1q,

which encode the probability distribution for lattice points in ΠS with respect to height.
From this perspective, it seems natural that the local h˚-polynomial might have uni-

modal coefficients, as the parallelepiped is “fatter” geometrically in the middle than on the
ends. It seems plausible that unimodality might even be typical in this setting, even without
assumptions such as admitting a regular unimodular triangulation or the integer decompo-
sition property. However, as we will see in this work, it is not clear whether or not these
intuitions are correct; for example, Figure 5.3 and Figure 5.5 suggest a variety of possible
conjectures.
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Because an arbitrary lattice simplex is arithmetically complicated, we restrict our atten-
tion to a set of simplices with a more manageable arithmetical structure. Lattice simplices
are classified through their Hermite normal form; see Theorem 5.2.1 for the precise statement.
In Section 5.2, we define Hermite normal form simplices and recall how to compute their h˚-
and local h˚-polynomials. We also discuss the relationship between local h˚-polynomials and
Stapledon a{b-decompositions for h˚-polynomials. The family of simplices that we study are
one-row Hermite normal form simplices, which are those arising as the convex hull of the
rows of an integer matrix as in (5.1), specified by parameters a1, . . . , ad´1, N with 0 ď ai ă N
for all i. Note that the normalized volume of these simplices is exactly the parameter N .

H “

»

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 ¨ ¨ ¨ 0 0 0
1 0 0 ¨ ¨ ¨ 0 0 0
0 1 0 ¨ ¨ ¨ 0 0 0
0 0 1 ¨ ¨ ¨ 0 0 0
...

...
... . . . ...

...
...

0 0 0 ¨ ¨ ¨ 1 0 0
0 0 0 ¨ ¨ ¨ 0 1 0
a1 a2 a3 ¨ ¨ ¨ ad´2 ad´1 N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.1)

After providing detailed background on Hermite normal form, local h˚-polynomials, and
the relationship between local h˚-polynomials and Stapledon a{b-decompositions for h˚-
polynomials, our first contribution is to investigate two special subfamilies of one-row Hermite
form simplices that exhibit distinct behavior with regard to their local h˚-polynomials. These
special families illustrate both the variety of behavior observed with local h˚-polynomials
and the proof techniques that we will use throughout this chapter. This is the content of
Section 5.3, where we provide a complete investigation of local h˚-polynomials for “all-ones”
simplices (ai “ 1 for all i) and for “geometric sequence” simplices (ai “ qd´i for all i). In
the all-ones case, we find that their local h˚-polynomials are either constant or nearly so, as
exemplified by Figure 5.1. We characterize the all-ones simplices with unimodal local h˚-
polynomials. For the geometric sequence simplices, we find that their local h˚-polynomials
have a pronounced unimodal behavior, as exemplified by Figure 5.2. We prove that all the
geometric sequence simplices have unimodal local h˚-polynomials, and further show that
they do not have the integer decomposition property and thus do not fall within the scope
of prior work [1, 31, 93].

To study the set of all one-row Hermite normal form simplices, there are several ways to
proceed. One approach, which we do not take in this work, is to fix N and vary the values
a1, . . . , ad´1. Limited experimental data suggests that this process often results in simplices
that do not have the integer decomposition property, but which do have unimodal local
h˚-polynomials. For example, in a random sample of 100 simplices of dimension 11 with
N “ 505, none of these simplices have the integer decomposition property but all of them
have unimodal local h˚-polynomials. The distributions for these polynomials are plotted in
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Figure 5.1: The distribution of the coefficients of BpS; zq{BpS; 1q for the one-row Hermite
normal form simplex S with non-trivial row p1, 1, . . . , 1, 331q in dimension 17. Note that
331 “ 22 ¨ 15 ` 1 and BpS; zq “ 22 ¨

ř16
i“2 z

i.

Figure 5.3, which illustrates that the integer decomposition property does not fully explain
local h˚-unimodality.

Another approach, which is the focus of our main result, is to consider one-row Her-
mite normal form simplices where all parameters ai are fixed and analyze the asymptotic
behavior of BpS; zq{BpS; 1q as the normalized volume N Ñ 8. In Section 5.5, we show
that this asymptotic behavior is determined by the distribution of the coefficients for a rel-
atively small normalized volume value. This demonstrates that in the one-row case, the
arithmetical structure of the off-diagonal elements of a Hermite normal form matrix has a
stronger influence on the local h˚-polynomial than the normalized volume. Our main result
is Theorem 5.5.3, which can be summarized as follows:

Theorem 5.1.1. Fix a1, . . . , ad´1 P Zě1 and let M :“ lcmpa1, . . . , ad´1,´1`
řd´1

i“1 aiq. Con-
sider the one row Hermite normal form simplices for these values of a1, . . . , ad´1 and varying
N . As N Ñ 8, the distributions for the local h˚-polynomials converges to the distribution
with N “ M ` 1.

The results in this chapter are rather technical and thus the details of our definitions and
arguments vary somewhat from the exposition provided so far. Since the proofs in Section 5.5
rely on several technical lemmas regarding floor and ceiling functions, these lemmas are
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Figure 5.2: The distribution of the coefficients of BpS; zq{BpS; 1q for the one-row Hermite
normal form simplex S with non-trivial row p311, 310, 39, . . . , 32, 3, 1, 312q in dimension 13.

given in Section 5.4. We conclude the chapter in Section 5.6 with several further questions
motivated by this work. All computations in this chapter were done using SageMath [100].

5.2 Properties of local h˚-polynomials

Hermite normal form simplices

It is well-known, that for every lattice simplex S, there exists a unique matrix H representing
the vertices of S up to unimodular equivalence [103]. The matrix H, called the Hermite
normal form of S, is described as follows.

Theorem 5.2.1. Every d-dimensional lattice simplex in Rd is unimodularly equivalent to a
simplex S arising as the convex hull of the rows of a pd ` 1q ˆ d integer matrix H of the
following form:

• a0,i “ 0 for i “ 1, . . . , d

• ai,i P Zě1 for i “ 1, . . . , d

• 0 ď ai,j ă ai,i when j ă i for i “ 1, . . . , d



CHAPTER 5. LOCAL h˚-POLYNOMIALS 67

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

Figure 5.3: The distributions for 100 local h˚-polynomials of 11-dimensional one-row Hermite
normal form simplices with normalized volume N “ 505. None of these simplices have the
Integer Decomposition Property.

• ai,j “ 0 for j ą i for i “ 1, . . . , d.

Note that we are using the convention that the rows of H denote the vertices of S, whereas
some authors use column form. We denote by A the matrix H with an initial column of
ones appended. This is equivalent to lifting the configuration of rows of H to height one in
a space one dimension higher.

Example 5.2.2. An example of a Hermite normal form H of a simplex and the extended
matrix A:

H “

»

—

—

—

—

—

—

–

0 0 0 0 0
3 0 0 0 0
2 5 0 0 0
1 0 2 0 0
0 0 0 1 0
8 8 2 6 9

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

A “

»

—

—

—

—

—

—

–

1 0 0 0 0 0
1 3 0 0 0 0
1 2 5 0 0 0
1 1 0 2 0 0
1 0 0 0 1 0
1 8 8 2 6 9

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Our focus in this work is on the following special class of Hermite normal form matrices,
which have been the subject of extensive recent study [37, 38, 39, 40, 41, 50, 72, 74, 75, 76,
85, 95, 105, 106, 127].

Definition 5.2.3. For a simplex S in Hermite normal form, if ai,i “ 1 for i “ 1, . . . , d ´ 1,
then we say that H is of one-row Hermite normal form. For a one-row Hermite normal form
matrix, we will often refer to this matrix by the values in the pd ` 1q-st row,

pa1, a2, . . . , ad´1, Nq,

where we write ai for ad,i and N for ad,d as shown in (5.2).

A “

»

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 ¨ ¨ ¨ 0 0 0
1 1 0 0 ¨ ¨ ¨ 0 0 0
1 0 1 0 ¨ ¨ ¨ 0 0 0
1 0 0 1 ¨ ¨ ¨ 0 0 0
...

...
...

... . . . ...
...

...
1 0 0 0 ¨ ¨ ¨ 1 0 0
1 0 0 0 ¨ ¨ ¨ 0 1 0
1 a1 a2 a3 ¨ ¨ ¨ ad´2 ad´1 N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.2)

Example 5.2.4. An example of a simplex S in one-row Hermite normal form is given by

H “

»

—

—

—

—

—

—

–

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 1 1 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The following proposition shows that it is straightforward to determine the volume of S
from the matrix A.

Proposition 5.2.5. The normalized volume of a simplex given in Hermite normal form is
śd

i“1 ai,i, for ai,i P A. Thus, for a one-row Hermite normal form simplex, the normalized
volume is N .

h˚- and local h˚-polynomials

The arithmetic structure of the lattice points in the cone over S is captured by the lattice
generated by A´1. For a one-row Hermite normal form simplex with non-trivial row given
by pa1, a2, . . . , ad´1, Nq, it is straightforward to find A´1 as follows:
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A´1
“

»

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 ¨ ¨ ¨ 0 0 0
´1 1 0 0 ¨ ¨ ¨ 0 0 0
´1 0 1 0 ¨ ¨ ¨ 0 0 0
´1 0 0 1 ¨ ¨ ¨ 0 0 0

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

´1 0 0 0 ¨ ¨ ¨ 1 0 0
´1 0 0 0 ¨ ¨ ¨ 0 1 0

´1`
řd´1

i“1 ai
N

´a1
N

´a2
N

´a3
N

¨ ¨ ¨ ´
ad´2

N
´

ad´1

N
1
N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.3)

We study the lattice generated by the rows of A´1 using the following polynomials.

Definition 5.2.6. Define the lattice for S as Λ “ ΛpSq :“ Zd`1 ¨ A´1 and the parallelepiped
group for S as Γ “ ΓpSq :“ ΛpSq{Zd`1. Define the age of an element x “ px0, . . . , xdq P ΛpSq

as agepxq :“
řd

i“0txiu. Here txu denotes the fractional part of a real number x P R, i.e.,
txu “ x ´ txu where txu denotes the largest integer less than or equal to x.

Note that when S is a one-row Hermite normal form simplex, the elements of Γ are
parameterized for 0 ď ℓ ď N ´ 1 by

˜

ℓp´1 `
řd´1

i“1 aiq

N
,´

ℓa1
N

,´
ℓa2
N

,´
ℓa3
N

, . . . ,´
ℓad´2

N
,´

ℓad´1

N
,
ℓ

N

¸

.

We will frequently use this parameterization of Γ throughout this work, and in particular to
compute the following two polynomials associated to S.

Definition 5.2.7. Define the h˚-polynomial of S as

h˚
pS; zq “

d
ÿ

i“0

hi
˚zi :“

ÿ

xPΓ

zagepxq

and the local h˚-polynomial for S as

BpS; zq “

d
ÿ

i“1

biz
i :“

ÿ

x PΓX p0,1q
d`1

zagepxq.

The coefficients of h˚pS; zq and BpS; zq form vectors called the h˚-vector and local h˚-vector
of S, respectively. Local h˚-polynomials of simplices are also known as box polynomials.

Example 5.2.8. The simplex in Example 5.2.4 has BpS; zq “ z2 ` z3 ` z4 and h˚pS; zq “

1 ` 2z2 ` 2z3 ` z4.

It is straightforward to verify the following proposition.
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Proposition 5.2.9. For any lattice simplex S, the polynomial BpS; zq{z has palindromic,
i.e., symmetric, coefficients.

The h˚-polynomial is a main object of study in Ehrhart theory for lattice polytopes. Local
h˚-polynomials for simplices are a special case of local h˚-polynomials for arbitrary lattice
polytopes. For a detailed discussion of the history of local h˚-polynomials in this general
setting, see [31, Section 2.4]. It is common that in expositions of Ehrhart theory [24], these
polynomials are defined using the fundamental parallelepiped of the cone over S, defined
as follows. Let tr0, . . . , rdu denote the rows of the extended matrix A for S. Then the
fundamental parallelepiped is

ΠS :“

#

ÿ

i

λiri : 0 ď λi ă 1

+

. (5.4)

Multiplication by A produces a bijection between the lattice ΛpSq and Zd`1, and further this
takes the half-open cube r0, 1qd`1 to ΠS. Thus, there is a bijection between the ΛpSq-points
in r0, 1qd`1 and the Zd`1-points in ΠS. Further, the grading of Zd`1XΠS corresponding to the
initial coordinate corresponds to the grading of ΛpSq X r0, 1qd`1 by the age function. Thus,
the definitions of local-h˚- and h˚-polynomials given above agree with the usual definitions
given in terms of the fundamental parallelepiped.

In the case of a one-row Hermite normal form simplex, certain number-theoretic con-
ditions imply that the local h˚-polynomial and h˚-polynomial are essentially the same, as
follows.

Theorem 5.2.10. Let M “ lcmpa1, a2, . . . , ad´1,´1 `
ř

i aiq, and let S be the simplex with
non-trivial row pa1, . . . , ad´1, Nq. If gcdpM,Nq “ 1, then

h˚
pS; zq “ 1 ` BpS; zq .

Proof. For a one-row Hermite normal form simplex, the parallelepiped group is generated
by

˜

p´1 `
řd´1

i“1 aiq

N
,´

a1
N
,´

a2
N
,´

a3
N
, . . . ,´

ad´2

N
,´

ad´1

N
,
1

N

¸

.

The condition h˚pS; zq “ 1 ` BpS; zq occurs if and only if every non-zero point in the
parallelepiped group has all non-zero coordinates, since this is the criteria for all non-zero
points to be in the open box p0, 1qd`1. This holds if and only if

˜

ℓp´1 `
řd´1

i“1 aiq

N
,´

ℓa1
N

,´
ℓa2
N

,´
ℓa3
N

, . . . ,´
ℓad´2

N
,´

ℓad´1

N
,
ℓ

N

¸

has all non-integer coordinates for every ℓ “ 1, 2, . . . , N ´ 1. This is equivalent to the gcd
condition in the theorem.
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Remark 6. Note that the numerical conditions in Theorem 5.2.10 are identical to those iden-
tified by Hibi, Higashitani, and Li [72] as corresponding to “shifted symmetric” h˚-vectors.
The symmetry that they observed is precisely the symmetry of the local h˚-polynomial from
Proposition 5.2.9.

For each polynomial fpzq with non-negative coefficients, we can associate to f a discrete
probability distribution.

Definition 5.2.11. Given fpzq P Rě0rzs, we define the distribution associated to f to be
the distribution defined by the coefficients of fpzq{fp1q.

We will be interested in these distributions in the case of the h˚- and local h˚-polynomials
for S.

Example 5.2.12. The local h˚-and h˚-polynomials in Example 5.2.8 yield the distributions

p0, 0, 1{3, 1{3, 1{3q

and
p1{6, 0, 1{3, 1{3, 1{6q ,

respectively.

Relationship to Stapledon decompositions

Stapledon established [123] a decomposition of the h˚-polynomial of a lattice polytope into
its boundary h˚-polynomial and its “b-polynomial.” Therefore, the b-polynomial of a simplex
S captures information about the interior of the cone over S, as does the local h˚-polynomial.
In this section, we explore the relationship between these two polynomials. Decomposition of
polynomial invariants has been widely studied and, in many settings, builds on the Stapledon
decomposition (e.g., [19, 23, 35, 78, 82]).

The h˚-polynomial of an arbitrary d-dimensional lattice polytope P P Rd is

h˚
pP ; zq :“ p1 ´ zq

d`1

˜

1 `
ÿ

ně1

|nP X Zd
|zn

¸

,

and can be computed via the h˚-polynomials of the simplices in a triangulation of P . In
particular, if T is a disjoint triangulation of P into d-dimensional half-open simplices, then

h˚
pP ; zq “

ÿ

SPT
h˚

pS; zq.

Here, the h˚-polynomial of a half-open simplex is computed similarly to that of a closed
simplex, but with a modification to the fundamental parallelepiped. Suppose S Ď Rd is
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a d-dimensional simplex with vertices v0, . . . , vd P Zd, where the facets opposite the first r
vertices are missing, for some 0 ď r ď d ` 1. That is, suppose

S “ tλ0v0 ` ¨ ¨ ¨ ` λdvd : λ0 ` ¨ ¨ ¨ ` λd “ 1, λ0, . . . , λr´1 ą 0, λr, . . . , λd ě 0u .

We define the fundamental parallelepiped of S to be

ΠS “

#

ÿ

i

λiri : 0 ă λ0, . . . , λr´1 ď 1, 0 ď λr, . . . , λd ă 1

+

(5.5)

where r0, . . . , rd are the rows of the extended matrix A for S (that is, ri “ p1, viq), and it
then holds that

h˚
pP ; zq “

ÿ

SPT
h˚

pS; zq “
ÿ

SPT

ÿ

px0,...,xdq

PΠSXZd`1

zx0 .

Theorem 5.2.13 (Stapledon, [123]). If P P Rd is a lattice polytope and ℓ ě 1 is the smallest
integer such that ℓP ˝ X Zd is nonempty, then there exist unique polynomials apP ; zq and
bpP ; zq such that

p1 ` z ` ¨ ¨ ¨ ` zℓ´1
qh˚

pP ; zq “ apP ; zq ` zℓbpP ; zq,

where apP ; zq and bpP ; zq are palindromic polynomials with nonnegative integer coefficients.

Moreover, apP ; zq is actually equal to the h˚-polynomial of the boundary BP of P , defined
in [8] as

h˚
pBP ; zq :“

h˚pP ; zq ´ h˚pP ˝; zq

1 ´ z
.

The h˚-polynomial of the boundary of P can also be expressed in terms of h˚-polynomials
of half-open simplices. There is a disjoint triangulation T of BP into half-open pd ´ 1q-
dimensional lattice simplices (where exactly one simplex is closed), and for such a triangu-
lation,

h˚
pBP ; zq “

ÿ

S1PT

h˚
pS 1; zq.

In the case where the polytope is a simplex S and where S contains an interior lattice
point (i.e. ℓ “ 1),

bpS; zq “
h˚pS; zq ´ h˚pBS; zq

z

captures information about the interior of the cone over S. The local h˚-polynomial BpS; zq

also captures information about the interior of this cone, and in this case, we are able to
directly compare these two polynomials:
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Proposition 5.2.14. Let S be a lattice simplex with an interior lattice point, and let

bpS; zq “
h˚pS; zq ´ h˚pBS; zq

z

be its b-polynomial (as in Stapledon’s decomposition). Then zbpzq is bounded above by the
local h˚-polynomial BpS; zq of S, coefficient-wise.

Proof. Use the facets of S as the maximal faces in a triangulation T of BS. Arrange the
facets of S into disjoint half-open simplices such that exactly one simplex is closed (e.g.,
using a visibility construction as in [25, Chapter 5] or [8]). Let

ΠT “
ď

S1PT

ΠS1

be the union over the fundamental parallelepipeds of the half-open simplices in T . Then
using (5.5) we obtain

zbpS; zq “ h˚
pS; zq ´ h˚

pBS, zq “

¨

˝

ÿ

zPΠSXZd`1

zx0

˛

‚´

¨

˝

ÿ

xPΠT XZd`1

zx0

˛

‚

“

¨

˝

ÿ

zPpΠSzΠT qXZd`1

zx0

˛

‚´

¨

˝

ÿ

zPpΠT zΠSqXZd`1

zx0

˛

‚.

Note that ΠT depends on the specific choice of half-open simplices in T , but the polynomial
ÿ

xPΠT XZd`1

zx0

is independent of this choice. Observe that ΠT contains all points in ΠS where some coef-
ficient λi as in (5.4) is 0 (namely, all coefficients of the row vectors of A corresponding to
vertices that are opposite a boundary facet containing the point) and ΠT contains no points
in ΠS where each coefficient is positive. Therefore, the lattice points in ΠSzΠT are precisely
those with no coefficient equal to 0, that is, the points counted by the local h˚-polynomial
BpS; zq. Thus,

zbpS; zq “ BpS; zq ´

¨

˝

ÿ

zPpΠT zΠSqXZd`1

zx0

˛

‚.

In particular, zbpS; zq is upper-bounded by BpS; zq, coefficient-wise.

We remark that the same result does not follow if S does not contain an interior point,
as now there is a factor in front of h˚pS; zq in Stapledon’s decomposition:

zℓbpS; zq “ p1 ` z ` . . . ` zℓ´1
qh˚

pS; zq ´ h˚
pBS; zq.
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For example, S “ convtp0, 0, 0q, p1, 0, 0q, p0, 1, 0q, p1, 1, 4qu has local h˚-polynomial

BpS; zq “ 4z2

and b-polynomial
bpS; zq “ 2 ` 2z (and zℓbpS; zq “ 2z2 ` 2z3).

We conclude this subsection with an observation about the implication of Stapledon’s
decomposition for shifted symmetric polytopes, as explored by Hibi, Higashitani, and Li
in [72].

Definition 5.2.15. The h˚-polynomial h˚
P pzq “ h˚

0 ` h˚
1z ` . . . h˚

dz
d of a lattice polytope P

is shifted symmetric if h˚
i “ h˚

d`1´i for i “ 1, . . . , d.

Hibi, Higashitani, and Li [72] proved that for a one-row Hermite normal form simplex
S satisfying the conditions of Theorem 5.2.10, the h˚-polynomial of S is shifted symmetric.
The following proposition due to Higashitani uses Stapledon decompositions to show that
any lattice polytope with a shifted symmetric h˚-polynomial is a simplex with a similar
geometric property to those in Theorem 5.2.10.

Proposition 5.2.16 (Higashitani [77]). If P is a lattice polytope such that h˚
P pzq is shifted

symmetric, then P is a simplex with unimodular facets. Thus, h˚pP ; zq “ 1 ` BpP ; zq.

5.3 Two illustrative examples
In this section, we provide a deep exploration of two examples of one-row Hermite normal
form simplices that illustrate important phenomena. In particular, we focus on the cases
where we take the non-trivial row to be p1, . . . , 1, Nq and

`

qk´1, . . . , q, 1, qk
˘

. These results
are independently interesting, and they also serve to motivate the results in Section 5.5.

Non-trivial row p1, . . . , 1, Nq

In this subsection, let N P Z be a fixed integer with N ą 1. We consider a d-simplex S in
one-row Hermite normal form with last row p1, . . . , 1, Nq. By (5.3) we have that

»

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 ¨ ¨ ¨ 0 0 0
1 1 0 0 ¨ ¨ ¨ 0 0 0
1 0 1 0 ¨ ¨ ¨ 0 0 0
1 0 0 1 ¨ ¨ ¨ 0 0 0
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

1 0 0 0 ¨ ¨ ¨ 1 0 0
1 0 0 0 ¨ ¨ ¨ 0 1 0
1 1 1 1 ¨ ¨ ¨ 1 1 N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´1

“

»

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 ¨ ¨ ¨ 0 0 0
´1 1 0 0 ¨ ¨ ¨ 0 0 0
´1 0 1 0 ¨ ¨ ¨ 0 0 0
´1 0 0 1 ¨ ¨ ¨ 0 0 0
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

´1 0 0 0 ¨ ¨ ¨ 1 0 0
´1 0 0 0 ¨ ¨ ¨ 0 1 0

pd´2q

N
´ 1

N
´ 1

N
´ 1

N
¨ ¨ ¨ ´ 1

N
´ 1

N
1
N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Hence, the parallelepiped group of S is given by

Γ “

˜

Zd`1
` Z

ˆ

pd ´ 2q

N
,´

1

N
, . . . ,´

1

N
,
1

N

˙t
¸

{Zd`1

Recall from above that the h˚-vector h˚ “ ph˚
0 , h

˚
1 , . . . , h

˚
dq of S is given by

h˚
i “ #tx P Γ : agepxq “ iu .

We can compute the local h˚-polynomial BpS; zq “
řd

i“0 biz
i as follows, parameterizing the

points in Γ using 0 ď k ď N ´ 1:

bi “

ˇ

ˇ

ˇ

ˇ

"

x “

ˆ

´kpd ´ 2q

N
,
k

N
, . . . ,

k

N
,´

k

N

˙

` Zd`1
P Γ : agepxq “ i,

´kpd ´ 2q

N
R Z

*
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

"

k “ 1, . . . , N ´ 1 : i “ 1 `

"

´kpd ´ 2q

N

*

`
kpd ´ 2q

N
,

"

´kpd ´ 2q

N

*

‰ 0

*ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

"

k “ 1, . . . , N ´ 1 : i “ 1 ´

Z

´kpd ´ 2q

N

^

, N ∤ kpd ´ 2q

*
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

"

k “ 1, . . . , N ´ 1 : i “ 1 `

R

kpd ´ 2q

N

V

, N ∤ kpd ´ 2q

*
ˇ

ˇ

ˇ

ˇ

.

Our goal in this subsection is to prove the following.

Theorem 5.3.1. For the d-simplex S in one-row Hermite normal form with final row
p1, . . . , 1, Nq, the local h˚-polynomial of S has every non-zero coefficient in tq, q ` 1u where
N “ pd ´ 2qq ` r for some 0 ď r ď d ´ 3. Further, the local h˚-polynomial is unimodal if
and only if r P t0, 1, 2, d ´ 3u and it has constant coefficients if and only if r P t0, 1u.

Example 5.3.2. Figure 5.1 displays the local h˚-polynomial distribution for the all ones
non-trivial row with d “ 17 and N “ 22 ¨ 15 ` 1. As claimed by Theorem 5.3.1, since r “ 1,
the local h˚-polynomial is both constant and unimodal.

The remainder of this subsection is devoted to a proof of Theorem 5.3.1. To simplify
the notation, let a,N P N be two natural numbers. Note that in our above setup, we have
a “ d´2. Throughout the remainder of this section, we will divide N by a with a remainder,
i.e., N “ a ¨ q ` r for some q, r P N with 0 ď r ă a. We define a vector α “ pα1, . . . , αaq P Za

as follows
αi “ #

"

k “ 1, . . . , N ´ 1 :

R

ak

N

V

“ i, N ∤ ak
*

.

Thus, when a “ d ´ 2, we have that the local h˚-polynomial coefficient is

bi “ αi´1
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and hence, the coefficients of the local h˚-polynomial are a shift of the vector α. We will
focus on the case that a and N are coprime and hence assume from now on until the end of
the section that gcdpa,Nq “ 1. This assumption simplifies the situation in that we do not
need to consider the condition N ∤ ak.

Let us begin with an example to illustrate our general strategy.

k

P

ak
N

T

1

2

3

4

5

1 3 5 8 10

Figure 5.4: The distribution of the values rak{N s for k “ 1, . . . , N

Example 5.3.3. Suppose that a “ 5 and N “ 12. Thus, we have N “ q ¨ a ` r where
q “ 2 and r “ 2. From the definition, we see that the αi’s depend on the distribution of
the values rak{N s for k “ 1, . . . , N ´ 1. Figure 5.4 illustrates this distribution with respect
to the multiples k. From Figure 5.4, we deduce α “ p2, 2, 3, 2, 2q. Notice that the fraction
12 ¨ a{N does not contribute to the α-vector since N “ 12 and thus N | 12 ¨ a. Furthermore,
observe that fractions ak{N contributing to the same entry αi (for some fixed i “ 1, . . . , a)
appear consecutively and the possible values for αi are either q “ 2 or q ` 1 “ 3.

Our proof strategy will rely on studying the values i for which αi “ q (respectively
αi “ q ` 1). Fix i “ 0, . . . , a ´ 1 and consider the smallest k “ 0, . . . , N ´ 1 such that
tak{N u “ i. Notice that for our example with a “ 5 and N “ 12, we have that

ak “ 5k ” ´i ¨ 2 pmod 12q ” ´ir pmod Nq

where ¨ denotes smallest residue mod a. Furthermore, observe that for our example we
have

αi`1 “

#

q ` 1 if 1 ď a ´ ir ď r ´ 1

q if r ď a ´ ir ď a.

This is true in general and will be proven in Proposition 5.3.4.
Since a and N are coprime, it follows that gcdpa, rq “ 1, and thus Z{aZ “ tir : i “

0, . . . a ´ 1u. As r ´ 1 “ 2 ´ 1 “ 1, it follows that exactly one entry of the vector α is equal
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to q ` 1, and thus α is unimodal. With similar arguments, one can identify exactly when
the vector α is unimodal in general. This will be shown in Theorem 5.3.6.

Proposition 5.3.4. Let i “ 0, . . . , a ´ 1 and let k “ 0, . . . , N ´ 1 be the smallest multiple
with tak{N u “ i. Then ak ” ´ir pmod Nq and

αi`1 “

#

q ` 1 if 1 ď a ´ ir ď r ´ 1

q if r ď a ´ ir ď a

where ¨ denotes smallest residue mod a.

Proof. The equation ak ” ´ir pmod Nq can be straightforwardly verified for i “ 0. Suppose
i “ 1, . . . , a ´ 1. Then the smallest k “ 0, . . . , N ´ 1 with tak{N u “ i satisfies apk ´ 1q ă

iN ď ak and thus 0 ă iN ´ apk ´ 1q ă a. Observe that iN “ iaq ` ir “ apk ´ 1q ` x for
some x P Z with x ” ir pmod aq. With the condition 0 ă iN ´apk´1q ă a, we deduce that
x “ ir. Thus, iN ` pa´ irq “ apk´1q ` ir` pa´ irq “ ak, which yields ak ” ´ir pmod Nq.

Notice that for i “ 1, . . . , a ´ 1, we have that

αi`1 “ #

"

l P Z : i `
a ´ ir

N
ď i `

al ` pa ´ irq

N
ă i ` 1

*

.

Furthermore, for i “ 0 it follows that α1 “ tl P Z : a{N ď pal ` aq{N ă 1u. Hence, the
second statement of our proposition is equivalent to

#

"

l P Z : i `
a ´ ir

N
ď i `

al ` pa ´ irq

N
ă i ` 1

*

“

#

q ` 1 if 1 ď a ´ ir ď r ´ 1

q if r ď a ´ ir ď a.

We begin with the case 1 ď a ´ ir ď r ´ 1. Clearly, we have that

i `
a ´ ir

N
ď i `

a ´ ir

N
, i `

a ` pa ´ irq

N
, . . . , i `

a ¨ q ` pa ´ irq

N
l jh n

q`1 many

ă i ` 1.

Furthermore, notice that i ` pa ¨ pq ` 1q ` pa ´ irqq{N ą i ` 1. Hence, the first case follows.
Next suppose that r ď a ´ ir ď a ´ 1. We have that

i `
a ´ ir

N
ď i `

a ´ ir

N
, i `

a ` pa ´ irq

N
, . . . , i `

a ¨ pq ´ 1q ` pa ´ irq

N
l jh n

q many

ă i ` 1.

Furthermore, notice that i` pa ¨ q ` pa´ irqq{N ą i` 1. Hence, the second case follows.

Corollary 5.3.5. For a and N such that gcdpa,Nq “ 1, we have αi P tq, q ` 1u.
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Note that the coefficients of the local h˚-polynomial are a simple shift of the α-vector.
Given Corollary 5.3.5, we can deduce that the local h˚-polynomial coefficients are unimodal
precisely when the values of q`1 occur in a consecutive sequence in the vector. The following
theorem characterizes when this occurs.

Theorem 5.3.6. Given a and N with N “ aq ` r, the α-vector is unimodal if and only if
r P t0, 1, 2, a ´ 1u. Furthermore, the α-vector is constant if and only if r P t0, 1u.

Proof. Since N and a are coprime, so are a and r, thus tir|i P ra ´ 1su “ ra ´ 1s. Thus, the
α-vector has exactly r´1 entries equal to q`1. It is enough to show that these r´1 entries
equal to q ` 1 cannot all be consecutive. Equivalently, that the values of a ´ ir between 1
and r ´ 1 cannot be consecutive in the sequence

a, a ´ r, a ´ 2r, . . . , a ´ pa ´ 1qr. (5.6)

We note that an element of this sequence is obtained from the previous one by subtracting
r if the result of the subtraction is positive and by adding a ´ r otherwise.

To prove the “if” part of the theorem, we note that the α-vector in the case r “ 0 is
trivial. In the case r “ 1 by the above formula all entries are equal to q. In the case r “ 2 it
has exactly one q`1 entry, not the first, and thus in all these cases the α-vector is unimodal.
For r “ a´1, the sequence (5.6) is simply a, 1, 2, . . . , a´1, so there are exactly two q entries
in the α-vector, the first and the last, making the vector unimodal.

Now for the “only if” direction: let 3 ď r ď a´2. There are r´1 entries equal to q`1, so
at least two and at most a´ 3 (i.e., at least three q entries). It is enough to show that these
r ´ 1 entries equal to q ` 1 cannot all be consecutive. That is, that in the sequence (5.6) the
values between 1 and r ´ 1 cannot all be consecutive. We distinguish two cases:

• If r ą a´r (i.e. r ą a
2
); suppose a “ kpa´rq`t, with 0 ď t ă a´r. Then the sequence

(5.6) begins with a, a ´ r, . . . , kpa ´ rq, where the second entry already corresponds to
a q`1 entry in the α-vector, since a´ r ă r. Since r ą a

2
and a´ r ě 2, it follows that

r ¨ pa ´ rq ą a, and thus k ď r ´ 1. Furthermore, notice that k ¨ pa ´ rq “ a ´ t ą r.
We conclude that α2 “ q ` 1, αk “ q, and k ď r ´ 1. Hence, there exists i ą k with
αi “ q ` 1, which means that the sequence is not unimodal.

• If r ă a´ r (i.e., r ă a
2
), we proceed similarly. Let us write a “ ℓ ¨ r`s with 0 ď s ă r.

Then the sequence (5.6) begins with a, a ´ r, . . . , a ´ ℓr, where the last entry satisfies
a ´ ℓr “ s ă r, i.e., αℓ “ q ` 1. In other words, the sequence (5.6) starts with
consecutive q’s followed by one or more pq ` 1q’s. Notice that pℓ ` 1qr ą ℓr ` s “ a,
so that pℓ ` 1qr “ pℓ ` 1qr ´ a “ r ´ s. Hence, a ´ pℓ ` 1qr “ a ´ r ` s. Since r ă a

2
,

it follows that a ´ pℓ ` 1qr “ a ´ r ` s ą a
2

ą r, i.e., αℓ`1 “ q. Together with the
symmetry αi “ αa`1´i for all i “ 1, . . . , a, we conclude this sequence is not unimodal.
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Using our result for the case where gcdpa,Nq “ 1, we can now extend our result to the
general setting, which implies Theorem 5.3.1.

Corollary 5.3.7. Let a,N P N and let b “ gcdpa,Nq ‰ 1. Divide N by a with remainder,
i.e., write N “ aq ` r for some q, r P N with 0 ď r ă a. Then the α-vector is unimodal if
and only if r “ 0 or r “ b.

Proof. Let us write a “ a1 ¨ b and N “ N 1 ¨ b for some a1, N 1 P N. Firstly, observe that α is a
b-fold concatenation of the vector α1 that corresponds to the numbers a1 and N 1. Therefore,
α is unimodal if and only if α1 is constant, and hence it remains to check when this is the
case.

Let us divide N 1 by a1 with remainder, i.e., N 1 “ a1 ¨ q1 ` r1 for some q1, r1 P N with
0 ď r1 ă a1. By Theorem 5.3.6, α1 is constant if and only if r1 P t0, 1u. With N “ b ¨ N 1 “

q1 ¨ pa1bq ` r1 ¨ b “ q1 ¨ a ` pr1 ¨ bq, the statement follows.

Non-trivial row
`

qk´1, . . . , q, 1, qk
˘

In this subsection, let k P Z be a fixed positive integer and q P Zě2. Consider the one-row
Hermite normal form simplex S with final row

`

qk´1, . . . , q, 1, qk
˘

. We study this as a test
case for one-row Hermite normal form simplices where the final row has “well-spaced” entries.

To begin, in the following proposition we show that any S of this form does not have
the Integer Decomposition Property (IDP). Recall that a simplex S has the IDP if every
lattice point in the non-negative cone generated by the colums of A is a sum of lattice
points in the cone having last coordinate equal to 1. It is known that polytopes with a
unimodular triangulation have the IDP, and thus these simplices do not have a regular
unimodular triangulation. This is noteworthy because, as we will see in Theorem 5.3.9
below, the local h˚-polynomial of every such S is unimodal, as illustrated in Figure 5.2. This
family of simplices demonstrates that the existence of regular unimodular triangulations is
not the only source of unimodularity for local h˚-polynomials of one-row Hermite normal
form simplices.

Proposition 5.3.8. The simplex S does not have the IDP.

Proof. We begin by observing that

1 ă
1

q
` ¨ ¨ ¨ `

1

qk
`

ˆ

1 ´
1

qk

˙

ă 2.

Let λ P p0, 1q such that λ `
řk

i“1
1
qi

`

´

1 ´ 1
qk

¯

“ 2, so that the convex combination

b “ pqk´1, . . . , q, 1, qk ´ 1q “ λv0 `

k
ÿ

i“1

1

qi
vi `

ˆ

1 ´
1

qk

˙

vk`1 P 2S.
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Assume towards a contradiction that b “ b1 ` b2 for two elements b1, b2 P S X Zk`1. Let us
write b1 “ pb1

0, . . . , b
1
k`1q and b2 “ pb2

0, . . . , b
2
k`1q for b1

i, b
2
j P Zě0. Then the k-th coordinate of

b1 or b2 has to vanish, say b1
k “ 0. We can write b1 “

řk`1
i“0 µ

1
ivi, with µ1

i P r0, 1s such that
řk`1

i“0 µ
1
i “ 1. Since 0 “ µ1

k`1 ` µ1
k, it follows that µ1

k`1 “ µ1
k “ 0. Thus, b2

k`1 “ qk ´ 1.
Let us write b2 “

řk`1
i“0 µ

2
i vi for µ2

i P r0, 1s with
řk`1

i“0 µ
2
i “ 1. Since b is in the interior of

2S and b1 is on the boundary of S, it follows that b2 is in the interior of S, or in other words
µ2
i P p0, 1q. From b2

k`1 “ qk ´ 1 we conclude that µ1
k`1 “

qk´1
qk

. Observe that the entry b2
k`1

completely determines the vector b2. Indeed, for i “ 1, . . . , k, since b2
i “ µ2

k`1q
k´i ` µ2

i is an
integer and µ2

i P p0, 1q, we have that µ2
i “ 1

qi
, which also fixes b2

i . Note that
řk`1

i“1 µ
2
i ą 1 - a

contradiction. Hence, the element b P 2SXZk`1 is not a sum of two elements in SXZk`1.

Theorem 5.3.9. For any integers q ě 2 and k ě 2, the simplex S with non-trivial row
`

1, qk´1, . . . , q, 1, qk
˘

has a unimodal local h˚-polynomial.

The remainder of this subsection is devoted to a proof of Theorem 5.3.9. We begin
by computing the parallelepiped group. Recall that this can be straightforwardly done,
by lifting the vertices v0, v1, . . . , vk`1 on height one and use these vectors as the rows of a
matrix A. Let us denote the rows of the inverse matrix A´1 by r1pAq, . . . , rk`2pAq. Then the
parallelepiped group is Γ “ Zk`2 `

řk`2
i“1 ZripAq. In our case, it is straightforward to verify

that the inverse matrix A´1 is given by:

A´1
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 ¨ ¨ ¨ 0 0 0
´1 1 0 0 ¨ ¨ ¨ 0 0 0
´1 0 1 0 ¨ ¨ ¨ 0 0 0
´1 0 0 1 ¨ ¨ ¨ 0 0 0

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

´1 0 0 0 ¨ ¨ ¨ 1 0 0
´1 0 0 0 ¨ ¨ ¨ 0 1 0

qk´2`qk´3`¨¨¨`q`1
qk´1 ´1

q
´ 1

q2
´ 1

q3
¨ ¨ ¨ ´ 1

qk´1 ´ 1
qk

1
qk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Hence, the parallelepiped group of S is given by

Γ “

ˆ

Zk`2
` Z

ˆ

p´1q ¨
qk´2 ` qk´3 ` ¨ ¨ ¨ ` q ` 1

qk´1
,
1

q
,
1

q2
, . . . ,

1

qk
, p´1q ¨

1

qk

˙˙

{Zk`2.

Hence, the coefficients of the local h˚-polynomial BpS; zq “
řk`2

i“0 biz
i satisfy:

bi “
ˇ

ˇ

␣

x “ px1, . . . , xk`2q ` Zk`2
P Γ : agepxq “ i, xi R Z for all i

(ˇ

ˇ
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In particular, we see from this that
řd

i“0 bi “ pq ´ 1q ¨ qk´1. In order to show that the local
h˚-polynomial coefficients form a unimodal sequence, it suffices to show that the sequence
pδ1

1, δ
1
2, . . . , δ

1
k´1q is a unimodal sequence where

δ1
i “

ˇ

ˇ

ˇ

ˇ

ˇ

#

ℓ “ 1, . . . , qk : q ∤ ℓ,
k´1
ÿ

i“1

"

ℓ

qi

*

`

#

´

k´1
ÿ

i“1

ℓ

qi

+

“ i

+ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

#

ℓ “ 1, . . . , qk, : q ∤ ℓ,

S

k´1
ÿ

i“1

"

ℓ

qi

*

W

“ i

+
ˇ

ˇ

ˇ

ˇ

ˇ

.

We can further simplify this by defining the sequence pδ1, . . . , δk´1q where

δi “

ˇ

ˇ

ˇ

ˇ

ˇ

#

ℓ “ 1, . . . , qk´1 : q ∤ ℓ,

S

k´1
ÿ

i“1

"

ℓ

qi

*

W

l jh n

“:agepℓq

“ i

+
ˇ

ˇ

ˇ

ˇ

ˇ

and observing that δ1
i “ q ¨ δi, which is obtained by writing ℓ in base q. Thus, unimodality

of the local h˚-polynomial is equivalent to unimodality of the sequence δi.
Let us next express ℓ “ 1, . . . , qk´1 in base q, i.e., we write ℓ “

řk´2
i“0 ciq

i for natural
numbers ci P t0, 1, . . . , q ´ 1u. Then agepℓq can be rewritten as follows

agepℓq “

S

k´1
ÿ

i“1

"

ℓ

qi

*

W

“

S

k´1
ÿ

i“1

#

řk´2
j“0 cjq

j

qi

+W

“

S

k´1
ÿ

i“1

#

i´1
ÿ

j“0

cjq
j´i

+W

“

S

k´1
ÿ

i“1

i´1
ÿ

j“0

cjq
j´i

W

“

S

k´2
ÿ

j“0

cj

k´1´j
ÿ

i“1

q´i

W

“

S

k´2
ÿ

j“0

cj
1 ´ q´k`1`j

q ´ 1

W

“

R

c0 ` c1 ` ¨ ¨ ¨ ` ck´2

q ´ 1
´

ℓ

qk´1pq ´ 1q

V

.

The following proposition considerably simplifies the computation of agepℓq.

Proposition 5.3.10. For all ℓ “ 1, . . . , qk´1, we have that

agepℓq “

R

c0 ` c1 ` ¨ ¨ ¨ ` ck´2

q ´ 1

V

,

where ℓ “ c0 ` c1q ` c2q
2 ` ¨ ¨ ¨ ` ck´2q

k´2 is the expression of ℓ to base q.

Proof. We begin by observing that (recall that q ě 2)

ℓ

qk´1pq ´ 1q
ă

1

q ´ 1
ď 1.
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Let us write the fraction pc0 ` ¨ ¨ ¨ ` ck´2q{pq ´ 1q “ r ` δ{pq ´ 1q for some natural numbers
r, δ P Z where δ “ 0, 1, . . . , q ´ 2. We distinguish two cases.

Suppose δ “ 0. Since ℓ{pqk´1pq ´ 1qq ă 1, it follows that
R

c0 ` ¨ ¨ ¨ ` ck´2

q ´ 1

V

“ rrs “

R

r ´
ℓ

qk´1pq ´ 1q
l jh n

ă1

V

“ agepℓq. .

Next suppose that δ ą 0. Since ℓ{pqk´1pq ´ 1qq ă 1{pq ´ 1q, it follows that
R

c0 ` ¨ ¨ ¨ ` ck´2

q ´ 1

V

“

R

r `
δ

q ´ 1

V

“

R

r `
δ

q ´ 1
´

ℓ

qk´1pq ´ 1q
l jh n

ă1{pq´1q

V

“ agepℓq.

With the previous proposition, it straightforwardly follows that

δi “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ipq´1q
ğ

j“pi´1qpq´1q`1

#

pc0, . . . , ck´2q P r1, q ´ 1s ˆ r0, q ´ 1s
k´2

X Zk´1 :
k´2
ÿ

m“0

cm “ j

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Clearly, the number of tuples pc0, . . . , ck´2q P r1, q ´ 1s ˆ r0, q ´ 1s
k´2

X Zk´1 which sum up
to the integer j coincides with the j-th coefficient of the following polynomial

f “ pt ` t2 ` ¨ ¨ ¨ ` tq´1
q ¨ p1 ` t ` t2 ` ¨ ¨ ¨ ` tq´1

q
k´2

“

pk´1qpq´1q
ÿ

m“0

αmt
m

P Zrts.

We get δi “
řipq´1q

j“pi´1qpq´1q`1 αj. Since the sequence pδ1, . . . , δk´1q is palindromic, it suffices
to show that δ1 ď δ2 ď ¨ ¨ ¨ ď δtpk´1q{2u. Since the polynomial f is a product of palindromic
unimodal polynomials, it is palindromic and unimodal too. In particular, the coefficients αm

are monotonically increasing until the middle (i.e., up to the coefficient αtpk´1qpq´1q{2u).
Since the sequence pδ1, . . . , δk´1q can be identified with disjoint successive partial sums of

the sequence pα0, . . . , αtpk´1q{2upq´1qq which is monotonically increasing as tpk ´ 1q{2upq´1q ď

tpk ´ 1qpq ´ 1q{2u, it follows that pδ1, . . . , δk´1q is unimodal. This completes the proof of
Theorem 5.3.9.

5.4 Number theoretical results on floor and ceiling
functions

In this section we prove a variety of results regarding floor and ceiling functions that we will
use in Section 5.5.
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Proposition 5.4.1. Let k,m, n be positive integers and set ε :“ 1
n
. Then we have

Z

k ¨ i ` 1

k ¨ m ` ε

^

“

Z

k ¨ i ` δ ` 1

k ¨ m ` ε

^

and
R

k ¨ i ` 1

k ¨ m ` ε

V

“

R

k ¨ i ` δ ` 1

k ¨ m ` ε

V

for all i “ 0, 1, . . . ,mn ´ 1 and all δ “ 0, 1, . . . , k ´ 1.

To prove this statement we consider the function

f : R2
Ñ R; px, yq ÞÑ fpx, yq :“ k ¨ x ` y ` 1.

We first notice that if we fix x0 P R then the function fx0pyq “ fpx0, yq is strictly monotoni-
cally increasing on R. Similarly, we have for fixed y0 P R that the function fy0pxq “ fpx, y0q

is strictly monotonically increasing on R.

Lemma 5.4.2. For each ℓ P r0, n ´ 1s we have that

ℓ ¨ pkm ` εq ă fpx, yq ă pℓ ` 1q ¨ pkm ` εq

where px, yq P rℓm, pℓ ` 1qm ´ 1s ˆ r0, k ´ 1s.

Proof. Let us consider the restriction of fpx, yq to the region rℓm, pℓ ` 1qm ´ 1s ˆ r0, k ´ 1s

which we denote by gpx, yq.
Notice that the domain of gpx, yq is a rectangle with left-bottom vertex pℓm, 0q and top-

right vertex ppℓ`1qm´1, k´1q. With the above observed monotonicity of fpx, yq, it suffices
to show that

ℓ ¨ pkm ` εq ă fpℓ ¨ m, 0q and fppℓ ` 1q ¨ m ´ 1, k ´ 1q ă pℓ ` 1q ¨ pkm ` εq .

Although it’s straightforward to verify these two inequalities, we want to briefly discuss them
here to show where the assumptions are needed. Clearly, we have

ℓ ¨ pkm ` εq “ k ¨ ℓ ¨ m ` ℓ ¨ ε
ljhn

ă1

ă k ¨ ℓ ¨ m ` 1 “ fpℓ ¨ m, 0q .

Noticed that the assumption ℓ ă n implies that ℓ ¨ ε ă 1. The verification of the second
inequality is straightforward (and doesn’t need the assumption ℓ ă n).

Proof of Proposition 5.4.1. Notice that we can partition the integers in the interval r0,mn´

1s into the following pairwise disjoint subsets:

r0,mn ´ 1s X Z “

n´1
ď

ℓ“0

prℓm, pℓ ` 1qm ´ 1s X Zq .
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Let i P rℓm, pℓ ` 1qm ´ 1s for some ℓ “ 0, 1, . . . , n ´ 1 and let δ “ 0, 1, . . . , k ´ 1. By
Lemma 5.4.2, we have that

ℓ ¨ pk ¨ m ` εq ă k ¨ i ` δ ` 1 ă pℓ ` 1q ¨ pk ¨ m ` εq,

and thus
ℓ ă

k ¨ i ` δ ` 1

k ¨ m ` ε
ă ℓ ` 1 .

It follows that
Z

k ¨ i ` δ ` 1

k ¨ m ` ε

^

“ ℓ and
R

k ¨ i ` δ ` 1

k ¨ m ` ε

V

“ ℓ ` 1

for each δ “ 0, 1, . . . , k ´ 1.

The following statement is straightforward to show:

Lemma 5.4.3. For ℓ P r0, n ´ 1s, we have that

ℓ ¨ pm ` εq ă x ` 1 ă pℓ ` 1q ¨ pm ` εq

for all x P rℓm, pℓ ` 1qm ´ 1s.

Corollary 5.4.4. Let k,m, n be positive integers and set ε :“ 1
n
. Then we have

Z

k ¨ q ` 1

k ¨ m ` ε

^

“

Z

q ` 1

m ` ε

^

and
R

k ¨ q ` 1

k ¨ m ` ε

V

“

R

q ` 1

m ` ε

V

for all q “ 0, 1, . . . ,mn ´ 1.

Proof. We again partition the integers in the interval r0,mn ´ 1s into disjoint subsets:

pr0,mn ´ 1s X Zq “

n´1
ď

ℓ“0

prℓm, pℓ ` 1qm ´ 1s X Zq .

Suppose q P rℓm, pℓ ` 1qm ´ 1s for some ℓ “ 0, 1, . . . , n ´ 1. By the Lemmas 5.4.2 and 5.4.3,
we have that

ℓ ¨ pkm ` εq ă k ¨ q ` 1 ă pℓ ` 1q ¨ pkm ` εq and ℓ ¨ pm ` εq ă q ` 1 ă pℓ ` 1q ¨ pm ` εq .

Hence, we get that

ℓ ă
k ¨ q ` 1

km ` ε
ă ℓ ` 1 and ℓ ă

q ` 1

m ` ε
ă ℓ ` 1 .

From this the statement follows straightforwardly.
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Lemma 5.4.5. Let k, n,m be positive integers, and let i “ 0, 1, . . . ,mn ´ 1 and δ “

0, 1, . . . , k ´ 1. If δ ě pn ´ 1qm ` 1 and k ě n, then
Z

ki ` δ ` 1

km ` 1
n

^ˆ

1 `
1

k

˙

ă
ki ` δ ` 1

km ` 1
n

. (5.7)

Proof. Let t “ 0, 1, . . . , n ´ 1 and s “ 0, 1, . . . ,m ´ 1. Observe that since δ ě pn ´ 1qm ` 1,
we have

0 ă nkpks ` δ ´ tm
l jh n

ě1

q .

Since 0 ď t ď n ´ 1 and k ě n, it follows that

0 ă nkpks ` δ ` 1 ´ tmq ´ tpk ` 1q “ nkpks ` δ ´ tmq ` nk ´ tpk ` 1q
l jh n

ě1

.

Expanding and rearranging gives us

tkmn ` t ă nk2s ` nkδ ` nk ´ tk

from which it follows that
t

k
ă

kns ` nδ ` n ´ t

kmn ` 1
.

Adding t to both sides gives

t

ˆ

1 `
1

k

˙

ă t `
kns ` nδ ` n ´ t

kmn ` 1
. (5.8)

Because 0 ď s ď m ´ 1, 0 ď δ ď k ´ 1, and 0 ď t ď n ´ 1, we have that

0 ď
kns ` nδ ` n ´ t

kmn ` 1
ă 1 ñ t “

Z

t `
kns ` nδ ` n ´ t

kmn ` 1

^

.

By substituting this expression for t in the left-hand-side of Equation (5.8), we obtain
Z

t `
kns ` nδ ` n ´ t

kmn ` 1

^ˆ

1 `
1

k

˙

ă t `
kns ` nδ ` n ´ t

kmn ` 1
.

Straightforward algebraic calculations then yield
Z

kptm ` sq ` δ ` 1

km ` 1
n

^ˆ

1 `
1

k

˙

ă
kptm ` sq ` δ ` 1

km ` 1
n

.

Note that with our range of t P r0, n´ 1s and s P r0,m´ 1s, the values of i “ tm` s exactly
parameterize i P r0,mn ´ 1s, and thus our proof is complete.
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Theorem 5.4.6. Let k,m, n, r be positive integers with 1 ď r ď mn. For k ě mn, δ “

mn,mn ` 1, . . . , k ´ 1, and i “ 0, 1, . . . ,mn ´ 1, the following hold:
Z

ki ` δ ` 1

km ` r
n

^

“

Z

ki ` δ ` 1

km ` 1
n

^

(5.9)

and
R

ki ` δ ` 1

km ` r
n

V

“

R

ki ` δ ` 1

km ` 1
n

V

. (5.10)

Proof. Note that 1 ď r implies that
Z

ki ` δ ` 1

km ` r
n

^

ď

Z

ki ` δ ` 1

km ` 1
n

^

and
R

ki ` δ ` 1

km ` r
n

V

ď

R

ki ` δ ` 1

km ` 1
n

V

.

Thus, our result will follow once we prove that the following holds for all δ ě mn:
Z

ki ` δ ` 1

km ` 1
n

^

ď
ki ` δ ` 1
`

km ` r
n

˘ ď
ki ` δ ` 1
`

km ` 1
n

˘ ď

R

ki ` δ ` 1

km ` r
n

V

. (5.11)

Note that the middle inequality above is a consequence of 1 ď r. It is a strict inequality if
1 ă r. To show the left-most inequality in (5.11), use δ ě mn and apply Lemma 5.4.5 to
obtain

Z

ki ` δ ` 1

km ` 1
n

^ˆ

km ` r
n

km ` 1
n

˙

“

Z

ki ` δ ` 1

km ` 1
n

^ˆ

1 `
r ´ 1

knm ` 1

˙

ă

Z

ki ` δ ` 1

km ` 1
n

^ˆ

1 `
1

k

˙

ă
ki ` δ ` 1

km ` 1
n

.

From this, we conclude that if δ ě mn, the following inequality holds:
Z

ki ` δ ` 1

km ` 1
n

^

ă
ki ` δ ` 1
`

km ` r
n

˘ .

To show the right-most inequality in (5.11), we assume δ ě mn and consider two cases. We
write i “ tm ` s where t “ 0, 1, . . . , n ´ 1 and s “ 0, 1, . . . ,m ´ 1.

Our first case is when s “ 0. Since δ ď k ´ 1 and m ě 1, we have

δ ď km `
t ` 1

n
´ 1 “

ˆ

km `
1

n

˙

pt ` 1q ´ ktm ´ 1 .
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Combining the above inequality with mn ď δ ď k ´ 1 and 0 ď t ď n ´ 1, we obtain

ki ` δ ` 1

km ` 1
n

“
ktm ` δ ` 1

km ` 1
n

“
ktm ` t

n
` δ ` n´t

n

km ` 1
n

“ t `
nδ ` n ´ t

kmn ` 1
ă t ` 1 “

“

R

t `
δ ` 1 ´ tm

pk ` 1qm
l jh n

Pp0,1q

V

“

R

ktm ` δ ` 1

pk ` 1qm

V

ď

R

ktm ` δ ` 1

km ` r
n

V

.

Our second case is when 1 ď s ď m ´ 1. In this case, δ ď k ´ 1 implies that

δ ď kpm ´ sq ´ 1 ď
t

n
`

1

n
` kpm ´ sq ´ 1 “

ˆ

km `
1

n

˙

pt ` 1q ´ kmt ´ ks ´ 1

which implies since δ ě mn and i ď mn ´ 1 that

ki ` δ ` 1

km ` 1
n

“
kptm ` sq ` δ ` 1

km ` 1
n

ă t ` 1 “

R

i

m

V

ă

ă

R

pk ` 1qi ´ i ` δ ` 1

km ` m

V

ď

R

ki ` δ ` 1

km ` r
n

V

.

This shows that (5.11) holds for all mn ď δ ď k ´ 1.

5.5 Asymptotic properties of local h˚-polynomials
In this section we consider one-row Hermite normal form simplices as in (5.2) with fixed
a1, . . . , ad´1 and increasing normalized volume N . Specifically, we establish that the general
behavior of the local h˚-polynomial for these simplices is determined by the simplex with
N “ M ` 1, where M “ lcmpa1, . . . , ad´1,´1 `

ř

i aiq. The following theorem shows that
there is a close connection between the local h˚-polynomials for N “ M`1 and N “ kM`1.

Theorem 5.5.1. Fix a1, . . . , ad´1 P Z and let M :“ lcmpa1, . . . , ad´1,
řd´1

i“1 ai ´1q. Denoting
by SkM`1 the simplex given in (5.2) with normalized volume N “ k ¨M `1 for some k P Zą0,
we have that

BpSkM`1; zq “ k ¨ BpSM`1; zq .

Thus, BpSM`1; zq is unimodal if and only if BpSkM`1; zq is unimodal for all positive integers
k.

We will first establish Lemma 5.5.2, which will be needed for the proof of Theorem 5.5.1.
Let pa1, . . . , ad´1q P Zd´1 be the vector of the non-trivial-row-entries and let N P Zą0 be the
normalized volume of the simplex S Ď Rd. Set M :“ lcm

´

a1, . . . , ad´1,
řd´1

i“1 ai ´ 1
¯

P Zě0.
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Suppose N “ N pkq “ k ¨ M ` 1 for some k P Zą0. Recall that the parallelepiped group is
generated by the following element:

v
pkq

0 :“

˜

1 ´
řd´1

i“1 ai
N

,
a1
N
,
a2
N
, . . . ,

ad´1

N
,´

1

N

¸

P Γ.

We observe that each element x “ ℓ ¨ v
pkq

0 for ℓ “ 1, . . . , N ´ 1 has age

agepxq “ 1 `

»

—

—

—

ℓ ¨

´´

řd´1
i“1 ai

¯

´ 1
¯

N

fi

ffi

ffi

ffi

´

d´1
ÿ

i“1

Z

ℓ ¨ ai
N

^

“ 1 `

R

ℓ

N0

V

´

d´1
ÿ

i“1

Z

ℓ

Ni

^

,

where we have set

N0 :“
N

řd´1
i“1 ai ´ 1

and Ni :“
N

ai
for i “ 1, . . . , d ´ 1.

We notice that Ni for i “ 0, . . . , d ´ 1 is of the form

Ni “
k ¨ M ` 1

Di

“ k ¨
M

Di

` εi “ k ¨ Mi ` εi

where Mi :“ M{Di is an integer and εi “ 1{Di. Substituting this into the formula for the
age, we get

agepxq “ 1 `

R

ℓ

k ¨ M0 ` ε0

V

´

d´1
ÿ

i“1

Z

ℓ

k ¨ Mi ` εi

^

.

We now divide ℓ by k, say ℓ “ k ¨q`δ`1 for some δ “ 0, 1, . . . , k´1 and q “ 0, 1, . . . ,M ´1.
By Proposition 5.4.1, it follows that

age
´

ℓ ¨ v
pkq

0

¯

“ 1 `

R

k ¨ q ` δ ` 1

k ¨ M0 ` ε0

V

´

d´1
ÿ

i“1

Z

k ¨ q ` δ ` 1

k ¨ Mi ` εi

^

“ 1 `

R

k ¨ q ` 1

k ¨ M0 ` ε0

V

´

d´1
ÿ

i“1

Z

k ¨ q ` 1

k ¨ Mi ` εi

^

“ age
´

pk ¨ q ` 1q ¨ v
pkq

0

¯

.

Here, we used that q “ 0, 1, . . . ,Mi ¨ Di ´ 1 for each i “ 1, . . . , d ´ 1 (notice Mi ¨ Di “ M).
This proves the following statement.

Lemma 5.5.2. Given the assumptions of Theorem 5.5.1, for all q “ 0, 1, . . . ,M ´ 1 and all
δ “ 0, 1, . . . , k ´ 1, we have

age
´

pk ¨ q ` 1qv
pkq

0

¯

“ age
´

pk ¨ q ` δ ` 1qv
pkq

0

¯

.
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Proof of Theorem 5.5.1. We want to compare the box-polynomials of the two simplices where
the ai are fixed and only the normalized volume changes, namely the general case Nk with
the ‘initial case’ N1. Like before let ℓ “ k ¨ q ` δ ` 1 for some δ “ 0, 1, . . . , k ´ 1 and q “

0, 1, . . . ,M ´1. We continue to use the notation from above and notice that by Lemma 5.5.2

age
´

pk ¨ q ` δ ` 1qv
pkq

0

¯

“ age
´

pk ¨ q ` 1qv
pkq

0

¯

“ 1 `

R

k ¨ q ` 1

k ¨ M0 ` ε0

V

´

d´1
ÿ

i“1

Z

k ¨ q ` 1

k ¨ Mi ` εi

^

“ 1 `

R

q ` 1

M0 ` ε0

V

´

d´1
ÿ

i“1

Z

q ` 1

Mi ` εi

^

“ age
´

pq ` 1qv
p1q

0

¯

Here, we used Lemma 5.4.4 to justify the step from the first to the second line. From this
the theorem follows.

Next, we extend Theorem 5.5.1 to the setting of arbitrary normalized volume.

Theorem 5.5.3. Fix a1, . . . , ad´1 P Zě1 and let M :“ lcmpa1, . . . , ad´1,´1 `
řd´1

i“1 aiq. We
continue to use the notation from Section 5.2 and let SN denote the simplex given there with
normalized volume N . Let k be a positive integer and 0 ď r ď M ´ 1. Then we have that

lim
kÑ8

BpSkM`r; zq{BpSkM`r; 1q “ BpSM`1; zq{BpSM`1; 1q .

It follows that if BpSM`1; zq is strictly unimodal, i.e., if the coefficients are unimodal with
strict increases and strict decreases, then BpSkM`r; zq is strictly unimodal for all sufficiently
large k.

Proof. We fix r “ 0, 1, . . . ,M ´ 1 and set Npk, rq “ kM ` r and a0 “
řd´1

i“1 ai ´ 1. Consider
the generator of the parallelepiped group from above

v0pk, rq “

ˆ

´
a0

Npk, rq
,

a1
Npk, rq

,
a2

Npk, rq
, . . . ,

ad´1

Npk, rq
,´

1

Npk, rq

˙

P Γ .

For ℓ “ 1, 2, . . . , Npk, rq ´ 1, we write ℓ “ k ¨ q ` δ ` 1 for q “ 0, 1, . . . ,M ´ 1 and δ “

0, 1, . . . , k ´ 1, Mi :“ M{ai and εi :“ r{ai for i “ 0, 1, . . . , d ´ 1. With this notation, the age
of ℓ ¨ v0pk, rq is expressed as follows:

agepℓ ¨ v0pk, rqq “ 1 `

R

ℓ

k ¨ M0 ` ε0

V

´

d´1
ÿ

i“1

Z

ℓ

k ¨ Mi ` εi

^

“ 1 `

R

k ¨ q ` δ ` 1

k ¨ M0 ` ε0

V

´

d´1
ÿ

i“1

Z

k ¨ q ` δ ` 1

k ¨ Mi ` εi

^

We observe that Theorem 5.4.6 shows that
Z

k ¨ q ` δ ` 1

k ¨ Mi ` εi

^

“

Z

k ¨ q ` δ ` 1

k ¨ Mi ` 1

^

and
R

k ¨ q ` δ ` 1

k ¨ M0 ` ε0

V

“

R

k ¨ q ` δ ` 1

k ¨ M0 ` 1

V
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for all q “ 0, 1, . . . ,M ´ 1 and δ “ M,M ` 1, . . . , k ´ 1 (provided that k is large enough).
Hence, it follows for all ℓ “ k ¨q`δ`1 with q “ 0, 1, . . . ,M´1 and δ “ M,M`1, . . . , k´1

that
agepℓ ¨ v0pk, rqq “ agepℓ ¨ v0pk, 1qq .

In particular, among the kM ` r ´ 1 values of ℓ parameterizing the parallelepiped group for
SkM`r, the number of ℓ-values with ages differing from SkM`1 is bounded above by M2 ` r,
which is constant with respect to k. In addition to this, in the case that gcdpM,kM `rq ą 1,
it is possible that some of the ℓ-values for SkM`r might not yield points in the open box
p0, 1qd`1. The maximum possible number of such points is

řd´1
i“0 ai, which is again constant

with respect to k.
Thus, as k Ñ 8, the number of ℓ “ 1, 2, . . . , kM ` r ´ 1 such that agepℓ ¨ v0pk, rqq “

agepℓ ¨v0pk, 1qq is at least kM `r´1´pM2 ` r `
ř

i aiq. Hence, the fraction of such ℓ-values
is

kM ` r ´ 1 ´ pM2 ` r `
ř

i aiq

kM ` r ´ 1

which goes to 1 as k Ñ 8. Hence, we have that

lim
kÑ8

BpSkM`r; zq{BpSkM`r; 1q “ lim
kÑ8

BpSkM`1; zq{BpSkM`1; 1q “ BpSM`1; zq{BpSM`1; 1q .

For certain values of kM ` r, Theorem 5.5.3 has implications for h˚-polynomials as well.

Corollary 5.5.4. Using the notation from Theorem 5.5.3, if gcdpM, rq “ 1, then

lim
kÑ8

h˚
pSkM`r; zq{h˚

pSkM`r; 1q “ BpSM`1; zq{BpSM`1; 1q .

Thus, if SM`1 has a strictly unimodal local h˚-polynomial with a positive linear coefficient,
then h˚pSkM`r; zq is unimodal for all sufficiently large k.

Proof. This is a straightforward consequence of Theorems 5.2.10 and 5.5.3.

5.6 Further questions
Theorem 5.5.3 shows that for a one-row Hermite normal form simplex, if the values of
a1, . . . , ad´1 are fixed, the distribution of the local h˚-polynomial coefficients for arbitrary
normalized volumes is to a large extent determined by a single normalized volume of M ` 1.
This suggests several questions leading to directions for further study.

Question 5.6.1. Which sequences a1, . . . , ad´1 yield a unimodal (or strictly unimodal) local
h˚-polynomial for SM`1? How common is it for such a simplex to admit a regular unimodular
triangulation?
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Figure 5.5: For each n, the fraction of unimodal local h˚-polynomials for one-row Hermite
normal form simplices SM`1 whose one nontrivial row is given by a partition of n

There are several ways to approach Question 5.6.1. One approach is to fix a positive
integer n and consider the set of all one row Hermite normal form matrices with final row
formed by a partition of n and normalized volume M `1. One can ask what fraction of these
have unimodal local h˚-polynomials. A plot of these fraction values is given in Figure 5.5
for n ď 34. It is not clear what the long-term behavior of this sequence is.

Another approach, which seems more promising, is motivated by the observation that if
the values a1, . . . , ad´1 are distinct integers, it appears that this leads to local h˚-polynomial
unimodality. For example, every partition of n ď 34 with distinct parts yields a one row
Hermite normal form simplex with a unimodal local h˚-polynomial, leading to the following
question.

Question 5.6.2. If pa1, a2, . . . , ad´1q is a list of d ´ 1 distinct positive integers, does the
corresponding simplex SM`1 have a unimodal local h˚-polynomial?

Experimentally, it seems that having a list of completely distinct positive integers is a
stronger condition than needed for unimodality. For example, we generated 121 examples in
the following manner. Begin with a constant vector ai “ k and fixed d, then randomly add
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Figure 5.6: The distributions for 40 local h˚-polynomials of 11-dimensional simplices SM`1

generated by small random perturbations from constant rows

a value from t0, 1, 2, 3, 4u to each entry. We considered the pairs d, k from

tp8, 1q, p8, 4q, p8, 7q, p8, 10q, p11, 1q, p11, 4q, p11, 7q, p11, 10q, p14, 1q, p14, 4q, p14, 7qu

and generated eleven samples each, consisting of the constant row case and ten random
perturbations. In all cases, we constructed the simplex SM`1, based on its role in Theo-
rem 5.5.3. Of this sample, 95.87% of the SM`1 had unimodal local h˚-polynomials. A plot
of the distributions of the unimodal local h˚-polynomials for the 11-dimensional simplices
in this sample is given in Figure 5.6. The distributions that are constant or nearly constant
arise from the constant row values of k “ 1, 4, 7, 10. The other distributions arise from the
random perturbations, and these all have a pronounced unimodal behavior.

The five non-unimodal examples from our sample are given in Table 5.1, and each of
the corresponding a-vectors have a single value appearing in around half of the entries.
Note also that unimodality for these examples fails only in the central coefficients. Thus,
it is reasonable to conjecture that if the multiplicity of each distinct entry in the row is
sufficiently small relative to the dimension, the local h˚-polynomial is unimodal.

These observations lead to the following more general question.
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a-vector
local h˚-vector
r1, 4, 2, 2, 2, 1, 2, 1, 2, 1s

r0, 0, 4, 6, 8, 11, 10, 11, 8, 6, 4, 0s

r2, 3, 3, 2, 3, 4, 3, 4, 3, 3s

r0, 0, 12, 27, 54, 57, 48, 57, 54, 27, 12, 0s

r7, 7, 6, 7, 7, 7, 4, 4, 7, 5s

r0, 0, 11, 28, 59, 77, 70, 77, 59, 28, 11, 0s

r11, 10, 13, 13, 10, 10, 12, 11, 10, 10s

r0, 0, 12738, 45859, 139946, 185372, 167390, 185372, 139946, 45859, 12738, 0s

r6, 5, 4, 7, 6, 5, 4, 4, 4, 4, 4, 6, 7s

r0, 0, 84, 126, 213, 533, 888, 886, 886, 888, 533, 213, 126, 84, 0s

Table 5.1: The five non-unimodal examples from the sample depicted in Figure 5.6

Question 5.6.3. For fixed d and N , consider the set of all one-row Hermite normal form
simplices with normalized volume N and dimension d. What is the “typical” behavior of the
local h˚-polynomial distributions for simplices in this set? What is the shape of the space of
distributions associated to BpS; zq for all S in this set?

Regarding Question 5.6.3, computational experiments suggest that when the values of
a1, . . . , ad´1 are “sufficiently” distinct, the distribution is more similar to Figure 5.2 than
Figure 5.1, as was observed in Figure 5.6. However, it is not clear at this time how to
translate these observations into a precise conjecture. Finally, it would be interesting to
consider the more general family of Hermite normal form simplices.

Question 5.6.4. Is there an analogue of Theorem 5.5.3 for Hermite normal form simplices
with more than one non-trivial row?

Data
The experimental data reported in Section 5.6 is available at:
https://doi.org/10.17605/OSF.IO/XH58C.

https://doi.org/10.17605/OSF.IO/XH58C
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Chapter 6

q-analog chromatic polynomials

In this chapter, we conclude with an argument in favor of applying Ehrhart theory to other
problems in mathematics. We discuss the connection between graph colorings and lattice
points in polytopes, and we approach Stanley’s conjecture that the chromatic symmetric
function distinguishes trees [108] using q-analog chromatic polynomials (which we define
using Chapoton’s q-analog Ehrhart polynomials [47]).

6.1 Introduction
The chromatic polynomial of a graph G “ pV,Eq,

χGpnq :“ #tc : V Ñ rns : cpvq ‰ cpwq if vw P Eu ,

where rns :“ t1, 2, . . . , nu, is a famous and much-studied enumerative invariant of G. We
introduce and study the following refinement: given λ :“ pλ1, λ2, . . . , λ|V |q P ZV , let

χλ
Gpq, nq :“

ÿ

proper colorings
c :V Ñrns

q
ř

vPV λvcpvq.

Naturally, χλ
Gp1, nq “ χGpnq. On the other hand, consider Stanley’s chromatic symmetric

function [108]
XGpx1, x2, . . .q :“

ÿ

proper colorings
c:V ÑZą0

x
#c´1p1q

1 x
#c´1p2q

2 ¨ ¨ ¨

(so that XGp1, 1, . . . , 1, 0, 0, . . . q “ χGpnq). Its principal evaluation (sometimes referred to
as the principal specialization)

XGpq, q2, . . . , qn, 0, 0, . . .q “
ÿ

proper colorings
c:V Ñrns

q
ř

vPV cpvq
“ χ1

Gpq, nq (6.1)



CHAPTER 6. q-ANALOG CHROMATIC POLYNOMIALS 95

is the special case λ “ 1 P ZV , i.e., λ is a vector all of whose entries are 1. In fact, χ1
Gpq, nq

was also the subject of [86]. We think of XGpx1, x2, . . .q and χλ
Gpq, nq as (quite) different

generalizations of the chromatic polynomial, which meet in (6.1) and still generalize χGpnq.
Our first result says that χλ

Gpq, nq has a polynomial structure whose coefficients are ra-
tional functions in q, in the following sense:

Theorem 6.1.1. There exists a polynomial χ̃λ
Gpq, xq P Qpqqrxs such that

χ̃λ
Gpq, rnsqq “ χλ

Gpq, nq,

where rnsq :“ 1 ` q ` ¨ ¨ ¨ ` qn´1.

We thus call χ̃λ
Gpq, xq (and sometimes, by a slight abuse of nomenclature, χλ

Gpq, nq) the
q-chromatic polynomial of G with respect to λ. Our main goal is to initiate the study of this
polynomial.

Example 6.1.2. Consider the path P2 with 2 vertices. The following table shows χ̃λ
Gpq, xq

and χλ
Gpq, nq for λ “ p1, 1q and p1, 2q.

λ χ̃λ
P2

pq, xq χλ
P2

pq, nq

(1,1)
2q2

q ` 1
x2

`
´2q2

q ` 1
x q2

˜

ˆ

1 ´ qn

1 ´ q

˙2

´

ˆ

1 ´ q2n

1 ´ q2

˙

¸

(1,2)
q5 ` q4 ´ 2q3

q3 ` 2q2 ` q ` 1
x3

`
´q5 ` 2q4 ` 5q3

q3 ` 2q2 ` q ` 1
x2

`
´3q3

q2 ` q ` 1
x q3

ˆ

1 ´ qn

1 ´ q

1 ´ q2n

1 ´ q2
´

1 ´ q3n

1 ´ q3

˙

Note that the chromatic polynomial χP2pnq “ n2 ´ n appears for q “ 1.

There are several motivations to study χλ
Gpq, nq and χ̃λ

Gpq, xq. Their definition and basic
structure mirror Chapoton’s study of q-Ehrhart polynomials [47] and, in fact, Theorem 6.1.1
follows from Chapoton’s work and the interplay of chromatic and order polynomials, as we
will show in Section 6.2 below. On the graph-theoretic side, Stanley famously conjectured
that XGpx1, x2, . . .q distinguishes trees; this conjecture has been checked for trees with ď 29
vertices [67], but remains open in general. For recent progress on this conjecture, see, e.g., [4,
5] and the references therein. The literature contains several variations of Stanley’s chromatic
symmetric function; some references on those different variations include [5, 59, 66, 94,
104]. We particularly point out recent work of Loehr and Warrington [87] who conjectured,
more strongly, that the principal evaluation (6.1) distinguishes trees; they confirmed this
conjecture for all trees with ď 17 vertices. We offer the following further strengthening,
which we have checked for all trees with ď 16 vertices.

Conjecture 6.1.3. The leading coefficient of the q-chromatic polynomial χ̃1
Gpxq distinguishes

trees.
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Section 6.3 of this chapter contains several further structural results for q-chromatic
polynomials: deletion–contraction musings (Theorems 6.3.1 and 6.3.2), a combinatorial reci-
procity theorem (Theorem 6.3.3), and a formula for χ̃λ

Gpq, xq in terms of the Möbius function
of the flats of the given graph (Theorem 6.3.5). We mostly concentrate on results on the
polynomial χ̃λ

Gpq, xq; there are further structural results on the enumeration function χλ
Gpq, nq

that are direct consequences of their counterparts on the (weighted) chromatic symmetric
function side.

In Section 6.4 we give several formulas for χ̃1
Gpq, xq. One of them naturally suggests an

analogue of Stanley’s P -partitions [117], moving from posets to graphs: we introduce and
study G-partitions in Section 6.5 and show that Conjecture 6.1.3 is equivalent to saying that
G-partitions distinguish trees.

6.2 q-Ehrhart polynomials
Chapoton [47] introduced a weighted generalization of the Ehrhart polynomial of a lattice
polytope P Ď Rd (i.e., P is the convex hull of finitely many integer lattice points in Zd). We
briefly sketch this theory and its application to order polytopes, which in turn allows us to
exhibit a connection to q-chromatic polynomials.

Let λ : Zd Ñ Z be a linear form that is nonnegative on the vertices of P and distinguishes
the vertices of any edge of P , and define

ehrλP pq, nq :“
ÿ

mPnPXZd

qλpmq.

The classical Ehrhart polynomial [56] is the specialization ehrλP p1, nq. Chapoton proved that
there is a polynomial ẽhr

λ

P pxq P Qpqqrxs, such that

ẽhr
λ

P prnsqq “ ehrλP pq, nq . (6.2)

We refer to ẽhr
λ

P pxq as the q-Ehrhart polynomial with respect to λ. We often denote the
linear form λ as a vector pλ1, . . . , λdq P Zd, where λj “ λpejq.

Parallel to the classical case, structural results for ehrλP pq, nq follow from studying the
q-Ehrhart series

EhrλP pq, zq :“
ÿ

ně0

ehrλP pq, nq zn. (6.3)

Chapoton [47] showed that (6.3) can be written as a rational function whose denominator
consists of factors 1 ´ qjz, where j “ λpvq for a vertex v of P . Furthermore, Chapoton
proved the reciprocity theorem

p´1q
dimpP q ẽhr

λ

P pq, r´nsqq “ ẽhr
λ

P ˝

´

1
q
, rns 1

q

¯

, (6.4)



CHAPTER 6. q-ANALOG CHROMATIC POLYNOMIALS 97

where P ˝ denotes the (relative) interior of P and

r´nsq :“
1 ´ q´n

1 ´ q
“ ´

`

q´n
` q´pn´1q

` ¨ ¨ ¨ ` q´1
˘

.

The case q “ 1 in (6.4) recovers the classical Ehrhart–Macdonald reciprocity theorem [25,
89].

Given a poset Π “ prds,ĺq, the order polytope OpΠq is the lattice polytope

OpΠq :“
␣

px1, . . . , xdq P r0, 1s
d : xi ď xj if i ĺ j

(

.

Order polytopes were introduced by Stanley [120]; they contain much information about a
given poset and have provided important examples in polyhedral geometry.

Since all vertices of OpΠq are 0{1-vectors, EhrλOpΠqpq, zq can be written as a rational
function with factors 1 ´ qjz in the denominator where j is a sum of some of the entries
of λ. Chapoton’s genericity condition means for order polytopes that the coordinates of λ
are positive, which we assume from now on. We also note the following corollary, which we
record for future purposes.

Lemma 6.2.1. Let Λ :“ λ1`λ2`¨ ¨ ¨`λd. The coefficients of rΛsq! ẽhr
λ

OpΠqpxq are polynomials
in q.

Kim and Stanton [80, Corollary 9.7] gave the following (equivalent) formulas for the case
when λ “ 1:

Ehr1OpΠqpq, zq “

ÿ

σPLpΠq

qcomajpσqzdespσq

p1 ´ zqp1 ´ qzq ¨ ¨ ¨ p1 ´ qdzq

ehr1OpΠqpq, nq “
ÿ

σPLpΠq

qcomajpσq

„

n ` d ´ despσq

d

ȷ

q

, (6.5)

where LpΠq is the set of linear extensions of Π and, writing a given linear extension σ as a
permutation of rds, and 1

Despσq :“ tj : σpj ` 1q ă σpjqu,

despσq :“ |Despσq|, and

comajpσq :“
ÿ

jPDespσq

pd ´ jq.

1Here we fix a natural labeling of Π, i.e., an order-preserving bijection Π Ñ rds. The permutation
corresponding to a given linear extension σ can be read off from this labeling. Unfortunately, there are two
different (and conflicting) definitions of the comajor index in the literature: the one we use here, and the
sum of the ascent positions.
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See [25, Chapter 6] for details on the interplay of linear extensions of a poset, their descent
statistics, and the arithmetic of order polytopes.

Given a graph G, let ApGq denote the set of acyclic orientations of G; each acyclic ori-
entation ϱ naturally induces a poset, which we denote Πϱ. There is a well-known connection
(essentially going back to [109]) between the chromatic polynomial of a given graph G and
the Ehrhart polynomials of the order polytopes of the acyclic orientations of G. In the
language of q-chromatic polynomials and q-Ehrhart polynomials, it reads as follows.

Lemma 6.2.2. The q-chromatic polynomial with respect to λ equals

χλ
Gpq, nq “

ÿ

ϱPApGq

ehrλOpΠϱq˝pq, n ` 1q .

Proof. We follow the philosophy of inside-out polytopes [27]. Let d “ |V |. We may interpret
each n-coloring of the vertices of G is a lattice point in the pn ` 1qst dilate of the open
unit cube p0, 1qd (where the jth coordinate is the color of vertex j). Furthermore, every
proper n-coloring of rds is a lattice point that is not contained in the graphical hyperplane
arrangement

HG :“ txi “ xj : ij P Eu (6.6)

(see, for example, Figure 6.1). The regions of p0, 1qdzHG are precisely the open order poly-
topes OpΠϱq˝ for ϱ an acyclic orientation of G. That is, each proper coloring c of G induces
an acyclic orientation ϱc of G, where the edge ij is oriented from i to j if cpiq ă cpjq and
from j to i if cpjq ă cpiq. Therefore,

χλ
Gpq, nq “

ÿ

proper colorings
c:rdsÑrns

qλ1cp1q`¨¨¨`λdcpdq
“

ÿ

ϱPApGq

ÿ

cPpn`1qOpΠϱq˝XZd

qλ1c1`¨¨¨`λdcd

“
ÿ

ϱPApGq

ehrλOpΠϱq˝pq, n ` 1q .

Lemma 6.2.3. Suppose fpxq and gpxq are polynomials with coefficients that are rational
functions in q such that

fprnsqq “ gprnsqq for all n P Zą0 .

Then fpxq “ gpxq.

Proof. By our assumptions, the polynomial fpxq ´ gpxq P Qpqqrxs has infinitely many zeros
and so must by the zero polynomial.

Together with Chapoton’s result (6.2), Lemmas 6.2.2 and 6.2.3 prove Theorem 6.1.1. In
fact, we can see more, namely, that the analogue of Lemma 6.2.1 holds also for q-chromatic
polynomials.
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Figure 6.1: The proper 5-colorings of P2 as points in the 6th dilates of the open order
polytopes corresponding the acyclic orientations of the graph. The order polytope ∆12

contains colorings c : r2s Ñ r5s with cp1q ă cp2q and the order polytope ∆21 contains
colorings with cp2q ă cp1q.

Corollary 6.2.4. Let Λ :“ λ1 `λ2 `¨ ¨ ¨`λd. The coefficients of rΛsq! χ̃
λ
Gpxq are polynomials

in q.

The case λ “ 1 is particularly nice because we can employ (6.5).

Corollary 6.2.5. For any graph G “ pV,Eq,

χ1
Gpq, nq “

ÿ

ϱPApGq

ÿ

σPLpΠϱq

qpd`1
2 q´comajσ

„

n ` desσ

d

ȷ

q

.

Proof. We apply (6.4) and (6.5):

ehr1OpΠϱq˝pq, nq “ p´1q
d ehr1OpΠϱqp

1
q
,´nq “

ÿ

σPLpΠϱq

qpd`1
2 q´comajσ

„

n ` desσ ´ 1

d

ȷ

q

and so Lemma 6.2.2 finishes the proof.

Figure 6.2 shows the computation of χ1
P3

pq, nq via Corollary 6.2.5. We also record a few
consequences of the corollary.
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Acyclic Orientation ϱ Induced Poset Πϱ Linear Extensions LpΠϱq

123

123, 213

123, 132

123

Figure 6.2: Computing the q-chromatic polynomial of P3 from the linear extensions of the
induced posets of its acyclic orientations:

χP3pq, nq “ 4q6
”n

3

ı

q
` pq5 ` q4q

„

n ` 1

3

ȷ

q

Corollary 6.2.6. Let G “ prds, Eq and express χ1
Gpq, nq in the form

χ1
Gpnq “

ÿ

jě0

βjpqq

„

n ` j

d

ȷ

q

.

(a) Each βipqq is a polynomial in q with nonnegative coefficients.

(b) β0pqq “ |ApGq| qpd`1
2 q; in particular, if G is a tree then β0pqq “ 2d´1qpd`1

2 q.

(c) The largest value i for which βipqq ‰ 0 is d ´ ξ where ξ is the chromatic number of G.
Moreover,

βd´ξpqq “
ÿ

proper colorings
c:V Ñξ

q
ř

vPV cpvq.

Remark 7. Corollary 6.2.5 gives another way of realizing the largest value j for which βjpqq ‰

0, namely, as the maximal number m of descents in a linear extension of a poset induced by
an acyclic orientation of G. Therefore, the chromatic number of G is equal to d ´ m, which
is one more than the minimal number of ascents in a linear extension of a poset induced by
an acyclic orientation of G. This fact is known as the Gallai–Hasse–Roy–Vitaver Theorem
(see, e.g., [48, Theorem 7.17]).

We also remark that βd´ξpqq distinguishes between some trees, as the next example
illustrates.
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Example 6.2.7. Let T1 be the path of length 3 and let T2 be the star with degree sequence
p3, 1, 1, 1q. We compute

χ1
T1

pq, nq “ 8q10
”n

4

ı

q
` p4q9 ` 6q8 ` 4q7q

„

n ` 1

4

ȷ

q

` 2q6
„

n ` 2

4

ȷ

q

χ1
T2

pq, nq “ 8q10
”n

4

ı

q
` p5q9 ` 4q8 ` 5q7q

„

n ` 1

4

ȷ

q

` pq7 ` q5q

„

n ` 2

4

ȷ

q

.

In particular, χ1
T1

pq, 2q “ 2q6 while χ1
T2

pq, 2q “ q7 ` q5. However, the coefficient βd´2pqq is
not enough to distinguish all non-isomorphic trees on d vertices.

6.3 The structure of q-chromatic polynomials
As with the classic chromatic polynomial, the q-chromatic polynomial satisfies a deletion–
contraction relation. Naturally, this strongly relates to the deletion–contraction formula for
Crew–Spirkl’s weighted version of the chromatic symmetric function [51, Lemma 2].

Theorem 6.3.1. Suppose G “ prds, Eq is a graph, λ “ pλ1, . . . , λdq P Zd, and e “ 12 P E.
Then

χλ
Gpq, nq “ χλ

Gzepq, nq ´ χ
pλ1`λ2,λ3,...,λdq

G{e pq, nq .

Proof. As usual, we observe that the proper n-colorings of G are precisely the proper n-
colorings c of Gze that satisfy the additional condition cp1q ‰ cp2q. Therefore, we may count
them by counting all proper n-colorings c of Gze and then removing all such colorings c for
which cp1q “ cp2q:

χλ
Gpq, nq “

ÿ

proper colorings
c:rdsÑrns of G

qλ1cp1q`¨¨¨`λdcpdq

“
ÿ

proper colorings
c:rdsÑrns of Gze

qλ1cp1q`¨¨¨`λdcpdq
´

ÿ

proper colorings
c:rdsÑrns of Gze
where cp1q“cp2q

qλ1cp1q`¨¨¨`λdcpdq

“ χλ
Gzepq, nq ´ χ

pλ1`λ2,λ3,...,λdq

G{e pq, nq .

We observe that a similar computation enables us to express any q-chromatic polynomial
(for general λ with positive entries) as a linear combination of q-chromatic polynomials with
λ “ 1, via a repeated expansion–addition process as follows. If G “ prds, Eq is a graph and
λ “ pλ1, . . . , λdq P Zd

ě0 with λ1 ě 2, split the vertex 1 into two vertices 11 and 12 with weights
λ1 ´ 1 and 1, respectively. Create the expansion graph exppG, eq of G at 1 with vertex set
t11, 12, 2, . . . , du and edge set

t11i, 12i : i P t2, . . . , du such that 1i P Eu Y tij : i, j P t2, . . . , du such that ij P Eu ,



CHAPTER 6. q-ANALOG CHROMATIC POLYNOMIALS 102

and let the addition graph addpG, eq of G at 1 be exppG, eq with an edge added between the
new vertices 11 and 12. Then

χλ
Gpq, nq “ χ

pλ1´1,1,λ2,...,λdq

exppG,eq
pq, nq ´ χ

pλ1´1,1,λ2,...,λdq

addpG,eq
pq, nq .

By repeatedly applying this process, we obtain the following result:

Theorem 6.3.2. If G “ prds, Eq is a graph and λ “ pλ1, . . . , λdq P Zd
ě0, then there exist

graphs H1, . . . , Hℓ on λ1 ` ¨ ¨ ¨ ` λd vertices and integers k1, . . . , kℓ such that

χλ
Gpq, nq “

ℓ
ÿ

i“1

ki χ
1
Hi

pq, nq .

Our next result extends Stanley’s famous reciprocity theorem for the chromatic poly-
nomials to the q-setting. A (not necessarily proper) coloring c of a graph G is compatible
with an acyclic orientation ϱ of G if c (weakly) increases along oriented edges. Stanley [109]
proved that |χGp´nq| equals the number of pairs of an n-coloring and a compatible acyclic
orientation of G. In particular, |χGp´1q| equals the number of acyclic orientations of G.
This generalizes as follows.

Theorem 6.3.3. Given a graph G “ pV,Eq and λ P ZV , let Λ :“
ř

vPV λv. Then

p´1q
|V |qΛ χ̃λ

G

´

1
q
, r´ns 1

q

¯

“
ÿ

pc,ϱq

q
ř

vPV pGq λvcpvq,

where the sum is over all pairs of an n-coloring c and a compatible acyclic orientation ϱ.

Example 6.3.4. For λ “ 1, the path on 2 vertices has q-chromatic polynomial

χ̃1
P2

pq, xq “
2q2x2 ´ 2q2x

1 ` q
.

Therefore,

p´qq
2 χ̃1

P2
p1
q
, xq “ q2

2q´2x2 ´ 2q´2x

1 ` q´1
“

2qx2 ´ 2qx

1 ` q

and so, e.g.,

p´qq
2 χ̃1

P2
p1
q
,´q ´ q2q “

2qp´q ´ q2q2 ´ 2qp´q ´ q2q

1 ` q
“ 2q4 ` 2q3 ` 2q2.

Indeed, this sums q
ř

cpvq for the six pairs of 2-colorings and compatible acyclic orientations.
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Proof of Theorem 6.3.3. Let d :“ |V |. We apply Chapoton’s reciprocity theorem (6.4) to
Lemma 6.2.2:

p´1q
d χ̃λ

Gpq, r´nsqq “
ÿ

ϱPApGq

p´1q
d ẽhr

λ

OpΠϱq˝pq, r´n ` 1sqq

“
ÿ

ϱPApGq

p´1q
d ẽhr

λ

OpΠϱq

´

1
q
, rn ´ 1s 1

q

¯

.

Therefore,

p´1q
d χ̃λ

G

´

1
q
, r´ns 1

q

¯

“
ÿ

ϱPApGq

p´1q
d ẽhr

λ

OpΠϱqpq, rn ´ 1sqq

“
ÿ

ϱPApGq

ehrλOpΠϱqpq, n ´ 1q . (6.7)

The integer lattice points in pn ´ 1qOpΠϱq can be interpreted as colorings of G using the
color set t0, 1, . . . , n ´ 1u that are compatible with ϱ, and so (6.7) equals

ÿ

pc,ϱq

q
ř

vPV pGq λvpcpvq´1q.

We conclude this section with one more way of computing q-chromatic polynomials.
A flat of a given graph G “ pV,Eq is a subset S Ď E such that for any edge e R S, the
subgraph pV, Sq has strictly more connected components than pV, SYteuq. Geometrically, the
intersection HS of the hyperplanes of the graphical arrangement HG in (6.6) corresponding
to S form a flat of HG. Let P pSq be the collection of vertex sets of the connected components
induced by S, and for W Ď V and λ P ZV

ě0, let

ΛW :“
ÿ

vPW

λv .

The flats of G form a poset (in fact, a lattice), whose Möbius function helps us compute,
again via inside-out polytopes [27] (see also [25, Chapter 7]), that

χλ
Gpq, nq “

ÿ

flats SĎE

µp∅, Sq ehrλp0,1qV XHS
pn ` 1q “

ÿ

flats SĎE

µp∅, Sq
ź

CPP pSq

qΛC rnsqΛC

“ qΛV

ÿ

flats SĎE

µp∅, Sq
ź

CPP pSq

rnsqΛC .

In particular, for a tree T “ pV,Eq,

χλ
T pq, nq “ qΛV

ÿ

SĎE

p´1q
|S|

ź

CPP pSq

rnsqΛC .
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These formulas can be viewed as analogues of [108, Theorem 2.5], where Stanley proves an
expression for the chromatic symmetric function in the power sum basis.

Next, we employ the following trick from [47]: for integers n ě 0 and k ě 1,

1 ´ p1 ` qx ´ xqk

1 ´ qk

ˇ

ˇ

ˇ

ˇ

x“rnsq

“ rnsqk .

This yields the following formulas for q-chromatic polynomials.

Theorem 6.3.5. Given a graph G “ pV,Eq and λ P ZV ,

χ̃λ
Gpq, nq “ qΛV

ÿ

flats SĎE

µp∅, Sq
ź

CPP pSq

1 ´ p1 ` qx ´ xqΛC

1 ´ qΛC
.

In particular, for a tree T “ pV,Eq,

χ̃λ
T pq, nq “ qΛV

ÿ

SĎE

p´1q
|S|

ź

CPP pSq

1 ´ p1 ` qx ´ xqΛC

1 ´ qΛC
.

Remark 8. In the following section, we will study the leading coefficient of this polynomial
and see that it appears to distinguish trees. This is certainly not true of all other coefficients.
For example, we can see that any tree on d vertices with the same total vertex weight ΛV has
the same linear coefficient (and the same constant 0, like the ordinary chromatic polynomial).
Since

1 ´ p1 ` pq ´ 1qxqΛC

1 ´ qΛC
“

´ΛCpq ´ 1qx ´
`

ΛC

2

˘

pq ´ 1q2x2 ´ ¨ ¨ ¨

1 ´ qΛC
,

the only linear terms of χ̃ come from edge subsets S that result in 1 connected component;
for trees T , the only such set is S “ E. Thus, for a tree, the linear coefficient is determined
only by d and ΛV .

Example 6.3.6. Theorem 6.3.5 suggests highly structured formulas for certain families of
graphs; we exercise this for the path Pk on k vertices when λ “ 1, in analogy with the
chromatic symmetric function [114, Exercise 7.47(k)].

χ̃1
Pk

pq, xq “ qk
ÿ

SĎE

p´1q
|S|

ź

CPP pSq

1 ´ p1 ` qx ´ xq|C|

1 ´ q|C|
“ p´qq

k
ÿ

SĎE

ź

CPP pSq

Φpq, x, |C|q,

where
Φpq, x, jq :“ ´

1 ´ p1 ` qx ´ xqj

1 ´ qj

and we used the fact that (for a tree) |S| ` |P pSq| “ |E| ` 1. The subsets of E (for the path
Pk) are in one-to-one correspondence with the compositions (i.e., ordered partitions) of k,
with parts given by the sizes of the sets in P pSq. Thus

ÿ

kě1

χ̃1
Pk

pq, xq tk “
ÿ

kě1

ÿ

SĎE

ź

CPP pSq

Φpq, x, |C|q p´qtqk “
ÿ

µ

ź

mPP pµq

Φpq, x,mq p´qtq|µ|,
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where the sum is over all compositions µ, we collect the parts of µ in the multiset P pµq, and
|µ| is the sum of the parts of µ.

Example 6.3.7. The analogous computation for the star Sk`1 on k ` 1 vertices gives

χ̃1
Sk`1

pq, xq “ p´qq
k`1

ÿ

SĎE

ź

CPP pSq

Φpq, x, |C|q “ p´qq
k`1

k
ÿ

j“0

ˆ

k

j

˙

Φpq, x, j ` 1q p´xq
k´j

and so

ÿ

kě0

χ̃1
Sk`1

pq, xq tk`1
“

ÿ

kě0

k
ÿ

j“0

ˆ

k

j

˙

Φpq, x, j ` 1q p´xq
k´j

p´qtqk`1

“ ´qt
ÿ

jě0

Φpq, x, j ` 1q p´xq
´j

ÿ

kěj

ˆ

k

j

˙

pxqtqk

“ ´qt
ÿ

jě0

Φpq, x, j ` 1q p´xq
´j pxqtqj

p1 ´ xqtqj`1

“
ÿ

jě0

p´1q
j`1Φpq, x, j ` 1q

ˆ

qt

1 ´ xqt

˙j`1

.

6.4 The leading coefficient of a q-chromatic polynomial
We now focus our attention on the leading coefficient cλT pqq of χ̃λ

T pq, nq stemming from The-
orem 6.3.5.

Corollary 6.4.1. Given a tree T “ pV,Eq and λ P ZV , the leading coefficient of χ̃λ
T pq, nq

equals

cλT pqq “ p´1q
|V |

pq2 ´ qq
ΛV

ÿ

SĎE

ź

CPP pSq

1

1 ´ qΛC
.

In particular,

rΛV sq! c
λ
T pqq “ qΛV p´1q

|V |`ΛV

ÿ

SĎE

p1 ´ qq
ΛV ´κpSq rΛV sq!

ś

CPP pSq
rΛCsq

(where κpSq denotes the number of components of the subgraph induced by S) is visibly a
polynomial in q, as the fraction is a q-multinomial coefficient times a polynomial.
Remark 9. Deletion–contraction extends to cλT pqq, and we provide a formula here which
might be helpful for computations. Let l be a leaf of T and

A :“ tS Ă E : l R e for all e P Su

B :“ tS Ă E : l P e for for some e P Su .
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Let T 1 “ pV 1, E 1q be the tree with l deleted; we will denote the number of connected com-
ponents induced by S Ď E 1 by κ1pSq. We further define λ1 to be the vector λ with lth entry
removed, and λ` to stem from λ where we add λl to the entry corresponding to the neighbor
of l, with corresponding notation Λ`

W for W Ď E 1. Then

ÿ

SPA

p1´ qq
ΛV ´κpSq rΛV sq!

ś

CPP pSq
rΛCsq

“ p1´ qq
λl´1 rΛV sq!

rλlsq rΛV 1sq!

ÿ

SĎE1

p1´ qq
ΛV 1 ´κ1pSq rΛV 1sq!

ś

CPP pSq
rΛCsq

and
ÿ

SPB

p1 ´ qq
ΛV ´κpSq rΛV sq!

ś

CPP pSq
rΛCsq

“
ÿ

SĎE1

p1 ´ qq
Λ`

V 1 ´κ1pSq rΛ`
V 1sq!

ś

CPP pSq
rΛ`

Csq
.

Thus,

rΛV sq! c
λ
T pqq “ qΛV p´1q

|V |`ΛV p1 ´ qq
λl´1 rΛV sq!

rλlsq rΛV 1sq!

ÿ

SĎE1

p1 ´ qq
ΛV 1 ´κ1pSq rΛV 1sq!

ś

CPP pSq
rΛCsq

` qΛV p´1q
|V |`ΛV

ÿ

SĎE1

p1 ´ qq
Λ`

V 1 ´κ1pSq rΛ`
V 1sq!

ś

CPP pSq
rΛ`

Csq

“ qλlpq ´ 1q
λl´1 rΛV sq!

rλlsq rΛV 1sq!

´

rΛV 1sq! c
λ1

T 1pqq

¯

´

´

rΛ`
V 1sq! c

λ`

T 1 pqq

¯

.

Again the fraction is a polynomial (via a q-binomial coefficient). This formula allows us to
implement a recursive algorithm to compute the leading coefficient of χ̃ for trees, as given
in Figure 6.3. See, for example, the leading coefficients (for λ “ 1) for all trees on d “ 6
vertices computed in Figure 6.4.

We now further focus on the case λ “ 1. Corollaries 6.2.5 and 6.4.1 give the following
two (quite different) expressions for the leading coefficient.

Corollary 6.4.2. Given a tree T “ pV,Eq on d vertices, the leading coefficient of χ̃1
T pq, nq

equals

c1T pqq “ pq ´ q2qd
ÿ

SĎE

ź

CPP pSq

1

1 ´ qΛC

“
1

rdsq!

ÿ

pϱ,σq

qd`majσ,

where the sum ranges over all pairs of acyclic orientations ϱ of T and linear extensions σ of
the poset induced by ϱ.

Proof. The first formula follows directly from Corollary 6.4.1. The second follows from
Corollary 6.2.5. The q-binomial coefficient in Corollary 6.2.5 can be expressed in terms of
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1: function leading_coefficient(T , pλ1, . . . , λdq)
2: n Ð # of vertices of T
3: if n ““ 1 then
4: i Ð the sole vertex of T

5: return
pq ´ 1qλi

pqλi ´ 1q

6: else
7: i Ð a leaf of T
8: j Ð i’s unique neighbor
9: Tdel Ð T with vertex i and edge ti, ju removed

10: λdel Ð pλ1, . . . , λdq with λi “ 0
11: cdel Ð leading_coefficientpTdel, λdelq

12: Tcon Ð T with edge ti, ju contracted
13: λcon Ð pλ1, . . . , λdq with λj “ λj ` λi and λi “ 0
14: ccon Ð leading_coefficientpTcon, λconq

15: return
pq ´ 1qλi

pqλi ´ 1q
¨ cdel ´ ccon

16: end if
17: end function
18: return rdsq! ¨ leading_coefficientpS, pµ1, . . . , µdqq

Figure 6.3: A recursive algorithm that computes the leading coefficient of χ̃pµ1,...,µdq

S pq, xq of
a tree S on d vertices via deletion-contraction

the q-integers via
„

n ` desσ

d

ȷ

q

“
rn ` desσsq ¨ ¨ ¨ rnsq ¨ ¨ ¨ rn ` desσ ´ pd ´ 1qsq

rdsq!

“
1

rdsq!

`

qdesσrnsq ` rdesσsq
˘

¨ ¨ ¨ rnsq ¨ ¨ ¨

ˆ

rnsq ´ rascσsq

qascσ

˙

(since pd ´ 1q ´ desσ “ ascσ, the number of ascents of σ ), which gives

c1T pqq “
1

rdsq!

ÿ

ϱPApGq

ÿ

σPLpΠϱq

qpd`1
2 q`pdesσ`1

2 q´pascσ`1
2 q´comajσ .

Using the relation ascσ ` desσ “ d ´ 1 again, the exponent simplifies to
ˆ

d ` 1

2

˙

`

ˆ

desσ ` 1

2

˙

´

ˆ

ascσ ` 1

2

˙

´ comajσ “ d ` maj σ .

In Corollary 6.4.2, the latter expression for c1T pqq illustrates that 1
qd

rdsq! c
1
T pqq is a poly-

nomial in q with nonnegative coefficients. We provide this expression for all non-isomorphic
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trees on d “ 6 vertices in Figure 6.4. We note that this expression also implies that c1T pqq is
(up to a factor of qd) the sum over the orientations ϱ of T of the major index q-analogue of
the poset Πϱ, as studied, e.g., in [58].

Example 6.4.3. Continuing Example 6.3.6, we return to the path Pk on k vertices. Corol-
lary 6.4.1 gives

c1Pk
pqq “ pq ´ q2qk

ÿ

SĎE

ź

CPP pSq

1

1 ´ q|C|

and thus
ÿ

kě1

c1Pk
pqq tk “

ÿ

kě1

ÿ

SĎE

ź

CPP pSq

1

1 ´ q|C|

`

pq ´ q2q t
˘k

“
ÿ

µ

ź

mPP pµq

1

1 ´ qm
`

pq ´ q2q t
˘|µ|

,

where again the sum is over all compositions µ.

Example 6.4.4. Continuing Example 6.3.7 along similar lines, we compute for the star

c1Sk`1
pqq “ pq ´ q2qk`1

k
ÿ

j“0

ˆ

k

j

˙

1

p1 ´ qj`1qp1 ´ qqk´j
“ qk`1

k
ÿ

j“0

ˆ

k

j

˙

p1 ´ qqj`1

1 ´ qj`1

and so

ÿ

kě0

c1Sk`1
pqq tk`1

“
ÿ

jě0

p1 ´ qqj`1

1 ´ qj`1

ÿ

kěj

ˆ

k

j

˙

pqtqk`1
“

ÿ

jě0

1

1 ´ qj`1

ˆ

qtp1 ´ qq

1 ´ qt

˙j`1

is a classical Lambert series.

Remark 10. Corollary 6.4.1 immediately distinguishes stars from all other trees: the largest
possible major index one can obtain from a tree is from the linear extension r1, d, d´1, . . . , 3, 2
and the only tree that realizes this is the star (with acyclic orientation where all edges point
out from center). Consequently, the degree of rdsq! c

1
T pqq for a star is strictly larger than that

of any other tree with the same number of vertices.

6.5 G-partitions
The second formula in Corollary 6.4.2 is reminiscent of Stanley’s P -partitions [117] and
organically suggests an extension of that concept to graphs. We first review the part of
Stanley’s theory that we will need.

Given a poset Π “ prds,ĺq, a strict Π-partition of n P Zą0 is a tuple m P Zd
ą0 such that2

d
ÿ

j“1

mj “ n and mj ă mk whenever j ă k .

2Our definition differs from Stanley’s inequalities, but the methodology is the same.
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Let pΠpnq denote the number of strict Π-partitions of n, with accompanying generating
function

PΠpqq :“
ÿ

ną0

pΠpnq qn.

Then by [25, Exercise 6.23],

PΠpqq “
qd
ř

σPLpΠq

ś

jPAscσ q
d´j

p1 ´ qqp1 ´ q2q ¨ ¨ ¨ p1 ´ qdq
“

qd
ř

σPLpΠq
qmajσop

p1 ´ qqp1 ´ q2q ¨ ¨ ¨ p1 ´ qdq
, (6.8)

where Ascσ denotes the ascent set of σ, and we define σoppjq :“ σpd ` 1 ´ jq. Note that
we compute ascents and descents as in Section 6.2: we fix some natural labeling of Π, i.e.,
an order-preserving bijection Π Ñ rds. The permutation corresponding to a given linear
extension σ can be read off from this labeling. Viewing a poset as an (acyclic) directed
graph, the following definition gives the natural analogue for an undirected graph.

Let G “ pV,Eq be a graph. A G-partition3 of n P Zą0 is a tuple m P ZV
ą0 such that

ÿ

vPV

mv “ n and mv ‰ mw whenever vw P E .

Let pGpnq denote the number of G-partitions of n, with accompanying generating function
PGpqq :“

ř

ną0 pGpnq qn.

Theorem 6.5.1. Let G be a graph on d vertices. Then

PGpqq “
qd
ř

pϱ,σq
qmajσop

p1 ´ qqp1 ´ q2q ¨ ¨ ¨ p1 ´ qdq

“
qpd`1

2 q ř

pϱ,σq
q´majσ

p1 ´ qqp1 ´ q2q ¨ ¨ ¨ p1 ´ qdq
,

where each sum ranges over all pairs of acyclic orientations ϱ of G and linear extensions σ
of the poset induced by ϱ.

Proof. Since every G-partition is a Πϱ-partition for exactly one acyclic orientation ϱ of G
(and, conversely, every Πϱ-partition is a G-partition),

pGpnq “
ÿ

ϱPApGq

pΠϱpnq

and so (6.8) gives the first formula:

PGpqq “
qd
ř

ϱPApGq

ř

σPLpΠϱq
qmajσop

p1 ´ qqp1 ´ q2q ¨ ¨ ¨ p1 ´ qdq
.

3We follow the (somewhat misleading) nomenclature of Stanley—in general, neither P - nor G-partitions
are partitions, rather they are compositions, i.e., ordered partition of a given integer n.
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To see the second formula, we note that each ϱ P ApGq has a partner orientation ϱ P ApGq

in which the direction of each edge is reversed. A linear extension σ P LpΠϱq has the
corresponding linear extension σ P LpΠϱq defined via

σpjq :“ d ` 1 ´ σpd ` 1 ´ jq “ d ` 1 ´ σop
pjq .

In particular, j P Despσopq if and only if j P Ascpσq, and so
ÿ

pϱ,σq

qmajσop
“

ÿ

pϱ,σq

qpd
2q´majσ .

This yields a third equation that can be added to the ones in Corollary 6.4.2.

Corollary 6.5.2. Given a tree T “ pV,Eq on d vertices, the leading coefficient of χ̃1
T pq, nq

equals
c1T pqq “ p´1q

dqd PG

´

1
q

¯

.

We can now see Remark 10 through this new lens: the star graph on d vertices is unique
with pGpd`1q “ 1. More generally, Corollary 6.5.2 implies that Conjecture 6.1.3 is equivalent
to the following.

Conjecture 6.5.3. The G-partition function pGpnq distinguishes trees.

We conclude by making note of the connection between G-partitions and the stable prin-
cipal evaluation XGpq, q2, q3, . . .q of the chromatic symmetric function. Namely, from first
principles we can see that

PGpqq “ XGpq, q2, q3, . . .q .

This yields one final equation for the leading coefficient that can be added to the ones in
Corollary 6.4.2.

Corollary 6.5.4. Given a tree T “ pV,Eq on d vertices, the leading coefficient of χ̃1
T pq, nq

equals
c1T pqq “ p´1q

dqd XG

´

1
q
, 1
q2
, 1
q3
, . . .

¯

.

That is, when we express the principal evaluation of the chromatic symmetric function
as a polynomial in the q-integers, the stable principal evaluation appears in its leading
coefficient.

6.6 Open questions
From our construction of χ̃λ

T pq, nq for general λ, a natural weakening of Conjecture 6.1.3
(that is perhaps easier to prove) arises.
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Conjecture 6.6.1. For any pair of non-isomorphic trees S and T on d vertices, there exists
a vector λ “ pλ1, . . . , λdq P Zą0 such that χλ

Spq, nq ‰ χλ
T pq, nq.

Another line of open questions emerges concerning the coefficients of the q-chromatic
polynomial. The classical chromatic polynomial χGpnq is very well studied, and many of
its coefficients have nice combinatorial interpretations. Can we generalize these to χ̃1

Gpq, nq?
For example:

1. The second coefficient of χGpnq is (negative) the number of edges of G. Can we refine
this to a q version, i.e., does the second coefficient of χ̃1

Gpq, nq count the number of
edges of G, but graded by some property of the edges?

2. Can the same be done for the linear coefficient which, in the classical case, counts the
number of acyclic orientations with a unique sink at one fixed vertex? (This is not
interesting for trees by Remark 8, but could be interesting for general graphs.)

3. The coefficients of χGpnq are alternating. Can we show that the coefficients of χ̃1
Gpq, nq

are “strongly alternating,” in the sense that the coefficient of xj in rdsq! ¨ χ̃1
Gpq, xq is a

polynomial in q with either all positive or all negative coefficients (depending on the
parity of d ´ j)?

Finally, as we mentioned in the introduction, there are further structural results and
questions that stem from viewing χλ

Gpq, nq as an evaluation of a (weighted) chromatic sym-
metric function. It is then natural to ask if there is anything to be gained by zeroing in on
the polynomial χ̃λ

Gpq, xq; for example:

(4) Is there some (interesting) variant of the p3 ` 1q-free Conjecture of Stanley and Stem-
bridge [121] for χ̃λ

Gpq, xq?

(5) There exist variants of Whitney’s Broken-Circuit Theorem for weighted chromatic
symmetric functions; see [51, Lemma 3] and [61, Theorem 6.8]. Do they give rise to a
meaningful broken-circuit result for the coefficients of χ̃λ

Gpq, xq?
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T rdsq!

qd
¨ c1T pqq

2q12 ` 8q11 ` 18q10 ` 36q9 ` 62q8 ` 78q7 ` 102q6 `

102q5 ` 106q4 ` 80q3 ` 62q2 ` 32q ` 32

q13 ` q12 ` 10q11 ` 16q10 ` 41q9 ` 57q8 ` 81q7 `

95q6 ` 108q5 ` 100q4 ` 83q3 ` 59q2 ` 36q ` 32

4q12 ` 8q11 ` 18q10 ` 42q9 ` 58q8 ` 78q7 ` 92q6 `

110q5 ` 98q4 ` 82q3 ` 58q2 ` 40q ` 32

2q12 ` 9q11 ` 20q10 ` 34q9 ` 65q8 ` 77q7 ` 96q6 `

104q5 ` 107q4 ` 76q3 ` 62q2 ` 36q ` 32

q13 ` 3q12 ` 11q11 ` 18q10 ` 39q9 ` 60q8 ` 78q7 `

87q6 ` 110q5 ` 101q4 ` 79q3 ` 59q2 ` 42q ` 32

q14 ` 9q12 ` 9q11 ` 20q10 ` 39q9 ` 60q8 ` 72q7 `

81q6 ` 112q5 ` 99q4 ` 79q3 ` 58q2 ` 49q ` 32

Figure 6.4: A table of the leading coefficients of the q-chromatic polynomials of the non-
isomorphic trees on d “ 6 vertices
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