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Chapter 1

Introduction

Have you ever found yourself counting something random, like steps in a staircase or

beeps of a timer before someone turns it off? It might seem rather random to count

the points with integer coordinates, sometimes called lattice points, in a figure,

but it turns out that many counting problems reduce to counting integer points in,

that is, finding the discrete volume of, a convex polytope, defined in Section 2.1.

This study of counting integer points in dilations of polytopes is called Ehrhart

Theory; Eugène Ehrhart showed in [3] (1962) that this counting function is a polyno-

mial with some quite nice properties if your shape is a convex polytope with integral

vertices and a quasipolynomial (defined in Section 2.3) with similar nice properties

if your shape is a convex polytope with rational vertices; these theorems appear in

Section 2.4. We call these the Ehrhart polynomial and Ehrhart quasipolynomial,

respectively.

Though we know some things about Ehrhart polynomials and, to a lesser extent,
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Ehrhart quasipolynomials, there is still a lot to discover; we decided to focus on a

particular type of convex polytope: the zonotope, defined fully in Section 2.5. A

zonotope is a projection of a cube, and it has some more nice properties which

we will explore in Section 2.5. One of the properties that makes it particularly

convenient for Ehrhart Theory is that we can decompose a zonotope into half-open

parallelepipeds; Figure 1 shows such a decomposition for a 2-dimensional type B

permutahedron, a zonotope explored in Section 3.1. This decomposition tiles the

Figure 1.1: A decomposition of an octagon into half-open parallelepipeds.

zonotope, which means that if we want to determine the integer point count of the

whole shape, we need only count the integer points in each of the parallelepipeds

and add them all up. Richard Stanley in [7] (1997) has a theorem that shows how

we can compute the Ehrhart polynomial of an integral zonotope, that is, a zonotope

with integral vertices.

How much harder can it be to determine the Ehrhart quasipolynomial of a ratio-

nal zonotope? The answer, unfortunately, is significantly more difficult. We look at

a few examples of rational cubes in Section 2.6 and compute their Ehrhart quasipoly-



3

nomials before returning to another type of integral zonotope. In Section 2.7, we

meet permutahedra of types A, B, C, and D, whose Ehrhart polynomials are com-

puted in [1]. We take a brief detour in Section 2.8 to introduce signed graphs, an

important tool for our study of permutahedra.

In Chapter 3, we translate each type of permutahedra (A, B, C, and D) so

that their center is at the origin; this translation ties the permutahedra to their

other definition, which comes from taking permutations of some numbers. The Cd-

permutahedron, for instance, is the convex hull of signed permutations of (1, 2, . . . , d).

We examine the translated permutahedra, and if the translated versions do not

have integral vertices, we compute their Ehrhart quasipolynomial. In Section 3.1,

we learn that the type B permutahedra has half integral vertices when translated.

Using signed graphs, we learn about the parallelepipeds that make up its zonotopal

decompositions and compute its Ehrhart quasipolynomial in Theorem 3.6.

Theorem 3.6. Let

Γd := {signed graphs on [d] with only CC, HC, and TC}

and

Γ̃d := {signed graphs on [d] with only CC, HC, and even TC}.

Z̃(Bd), the Bd-permutahedron centered at the origin, is a half-integral zonotope, and
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LZ̃(Bd)(t) =


∑
G∈Γd

(
2cc(G)

)
td−tc(G) if t even,

∑
G∈Γ̃d

(
2cc(G)

)
td−tc(G) if t odd.

In Section 3.2, we discover that some of the type A permutahedra have integral

vertices when translated but that others do not, and we apply the same tools that

we developed for type B to compute the Ehrhart quasipolynomial for type A in

Theorem 3.10.

Theorem 3.10. Let

Fd := {forests on [d]},

F̃d := {forests on [d] with only even TC}.

The permutahedron Z̃(Ad−1) is a half-integral zonotope, and

LZ̃(Ad−1)(t) =


∑
G∈Fd

td−tc(G) if t even,

∑
G∈F̃d

td−tc(G) if t odd.

In Sections 3.3 and 3.4, we see that types C and D retain integral vertices when

translated.
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Chapter 2

Background

2.1 Starting Definitions

For our journey into the realm of counting, we shall consider a class of figures called

convex polytopes. A convex polytope P is the convex hull of a finite set of points

v1, . . . ,vn in Rd [2, p. 27]:

P = {λ1v1 + · · ·+ λnvn : λ1 + · · ·+ λn = 1, all λj ≥ 0}.

We will first consider the case in which all of the vertices of the polytope, a collection

of the vjs, have integer coordinates; we will then consider what happens when these

points are allowed to be rational. The next question, then, is, what happens when

we change the size of our favorite polytope P? In particular, what if we dilate P

by some positive integer t? This is the lattice-point enumerator of tP [2, p. 29],
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which can be written as

LP(t) := #
(
tP ∩ Zd

)
.

We shall explore this counting function more thoroughly later; for now, let us also

add the character of the generating function of LP(t), called its Ehrhart series [2,

p. 30]:

EhrP(z) := 1 +
∑
t≥1

LP(t)zt.

2.2 A Square and a Cube: First Examples

Figure 2.1: Some dilates of �2.

Consider the unit square, �2 = [0, 1]2; its discrete volume is 4. One can see

that each of the vertices is an integer point but that there are no other integer

points in this square. What happens, then, if we dilate our square? Pictured in

Figure 2.1 are the original square as well as its 3rd and 5th dilates. One can see
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that L�2(t) = (t+ 1)2.

Rather conveniently, we can now consider �d = [0, 1]d and observe that L�d
(t) =

(t+ 1)d. The Ehrhart series, then, is

Ehr(z) = 1 +
∑
t≥1

L�d
(t)zt

= 1 +
∑
t≥1

(t+ 1)dzt.

We can rewrite the Ehrhart series in a different way; to do so, we need to

introduce the Eulerian numbers. The Eulerian numbers A(d, k) are defined in [2,

p. 30] by ∑
j≥0

jdzj =

∑d
k=0A(d, k)zk

(1− z)d+1
.

Using the Eulerian numbers, we now have the following theorem from [2]:

Theorem 2.1. The Ehrhart series of �d is Ehr�d
(z) =

∑d
k=1 A(d,k)zk−1

(1−z)d+1 .
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Proof.

Ehr�d
(z) = 1 +

∑
t≥1

(t+ 1)dzt

=
∑
t≥0

(t+ 1)dzt

=
1

z

∑
t≥1

tdzt

=
1

z

∑d
k=1 A(d, k)zk

(1− z)d+1

=

∑d
k=1A(d, k)zk−1

(1− z)d+1
.

We shall also show that an explicit formula [2] for the Eulerian numbers is

A(d, k) =
k∑
j=0

(−1)j
(
d+ 1

j

)
(k − j)d.

Proof. Let d ∈ Z≥0; we have

∑
j≥0

jdzj =

∑d
k=0A(d, k)zk

(1− z)d+1
.

We are interested in the coefficient of zk in the numerator of the right-hand side.

Multiplying both sides of the equation by (1− z)d+1 gives

(1− z)d+1
∑
j≥0

jdzj =
d∑

k=0

A(d, k)zk.
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To find the coefficient of zk, we add together each part of the product on the left-hand

side that results in zk; however, (1− z)d+1 is not currently written in a convenient

form for us to do this, but we can rewrite it:

(1− z)d+1 = (−1)0

(
d+ 1

0

)
z0 + (−1)1

(
d+ 1

1

)
z1 + · · ·+ (−1)d+1

(
d+ 1

d+ 1

)
zd+1

=
d+1∑
j=0

(−1)j
(
d+ 1

j

)
zj.

Now, we multiply the coefficient of the zj in
∑d+1

j=0(−1)j
(
d+1
j

)
zj by the coefficient of

zk−j in
∑

j≥0 j
dzj:

A(d, k) =
k∑
j=0

(
(−1)j

(
d+ 1

j

))(
(k − j)d

)
,

which is exactly what we set out to prove.

2.3 Polygons

Consider a convex polygon P ∈ R2; what can we say about these figures? Pick’s

Theorem, named after Georg Alexander Pick [4], relates the lattice points of a

polygon to its area.

Theorem 2.2 (Pick’s Theorem, [4]). Let P be a convex polygon with integer vertices;

A, the area of P; I, the number of lattice points in the interior of P; and B, the
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number of lattice points on the boundary of P. Then

A = I +
1

2
B − 1.

Rather than prove Pick’s Theorem, we shall verify that it holds for a rectangle

with integer coordinates. Note that, without loss of generality, we can assume that

our rectangle R is in the first quadrant with one vertex on the origin; if it is not in

that location initially, we can easily shift its coordinates by integer values, thus not

changing the discrete volume, until it is in our desired location. The vertices of this

rectangle, then, are (0, 0), (a, 0), (0, b), and (a, b) for some positive integers a and b.

Figure 2.2: A rectangle R with a = 6, b = 4.

We now compute A, I, and B of the rectangle R:

A = ab

I = (a− 1)(b− 1)

B = 2(a+ 1) + 2(b+ 1)− 4.
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Then,

I +
1

2
B − 1 = (a− 1)(b− 1) +

1

2

(
2(a+ 1) + 2(b+ 1)− 4

)
− 1

= ab− a− b+ 1 + a+ 1 + b+ 1− 2− 1

= ab

= A.

Lemma 2.3. Let B and P be defined as in Theorem 2.2. The number of points on

the boundary of tP is tB.

Proof. Consider the boundary of P ; say P has n edges. The boundary can be

decomposed into n half-open line segments, one for each edge, as shown in Figure 2.3.

We can label these half-open edges e1, . . . , en, and say that the number of integer

points on each ek is bk. Then, since there is no overlapping of half-open edges,

B =
∑n

k=1 bk. It suffices to show, then, that the number of integer points on tek is

tbk.

Figure 2.3: A hexagon with its boundary decomposed into half-open edges.

Suppose ek has endpoints (a, b) and (c, d) so that ek = [(a, b), (c, d)). Then
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tek = [(ta, tb), (tc, td)). The slope of ek is d−b
c−a = y

x
for some relatively prime x, y.

Note that the only integer points on ek will occur at points of the form (a+jx, b+jy).

If d− b and c− a are relatively prime, then (a, b) will be the only integer point

on ek, since in that case (a+ x, b+ y) = (c, d).

Suppose, on the other hand, that d − b and c − a are not relatively prime.

Then we decompose ek into copies of [(a, b), (a+ x, b+ y)). Since each copy of

[(a, b), (a+ x, b+ y)) contains exactly one integer point, there must be bk copies

needed.

We can similarly decompose tek into t copies of ek, thus giving the number of

integer points on tek to be tbk.

Thus the number of points on the boundary of tP is

n∑
k−1

tbk = t
n∑
k=1

bk = tB.

Theorem 2.4. Let P be a convex polygon with integer vertices; A, the area of P;

and B, the number of lattice points on the boundary of P. Then

LP(t) = At2 +
1

2
Bt+ 1.

Proof. Let I be the number of lattice points in the interior of P . Rearranging the

equation in Pick’s Theorem 2.2 gives us that the number of points with integer
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coordinates in a polygon P is

I +B = A− 1

2
B + 1 +B = A+

1

2
B + 1.

Since the area of tP is At2 and the number of lattice points on the boundary of

tP is tB, we now have the lattice-point enumerator of P :

LP(t) = At2 +
1

2
Bt+ 1.

One particularly exciting item of note from this theorem is that for an integral

polygon P , LP(t) is a polynomial of degree 2. The lattice-point enumerator of

a polygon is not always a polynomial. What happens, for instance, if instead of

having only integer coordinates, the vertices of P have rational coordinates, such as

the rectangle in Figure 2.4? No longer is LP(t) a polynomial; it is a quasipolynomial.

A quasipolynomial Q is a function of the form

Q(t) =



p0(t) if t ≡ 0 mod k,

p1(t) if t ≡ 1 mod k,

...

pk−1(t) if t ≡ k − 1 mod k,

for some polynomials p0, p1, . . . , pk−1 and some positive integer k. The minimal
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choice of k is the period of Q [2, p. 47].

Figure 2.4: The first, second, third, and sixth dilates of a rational rectangle.

Theorem 2.5 ([3]). Let P be a convex polygon with rational coordinates. Then

LP(t) is a quasipolynomial of degree 2 whose leading coefficient is the area of P.

2.4 Cones and Ehrhart Theory

A useful tool in studying convex polytopes is coning over a polytope. Choose a

convex d-polytope P and place this polytope in Rd+1 by setting the (d+ 1)st coor-

dinate of each vertex to 1: given vertices v1,v2, . . . ,vn of P , our new vertices are

(v1, 1), (v2, 1), . . . , (vn, 1) [2, p. 63]. The cone over P , then, is

cone(P) = {λ1(v1, 1) + λ2(v2, 1) + · · ·+ λn(vn, 1) : all λj ≥ 0}.

Taking all the points in this cone that have a (d+1)st coordinate of 1 returns a copy

of our original polytope, and taking all the points in this cone that have a (d+ 1)st
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coordinate of t returns a copy of tP .

We can do more with these cones than cone over polytopes, though we will return

to this; we can also list all the integer points contained in a cone. For a set S, let

σS(z) :=
∑

m∈S∩Zd

zm,

the integer-point transform of S.

Figure 2.5: The cone with generators (1, 2) and (−1, 2).

Example 2.1. Consider the 2-dimensional cone K = {λ1(1, 2)+λ2(−1, 2) : λ1, λ2 ≥

0}, pictured in Figure 2.5. We say that the fundamental parallelepiped of K is

the half-open parallelepiped

Π := {λ1(1, 2) + λ2(−1, 2) : 0 ≤ λ1, λ2 < 1},

determined by the first lattice point on each generating ray of K, which we can use
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to tile K and recover each integer point in exactly one copy of Π. Thus there are

two things we need to do: first, list all the integer points in a single tile, and second,

list all the tiles of K. To do the second, we can use a geometric series:

∑
j≥0

∑
k≥0

zj(1,2)+k(−1,2) =
1

(1− z1z2
2)(1− z−1

1 z2
2)
.

Next, we determine where the integer points in Π are; in our case, there are

4 integer points in Π: (0,0), (0,1), (0,2), and (0,3). These can be encoded by

the polynomial 1 + z2 + z2
2 + z3

2 . Note that setting (z1, z2) = (1, 1) in the previous

statement yields the number of integer points in Π. Putting these two parts together

through multiplication gives

σK(z) =
1 + z2 + z2

2 + z3
2

(1− z1z2
2)(1− z−1

1 z2
2)
.

This construct of σK(z) is general; that is, the numerator of σK(z) is the poly-

nomial that encodes the integer points of the fundamental parallelepiped, and the

denominator of σK(z) is the denominator of the geometric series that lists all copies

of the fundamental parallelepiped of K and is constructed from the generators of K.

We are now ready for Ehrhart’s Theorem.

Theorem 2.6 (Ehrhart’s Theorem, [3]). Let P be an integral convex d-polytope;

then LP(t) is a polynomial in t of degree d.

We have already seen this result for d = 2 when we looked at the polygons; now,
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we have a result that holds for a general dimension d. In honor of Ehrhart’s work,

we call LP(t) the Ehrhart polynomial of P [2, p. 68]. As with d = 2, Ehrhart has a

theorem for rational polytopes.

Theorem 2.7 (Ehrhart’s Theorem for rational polytopes, [3]). Let P be a rational

convex d-polytope; then LP(t) is a quasipolynomial in t of degree d. The period of

LP(t) divides the least common multiple of the denominators of the coordinates of

the vertices of P.

Returning to the idea of coning over a polytope P , recall that the tth dilate of

P can be recovered by taking all the points in cone(P) whose (d + 1)st coordinate

is t. For this reason, looking at ztd+1 in σcone(P) will provide a list of integer points

whose (d+ 1)st coordinate is t. Thus

σcone(P)(z1, z2, . . . , zd+1) = 1 + σP(z1, . . . , zd)zd+1 + σ2P(z1, . . . , zd)z
2
d+1

+ σ3P(z1, . . . , zd)z
3
d+1 + . . .

= 1 +
∑
t≥1

σtP(z1, . . . , zd)z
t
d+1.

This looks very similar to the Ehrhart series, except that the integer-point trans-

form of P contains d variables; however, we noted earlier that setting each variable

equal to 1 gave the number of lattice points for a particular figure. This holds

in general, since each lattice point has exactly one term in the sum that is the
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integer-point enumerator. Thus, as can be seen in [2, p. 70],

σcone(P)(1, 1, . . . , 1, zd+1) = 1 +
∑
t≥1

σtP(1, 1, . . . , 1)ztd+1 = 1 +
∑
t≥1

LP(t)ztd+1.

There are many fascinating and useful results that stem from Ehrhart’s theorems,

a number of which are detailed in [2]. One such result is Stanley’s Nonnegativity

Theorem.

Theorem 2.8 (Stanley’s Nonnegativity Theorem, [6]). Suppose P is an integral

convex d-polytope with Ehrhart series

EhrP(z) =
h∗dz

d + h∗d−1z
d−1 + · · ·+ h∗0

(1− z)d+1
.

Then h∗0, h
∗
1, . . . , h

∗
d are nonnegative integers.

Another result connects the discrete volume of a polytope to its continuous

volume [2, p. 77].

Theorem 2.9 ([3]). Suppose P ∈ Rd is an integral convex d-dimensional polytope

with Ehrhart polynomial

cdt
d + cd−1t

d−1 + · · ·+ c1t+ c0.

Then cd = vol P.
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2.5 Zonotopes

We are now one definition away from meeting the main character of our story: the

zonotope. The definition we need is that of a Minkowski sum. Let P1,P2, . . . ,Pn ⊂

Rd be polytopes; their Minkowski sum is [2, p. 167]

P1 + P2 + · · ·+ Pn := {x1 + x2 + · · ·+ xn : xj ∈ Pj}.

A zonotope is the Minkowski sum of line segments; more formally, given n line

segments, each with one endpoint at the origin and the other at u1,u2, . . . ,un ∈ Rd,

the zonotope

Z(u1,u2, . . . ,un) := {x1 + x2 + · · ·+ xn : xj = λjuj with λj ∈ [0, 1]}+ b

= {λ1u1 + λ2u2 + · · ·+ λnun : 0 ≤ λj ≤ 1}+ b

= A[0, 1]n + b,

where A is the matrix whose columns are u1,u2, . . . ,un and b ∈ Rd.

Figures 2.6 and 2.7 show specific examples of zonotopes, but the previous exam-

ples in this paper were also rather conveniently chosen to be examples of zonotopes.

The parallelepipeds we came across when looking at the cones are a type of zonotope

that will come up again as a particularly useful structure.

Every face of a zonotope occurs when some number of λ1, . . . , λn are fixed at 0
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Figure 2.6: A rhombic dodecahedron is a zonotope in R3 with 4 generators.

or 1. One can show that the face created when some λjs are fixed at 0 and other λis

are fixed at 1 and the face created when those same λjs and λis are fixed at 1 and

0, respectively, have the same structure. Thus, if we want to study the structure of

some face, it suffices to set all the fixed λjs to 0. What happens? Let us suppose,

for simplicity, that λ1 = · · · = λk = 0 and λk+1, . . . , λn are allowed to vary. That

gives us

{0u1 + · · ·+ 0uk + λk+1uk+1 + · · ·+ λnun : 0 ≤ uj ≤ 1}

={λk+1uk+1 + · · ·+ λnun : 0 ≤ uj ≤ 1}

=A′[0, 1]n,

where A′ is the matrix whose columns are uk+1, . . . ,un; that is:

Proposition 2.10. Every face of a zonotope is itself a zonotope.
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Figure 2.7: A hexagon is a zonotope in R2 with 3 generators.

One rather useful thing to do with a zonotope is to translate it so that its center

of mass is at the origin. To achieve this, we consider

2A[0, 1]n − (u1 + u2 + · · ·+ un) = {2λ1u1 + · · ·+ 2λnun − (u1 + · · ·+ un) : 0 ≤ λj ≤ 1}

= {(2λ1 − 1)u1 + · · ·+ (2λn − 1)un : 0 ≤ λj ≤ 1}

= {µ1u1 + · · ·+ µnun : −1 ≤ µj ≤ 1}

= A[−1, 1]n.

We denote this dilated and translated zonotope Z(±u1,±u2, . . . ,±un). One

way in which this translated zonotope is useful is that it allows one to see a certain

type of symmetry: symmetry about the origin. That is, if x is in our zonotope,

then −x is also in our zonotope. The argument follows fairly quickly from this

translation: suppose we have some x ∈ Z(±u1,±u2, . . . ,±un). Then

x = λ1u1 + · · ·+ λnun
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for some λ1, . . . , λn ∈ [−1, 1]. Since λj ∈ [−1, 1], it follows that −λj ∈ [−1, 1], and

−x = −(λ1u1 + · · ·+ λnun) = −λ1u1 − · · · − λnun

is also in our zonotope. In general, a zonotope is centrally symmetric, which

means that some translate of the zonotope is symmetric about the origin.

Now that we have been introduced to the zonotope and know a little about it, we

are ready to, quite literally, start picking it apart: every zonotope can be decomposed

into half-open parallelepipeds. A formal definition and statement of this result are

next, and after those, we will examine a particular zonotope to convince ourselves

of the truth of the previous statement.

This definition requires linearly independent vectors w1, . . . ,wm ∈ Rd and σ1, . . . , σm ∈

{±1} [2]. Then

Πσ1,...,σm
w1,...,wm

:=

λ1w1 + · · ·+ λmwm :
0 ≤ λj < 1 if σj = −1

0 < λj ≤ 1 if σj = 1

 .

Since a parallelepiped is the Minkowski sum of linearly independent vectors, we

can see, with some examination, that Πσ1,...,σm
w1,...,wm

is a half-open parallelepiped whose

generators are w1, . . . ,wm. With this definition, we can formalize the zonotopal

decomposition into half-open parallelepipeds earlier claimed [2, p. 171].

Theorem 2.11 ([5]). The zonotope Z(u1,u2, . . . ,un) can be written as a disjoint
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union of translates of Πσ1,...,σm
w1,...,wm

, where {w1, . . . ,wm} ranges over all linearly inde-

pendent subsets of {u1, . . . ,un}, each equipped with an appropriate choice of signs

σ1, . . . , σm.

Consider, for example, the hexagon pictured in Figure 2.7. We can label the

generators to give them an ordering and make them easier to reference: let the

horizontal vector be u1, the middle vector be u2, and the vector pointing to the left

be u3. We shall proceed with our decomposition of Z(u1,u2,u3) starting with u1.

By itself, u1 is just a line segment. Thus its decomposition into parallelepipeds

consists of a point and a half-open line segment, pictured in Figure 2.8. Specifically,

the decomposition we will use is 0 ∪ (0,u1].

Figure 2.8: A decomposition of Z(u1) into half-open parallelepipeds.

In adding u2, we get a new dimension. We can no longer be content with

just half-open line segments and points. We retain the decomposition we used for

u1 and apply the same concept to u2 without doubling the origin. However, we

also need to consider the part of the zonotope that comes from λ1 and λ2 both

being nonzero. We thus get the parallelepiped generated by u1 and u2 but leave

the sections that we have already covered open. That is, this parallelepiped is

Π1,1
u1,u2

= {λ1u1 + λ2u2 : 0 < λ1, λ2 ≤ 1}. Figure 2.9 displays the decomposition

given by u1 with u2.
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Figure 2.9: A decomposition of Z(u1,u2) into half-open parallelepipeds.

The addition of u3 does not add another dimension, like that of u2 did, so we

now have to be careful to only choose linearly independent subsets of u1,u2,u3.

In particular, we cannot select all three vectors at once. We also do not need to

consider u1 with u2, since that step was previously completed. Our new half-open

parallelepipeds, then, are (0,u3], Π1,1
u1,u3

+u2 = {λ1u1+λ3u3+u2 : 0 < λ1, λ3 ≤ 1} (a

translate of the zonotope with generators u1 and u3), and Π1,1
u2,u3

= {λ2u2 + λ3u3 :

0 < λ2, λ3 ≤ 1}. Figure 2.10 displays the completed zonotopal decomposition of

Figure 2.7.

Figure 2.10: A decomposition of Z(u1,u2,u3) into half-open parallelepipeds.

Figure 2.11 shows a zonotopal decomposition of a polygon we will introduce in

Section 2.7 and explore more in Section 3.1.
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Figure 2.11: A zonotopal decomposition of Z(B2).

One of the beautiful things about this decomposition is that it partitions our

zonotope, so every integer point that is in our zonotope is in exactly one of the

half-open parallelepipeds. Thus, in order to determine the Ehrhart polynomial and

Ehrhart series of a zonotope, we might be able to make some substantial progress

by looking at the Ehrhart polynomial of a half-open parallelepiped. We shall first

consider a d-dimensional parallelepiped in Zd [2, p. 172].

Lemma 2.12. Suppose w1,w2, . . . ,wd ∈ Zd are linearly independent, and let

Π := {λ1w1 + λ2w2 + · · ·+ λdwd : 0 ≤ λj < 1}.

Then

#(Π ∩ Zd) = vol Π = | det(w1,w2, . . . ,wd)|,

and for every positive integer t,

#(tΠ ∩ Zd) = (vol Π)td.
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This lemma uses the fact that integer dilates of a half-open parallelepiped can

be tiled by copies of the original half-open parallelepiped—the tth dilate requires

exactly td such copies—and the fact that the leading term of the Ehrhart polynomial

of a polytope is the volume of the polytope, stated earlier in Theorem 2.9.

The following theorem suggests that examining half-open parallelepipeds is ex-

actly what we want to do [2, p. 172].

Theorem 2.13. Decompose the zonotope Z ∈ Rd into half-open parallelepipeds.

Then the coefficient ck of the Ehrhart polynomial

LZ(t) = cdt
d + cd−1t

d−1 + · · ·+ c0

equals the sum of the relative volumes of the k-dimensional parallelepipeds in the

decomposition of Z.

If we have a k-dimensional parallelepiped in Rd with k < d, the volume of this

parallelepiped is 0; however, Theorem 2.13 suggests that we can get more infor-

mation out of something called the relative volume. For instance, if we look back

at the zonotopal decomposition of the hexagon in Figure 2.10, all the half-open 2-

dimensional parallelepipeds will survive with a non-zero volume, but the half-open

line segments and point at the origin will come up as 0.

Definition 2.1. Let S ∈ Rd be of dimension k < d and span S = {x + λ(y − x) :

x,y ∈ S, λ ∈ R}. Then the relative volume of S is the volume computed relative
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to the sublattice (span S) ∩ Zd.

Theorem 2.12 looks only at parallelepipeds whose dimension matches the dimen-

sion of the space. Thus, we need a generalization of this theorem [2].

Lemma 2.14. Suppose w1,w2, . . . ,wn ∈ Zd are linearly independent, and let

Π := {λ1w1 + λ2w2 + · · ·+ λnwn : 0 ≤ λj < 1},

and let V be the greatest common divisor of all n× n minors of the matrix formed

by the column vectors w1,w2, . . . ,wn. Then the relative volume of Π equals V .

Furthermore,

#(Π ∩ Zd) = V,

and for every positive integer t,

#(tΠ ∩ Zd) = V td.

We thus get the following theorem about the Ehrhart polynomials of zonotopes:

Theorem 2.15 ([7]). Let u1,u2, . . . ,un ∈ Zd and Z be the zonotope generated by

u1,u2, . . . ,un. Then

LZ(t) =
∑
S

m(S)t|S|,
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where S ranges over all linearly independent subsets of {u1,u2, . . . ,un}, and m(S)

is the gcd of all minors of size |S| of the matrix whose columns are the elements of

S.

The next logical step, given the outline of the paper so far, is to ask, “Well,

what about rational zonotopes?” From Ehrhart’s theorem on rational polytopes,

Theorem 2.7, we know that the counting function is a quasipolynomial in t of degree

d whose period divides the least common multiple of the denominators of the coor-

dinates of the vertices of the zonotope, but can we say anything else? Can we use

the decomposition into half-open rational parallelepipeds to give us a nice theorem

like we had for integral zonotopes? The answer is that we do not yet know. There

is, as of yet, no such theorem, perhaps due to the complexity of determining the

Ehrhart quasipolynomial of even just a parallelepiped. We can still look at a couple

examples of rational zonotopes—in particular, rational cubes—to see what we can

come up with.

2.6 Examples of Rational Cubes

2.6.1 Rational Generators

The lovely unit square we examined at the start of the paper will no longer work

as an interesting example, given that the coordinates of its vertices are all integral;

consider, instead, � 1
5

=
[
0, 1

5

]2
. Figure 2.12 shows this square and its 1st through
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13th dilates. The dilates are shaded from light to dark to help us see the pattern:

the dilates that are congruent to 0 mod 5 are the lightest, and those that are con-

gruent to 4 mod 5 are the darkest. This pattern suggests that the period of our

quasipolynomial is 5.

Figure 2.12: Some dilates of
[
0, 1

5

]2
.

Notice that every 5th dilate of � 1
5

is a dilate of the unit square; we already know

the Ehrhart polynomial for that, so we can modify it slightly so that it works for

the 0 mod 5 dilates of � 1
5
. Instead of the 1st, 2nd, 3rd, etc. dilates, we get the unit

square dilates at the 5th, 10th, 15th, etc. dilates of � 1
5
, so if we divide the dilate

input by 5, we should have what we are looking for. That is, for t ≡ 0 mod 5,

L� 1
5

(t) =

(
1

5
t+ 1

)2

.

One constituent down, four to go.
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Looking at Figure 2.12, we see that it is only the 0 mod 5 dilates that capture new

integer points; all other dilates keep the same number of points as whichever 0 mod 5

dilate came directly before. This indicates that we can modify the polynomial we got

for the 0 mod 5 case slightly to give us our desired polynomials. This time, though,

we are not working with multiples of 5, so we cannot just divide by 5. Consider the

dilates for t ≡ i mod 5; subtracting i from t yields a multiple of 5.

First, let us assume t < 5. There is exactly 1 integer point in this dilate, and we

can capture the 1 from this point by subtracting i from t, which gives 0; dividing

by 5; adding 1; and squaring the resulting 1.

What about 5 < t < 10? We should get 4 points, and we do so by subtracting i

from t, which yields 5; dividing by 5; adding 1; and squaring the resulting 2, which

gives us the desired 4. This pattern continues to hold for t > 10.

Given the connection to the unit square, we deduce that the Ehrhart quasipoly-

nomial for � 1
5

is

L� 1
5

(t) =



(
1
5
(t− 0) + 1

)2
if t ≡ 0 mod 5,(

1
5
(t− 1) + 1

)2
if t ≡ 1 mod 5,(

1
5
(t− 2) + 1

)2
if t ≡ 2 mod 5,(

1
5
(t− 3) + 1

)2
if t ≡ 3 mod 5,(

1
5
(t− 4) + 1

)2
if t ≡ 4 mod 5.
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Given the nature of cubes, we generalize this quasipolynomial for
[
0, 1

n

]d
by

replacing the 2s with ds and the 5s with ns:

L
[0, 1n ]

d(t) =



(
1
n
(t− 0) + 1

)d
if t ≡ 0 mod n,(

1
n
(t− 1) + 1

)d
if t ≡ 1 mod n,

...(
1
n
(t− i) + 1

)d
if t ≡ i mod n,

...(
1
n
(t− (n− 1)) + 1

)d
if t ≡ n− 1 mod n.

The Ehrhart series for
[
0, 1

n

]d
will have n different parts as well, but these parts

can be put together. We will use the t ≡ i mod n case to compute the Ehrhart series.
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∑
t≡i mod n

L
[0, 1n ]

d(t)zt =
∑

t≡i mod n

(
1

n
(t− i) + 1

)d
zt

=
∑
r≥0

(
1

n
(nr + i− i) + 1

)d
znr+i

=
∑
r≥0

(r + 1)dznrzi

= zi
∑
r≥0

(r + 1)d(zn)r

=
zi

zn

∑
r≥1

rd(zn)r

=
zi
∑d

k=1A(d, k)(zn)k−1

(1− zn)d+1
.

Since our choice of i is arbitrary, putting all choices together gives us

Ehr
[0, 1n ]

d(z) =

∑n−1
i=0 z

i
(∑d

k=1A(d, k)(zn)k−1
)

(1− zn)d+1

=

(
1−zn
1−z

) (∑d
k=1A(d, k)(zn)k−1

)
(1− zn)d+1

=

∑d
k=1A(d, k)(zn)k−1

(1− z)(1− zn)d
.

An interesting observation is that this Ehrhart series is remarkably similar to that
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of the unit cube:

Ehr[0,1]d(z) =

∑d
k=1A(d, k)zk−1

(1− z)d+1
.

Do all rational cubes have this similar structure? What about cubes of the form[
0, k

n

]
? As an example, consider

[
0, 3

5

]2
, pictured in Figure 2.13. As with Figure 2.12,

the picture of some dilates of
[
0, 1

5

]2
, the dilates are shaded according to their value

mod5.

Figure 2.13: Some dilates of
[
0, 3

5

]2
.

This square is a little trickier than the previous example, because now new

points show up in dilates other than the 0 mod 5 dilates. The 0 mod 5 dilates are

still straightforward enough: for t ≡ 0 mod 5,

L
[0, 35 ]

2(t) =

(
1

5
(3t) + 1

)2

.

The question, then, is, “How many points are on the line segment
[
0, 3t

5

]
?” The
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answer, for t ≡ i mod 5, is 1
5
(3t− (3i mod 5)) + 1. We subtract 3i mod 5 from 3t to

achieve the same effect that subtracting i from 5 had in the previous example: to

bring us down to the last integer point. Dividing by 5 takes away all the noninteger

points, and adding 1 ensures that the origin is counted. Squaring this result for each

value of i gives us the Ehrhart quasipolynomial:

L
[0, 35 ]

2(t) =



(
1
5
(3t− (0× 3 mod 5)) + 1

)2
if t ≡ 0 mod 5,(

1
5
(3t− (1× 3 mod 5)) + 1

)2
if t ≡ 1 mod 5,(

1
5
(3t− (2× 3 mod 5)) + 1

)2
if t ≡ 2 mod 5,(

1
5
(3t− (3× 3 mod 5)) + 1

)2
if t ≡ 3 mod 5,(

1
5
(3t− (4× 3 mod 5)) + 1

)2
if t ≡ 4 mod 5.

Notice that the number of integer points on
[
0, k

n

]
is 1

n
(kt− (ki mod n)) + 1, so

raising this expression to the dth power would give us the number of integer points

in the tth dilate of
[
0, k

n

]d
for t ≡ i mod n. Thus we have another general Ehrhart

quasipolynomial:
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L
[0, kn ]

d(t) =



(
1
n
(kt− (0× k mod n)) + 1

)d
if t ≡ 0 mod n,(

1
n
(kt− (1× k mod n)) + 1

)d
if t ≡ 1 mod n,

...(
1
n
(kt− (i× k mod n)) + 1

)d
if t ≡ i mod n,

...(
1
n
(kt− ((n− 1)× k mod n)) + 1

)d
if t ≡ n− 1 mod n.

As before, we can compute the Ehrhart series for one value of i and then add

them all together.

∑
t≡i mod n

L
[0, kn ]

d(t)zt =
∑

t≡i mod n

(
1

n
(kt− (i× k mod n)) + 1

)d
zt

=
∑
r≥0

(
1

n
(k(nr + i)− (i× k mod n)) + 1

)d
znr+i

=
∑
r≥0

(
1

n
(knr + ki− (i× k mod n)) + 1

)d
znr+i.

Note that ki−(i×k mod n)
n

is
⌊
ki
n

⌋
, a constant. Let α =

⌊
ki
n

⌋
+ 1. Then the previous

expression can be further simplified.
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∑
r≥0

(
1

n
(knr + ki− (i× k mod n)) + 1

)d
znr+i

=
∑
r≥0

(
kr +

ki− (i× k mod n)

n
+ 1

)d
znr+i

=
∑
r≥0

(
kr +

⌊
ki

n

⌋
+ 1

)d
znr+i

=
∑
r≥0

(kr + α)d znr+i. (2.1)

However, we can no longer use our little reindexing trick from before that gave

us
∑

r≥0 r
dzr, but if we use the binomial expansion of (kr + α)d, we might be able

to get r by itself.

(kr + α)d =
d∑

m=0

(
d

m

)
(kr)mαd−m

=
d∑

m=0

((
d

m

)
kmαd−m

)
rm. (2.2)

We then substitute (2.2) into (2.1):
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∑
r≥0

((kr + α)d znr+i =
∑
r≥0

(
d∑

m=0

((
d

m

)
kmαd−m

)
rm

)
znr+i

=
d∑

m=0

((
d

m

)
kmαd−m

∑
r≥0

rmznr+i

)

= zi
d∑

m=0

((
d

m

)
kmαd−m

∑
r≥0

rm(zn)r

)

= zi
d∑

m=0

((
d

m

)
kmαd−m

∑m
s=0A(m, s)(zn)s

(1− zn)m+1

)
.

Adding the parts of the series corresponding to each i together gives us our Ehrhart

series:

Ehr
[0, kn ]

d(z) =
n−1∑
i=0

(
zi

d∑
m=0

((
d

m

)
kmαd−m

∑m
s=0A(m, s)(zn)s

(1− zn)m+1

))
.

While the Eulerian polynomials show up again, this Ehrhart series is much more

complicated than that of
[
0, 1

n

]d
.

2.6.2 A Shifted Cube

Using rational vectors to generate a zonotope is not the only way to get a rational

zonotope; another method we can apply is translating the zonotope by a rational

vector. For example, consider our first example: the unit square, �2. Now, consider

�2− 1
2
, shown in Figure 2.14. The vertices of our shifted cube all have denominator
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2, so we expect, from Ehrhart’s Theorem for rational polytopes (Theorem 2.7), that

our counting function is a quasipolynomial with period 1 or 2.

Figure 2.14: Dilates of �2 (left) and of �2 − 1
2

(right).

The even dilates are integral and thus have the same Ehrhart polynomial as �2,

L�2(t) = (t+ 1)2.

Do the odd dilates follow the same pattern? The first dilate has 1 point, not 4 points,

so our answer is no, they do not; however, the pattern is similar. The first dilate, as

mentioned, has 1 point, and the third dilate has 9 points. More generally, when t is

odd, the tth dilate contains t2 integer points. Thus our Ehrhart quasipolynomial is

L�2−1
2
(t) =


(t+ 1)2 if t even,

t2 if t odd.
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2.7 Coxeter Permutahedra

We now introduce another flavor of zonotope: a permutahedron. We begin by

defining the classical root systems [1], considering only the positive roots.

Ad−1 = {ei − ej : 1 ≤ i < j ≤ d}

Bd = {ei − ej, ei + ej : 1 ≤ i < j ≤ d} ∪ {ei : 1 ≤ i ≤ d}

Cd = {ei − ej, ei + ej : 1 ≤ i < j ≤ d} ∪ {2ei : 1 ≤ i ≤ d}

Dd = {ei − ej, ei + ej : 1 ≤ i < j ≤ d}.

A natural thing for us to do is to consider these vectors as generators of a zonotope.

These are called Coxeter permutahedra. For example, Z(Bd) is the zonotope with

generators from Bd, and we call Z(Bd) the type-B permutahedron. Figure 2.15

shows the d = 2 case for each type.

Figure 2.15: Z(A2−1), Z(B2), Z(C2), and Z(D2).

The Ehrhart polynomials of each of these lattice permutahedra are computed

in [1]. Proposition 2.16 indicates why these are called “permutahedra.”

Proposition 2.16. Z(Ad−1) = conv(permutations of {0, 1, . . . , d− 1}).
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2.8 Signed Graphs

Before continuing on our journey of Ehrhart theory and zonotopes, we need to take

a quick detour through the land of graph theory. In particular, signed graphs will

prove to be a useful tool in Chapter 3. Graphs provide a way to keep track of

connections between objects. See [9] for more information on graphs.

A graph G is a pair G = (V,E) consisting of a set V of nodes (or vertices) and

a set E of 1- or 2-element subsets of V , which we call edges. An edge of the form

ij, a 2-element subset of V , is a link, and an edge of the form i, a 1-element subset

of V , is a half edge. Our graphs will have neither loops nor multiple edges. The

degree of a node is the number of edges going into that node. A degree-one node

is called a leaf.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) for which V ′ ⊆ V

and E ′ ⊆ E such that E ′ consists of 1- and 2-element subsets of V ′. A path is a

non-empty graph P = (V,E) where

V = {n1, n2, . . . , nk}

and

E = {n1n2, n2n3, . . . , nk−1nk},

where n1, . . . , nk are distinct. A cycle is a non-empty graph C = (V,E) where
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V = {n1, n2, . . . , nk}

and

E = {n1n2, n2n3, . . . , nk−1nk, nkn1},

where n1, . . . , nk are distinct. We will sometimes refer to “a cycle on [k],” by which

Figure 2.16: A cycle on [8].

we mean a cycle with k nodes labeled 1, 2, . . . , k, such as in Figure 2.16, with k = 8.

A graph is connected if there exists a path between any two of its nodes. A

connected component of a graph is a maximal connected subgraph. A tree is a

connected graph with no cycles and no half edges. A graph is a forest if each of its

connected components is a tree.

We need something more general than graphs, and this leads us to consider

signed graphs. A signed graph S is a pair S = (G, σ) consisting of a graph G and

a sign function σ : E → {−1,+1} that labels each link with a − sign or a + sign.

Thus S has three types of edges: positive edges, negative edges, and half edges.



42

Figure 2.17: Some examples of signed graphs.

A cycle is balanced if the product of the signs on its edges is positive and

unbalanced if the product of the signs on its edges is negative (that is, if the cycle

is not balanced). Figure 2.18 gives examples of graphs containing both balanced

and unbalanced cycles.

Figure 2.18: Graphs with balanced cycles (left) and unbalanced cycles (right).

We define one more term that we will use later: a tree convex hull.

Figure 2.19: The tree convex hull of the even-degree nodes.
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Definition 2.2. The tree convex hull of nodes n1, n2, . . . , nk is the union of all

paths joining these nodes.

Figure 2.8 gives an example of a tree convex hull.
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Chapter 3

Rational Coxeter Permutahedra

As mentioned in Section 2.5, it is sometimes useful to translate a zonotope so that

its center of mass is at the origin. The vertices of a translated lattice zonotope

may stay on the lattice, or they may be shifted off. For instance, we can see in

Figure 3.1 that the 2-dimensional type-C permutahedron stays on the lattice whereas

the 2-dimensional type-B permutahedron is shifted off. Let Z̃ denote the translated

zonotope with center of mass at the origin.

Figure 3.1: Upon translation, the vertices of Z̃(C2) (left) stay on the lattice, but

the vertices of Z̃(B2) (right) are shifted off.
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3.1 Type B

We begin our adventure into rational permutahedra with Z(Bd). As seen in Fig-

ure 3.1, Z̃(B2) is half-integral; specifically, its vertices are all rational with denom-

inator 2. Thus (Figure 3.2) the second and fourth (and, more generally, the even)

dilates of Z̃(B2) are integral.

Figure 3.2: Some dilates of Z(B2) and Z̃(B2).

Ehrhart’s Theorem 2.6 tells us that the Ehrhart polynomial ofZ(B2) is quadratic.

Furthermore, Theorem 2.9 tells us that the leading coefficient is vol(Z(B2)) = 7,

and the constant term is 1. Using the fact that the discrete volume of the first dilate

is 12, we can determine the Ehrhart polynomial:

LZ(B2)(t) = 7t2 + 4t+ 1. (3.1)

Ehrhart’s Theorem 2.7 for rational polytopes tells us that the Ehrhart quasipoly-

nomial for Z̃(B2) has degree 2 as well. The period of this quasipolynomial is 2, which

we can see from the even dilates being integral. Thus we need only focus on the odd
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dilates. The leading coefficient is still 7, the first dilate has 9 points, and the third

dilate has 69 points. Putting this all together, we can determine the quadratic for

the odd dilates and thus the Ehrhart quasipolynomial for Z̃(B2):

LZ̃(B2)(t) =


7t2 + 4t+ 1 if t even,

7t2 + 2t if t odd.

(3.2)

We could repeat this process for Z̃(B3) and higher, but this process is not really

feasible for general d. Our goal is to compute the Ehrhart quasipolynomial of Z̃(Bd)

for any d.

Since a zonotope can be tiled by half-open parallelepipeds (2.11), it seems a

logical next step to look at linearly independent subsets of the generating vectors.

For B2, this is straight-forward: any combination of two or fewer vectors in B2, that

is,
(

1
0

)
,
(

0
1

)
,
(

1
1

)
, and

(
1
−1

)
, is linearly independent.

For Bd with d > 2, it is not the case that any combination of d vectors is linearly

independent; for instance, A2 is a subset of B3 that has 3 vectors and spans a 2-

dimensional space. To help us determine which sets are linearly independent, we

turn to signed graphs, using the following construction from [8].

Definition 3.1. Let S be a subset of Bd. We construct the corresponding signed

graph GS on [d] by including:

• the positive edge ij for each vector ei − ej ∈ S;
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• the negative edge ij for each vector ei + ej ∈ S;

• the half edge i for each vector ei ∈ S.

Lemma 3.1 ([8]). The subsets of Bd are in bijection with signed graphs on [d].

Proof. This follows from Definition 3.1

Figure 3.3 shows all six subsets of two vectors of B2.

Figure 3.3: Sets of 2 linearly independent vectors from B2 and their corresponding
signed graphs.

3.1.1 Linear Independence

One observation we can make is that, since Bd lives in Rd, any set of more than d

vectors cannot be linearly independent. The number of vectors in S ⊂ Bd is precisely

the number of edges of the graph GS; in order for S to be linearly independent, then,

GS can have at most d edges.

Similarly, a graph with n nodes and more than n edges corresponds to a set of

linearly dependent vectors. We define the following types of connected components:
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Definition 3.2. Let GS be a signed graph.

• A cycle component (CC) of GS is a connected component of GS that con-

tains a single cycle, which is unbalanced, and no half edges; cc(G) is the

number of cycle components of G.

• A half edge component (HC) of GS is a connected component of GS that

contains a single half edge and no cycles; hc(G) is the number of half edge

components of G.

• A tree component (TC) of GS is a connected component of GS that is a

tree; tc(G) is the number of tree components of G.

Theorem 3.2 ([9]). Subsets of Bd are linearly independent if and only if their

corresponding graph contains only CC, HC, and TC; equivalently, every component

of the graph has at least as many nodes as edges, and all cycles are unbalanced.

Proof. Let S ⊂ Bd and GS be its corresponding signed graph. We have already seen

that the connected components of GS must have at least as many nodes as edges

in order for S to be linearly independent. Possible types of connected components,

then, are tree components, half edge components, and components containing a

single cycle (more than one cycle would give us more edges than nodes, as would a

cycle with a half edge or a connected component with multiple half edges).

Claim 1: A tree component corresponds to a linearly independent set of vectors.

We shall proceed by induction.
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Consider a tree on 2 nodes. Regardless of the sign on the edge, this tree has

one edge and thus corresponds to a single vector with 2 nonzero entries, which is

linearly independent.

Suppose, now, that every tree on n nodes corresponds to a linearly independent

set of vectors and consider a tree on n+ 1 nodes. There exists a leaf; say that this

is the (n + 1)st node. Thus there is only one vector that has a nonzero entry in

the (n + 1)st component. Consider the tree formed by removing this node and the

edge connected to it. We are left with a tree on n nodes, which corresponds to a

linearly independent set of vectors, all of which have an entry of 0 in the (n + 1)st

component. If we add the removed vector back to this set, our new set of vectors will

still be linearly independent. Thus a tree on n + 1 nodes corresponds to a linearly

independent set of vectors.

Thus a tree component corresponds to a set of linearly independent vectors.

Claim 2: A half edge component corresponds to a linearly independent set of

vectors.

As with TC, we shall proceed by induction.

Consider the graph that is a single half edge. This half edge corresponds to a

single vector with 1 nonzero entry, which is linearly independent.

Suppose, now, that every half edge component on n nodes corresponds to a

linearly independent set of vectors and consider an HC on n+ 1 nodes. As with the

TC, there exists a leaf. Applying the same steps as with the TC shows that an HC
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on n+ 1 nodes corresponds to a linearly independent set of vectors.

Thus a half edge component corresponds to a linearly independent set of vectors.

Claim 3: A connected component containing a balanced cycle corresponds to a

linearly dependent set of vectors.

Consider a balanced cycle on [n]. We can assume, without loss of generality,

that our edges are j(j + 1) with node n + 1 being the same as node 1. Let σj be

the sign on edge j(j + 1); then σj is either 1 or −1. See Figure 3.4 for an example

of such a cycle.

Since our cycle is balanced,
∏n

j=1 σj = +1.

Our vectors are linearly dependent if we can find some nonzero linear combination

of our vectors that is equal to zero; that is,

λ1(e1 − σ1e2) + λ2(e2 − σ2e3) + · · ·+ λn(en − σne1) = 0

with some λj 6= 0.

Rearranging the left hand side to put the unit vectors together yields

λ1(e1 − σ1e2) + λ2(e2 − σ2e3) + · · ·+ λn(en − σne1)

= (λ1 − σnλn)e1 + (λ2 − σ1λ1)e2 + · · ·+ (λn − σn−1λn−1)en

=
n∑
j=1

(λj+1 − σjλj)ej+1,

with λn+1 = λ1 and en+1 = e1.



51

In order for this sum to equal 0, we need λj+1 − σjλj = 0, that is, λj+1 = σjλj.

We may assume λ1 = 1. Then

λ2 = σ1

⇒ λ3 = σ2σ1

...

⇒ λj = σj−1 · · ·σ1.

In particular, λn = σn−1 · · ·σ1. Thus

λ1 − σnλn = 1− σn(σn−1 · · · σ1)

= 0.

Thus our set of vectors is linearly dependent.

Figure 3.4: A signed cycle on [n] with sign σj on edge j(j + 1).
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Claim 4: A cycle component corresponds to a linearly independent set of vec-

tors.

Consider an unbalanced cycle on [n]. We use the same setup as in the previous

claim, using Figure 3.4 for reference. Since our cycle is unbalanced,
∏n

j=1 σj = −1.

We need to show that, for any linear dependence,

0 = λ1(e1 − σ1e2) + λ2(e2 − σ2e3) + · · ·+ λn(en − σne1)

=
n∑
j=1

(λj+1 − σjλj)ej+1

we have λj = 0 for all j, with λn+1 = λ1. As before, in order for this sum to equal

0, we need λj+1 = σjλj.

We now claim λ1 = 0.

λ2 = σ1λ1

⇒ λ3 = σ2σ1λ1

...

⇒ λj = σj−1 . . . σ1λ1.
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In particular, λn = σn−1 . . . σ1λ1. Thus

0 = λ1 − σnλn

= λ1 − σn(σn−1 . . . σ1λ1)

= λ1 − σn . . . σ1λ1

= λ1 + λ1.

Thus

λ1 = 0

⇒ λ2 = 0

...

⇒ λn = 0.

Thus our set of vectors is linearly independent.

Definition 3.3. We call the signed graph GS independent if S is linearly inde-

pendent.

3.1.2 Volume

Lemma 3.3 ([1]). Let S be a linearly independent subset of Bd and GS be its

corresponding graph. The relative volume of Z(S) is 2cc(GS).
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Proof. In order to determine the relative volume of Z(S), we can look at the parts

of S that correspond to connected components of GS, find the relative volumes of

those subsets, and multiply the volumes together. One thing to note is that each

of these connected components corresponds to a parallelepiped, and the number of

vertices of an n-dimensional parallelepiped is 2n. Since all of our vectors are integral,

each vertex will also be integral. In particular, say P = {λ1v1 + λ2v2 + · · ·+ λnvn :

λj ∈ [0, 1]}; these 2n vertices occur when λj ∈ {0, 1} for each j = 1, . . . , n. The

question, then, is whether or not we can get an integral point when not all λj are

precisely 0 or 1.

Each vj corresponds to an edge in GS by Definition 3.1, and each λj becomes

a label on the edge. In order for the ith index of λ1v1 + λ2v2 + · · · + λnvn to be

integral, we need the sum of the labels of the edges of the form ij, ji, and i to be

integral. Let L(i) be this sum.

TC: We claim that, for a subset S ⊂ Bd whose graph GS is a tree component,

the only integer points of Z(S) are its vertices; that is, every edge of GS receives an

integer label. We shall proceed by induction.

Suppose GS is a tree on 2 nodes. This tree has one edge, which needs an integral

label — either 0 or 1 — in order for L(1) and L(2) to be integral; thus the only

integer points in Z(S) are its vertices.

Suppose, now, that the edges of every tree on n nodes need integral labels in

order for L(i) to be integral for every node i. Suppose, then, that GS is a tree on



55

Figure 3.5: Labeling the tree so that each node is integral.

n + 1 nodes. GS has at least one leaf; call it x, and say that the edge connected

to node x is xy. Then xy needs an integral label, so we label it 0. Now, this edge

label contributes an integer value to L(y), thus we can remove edge xy and node x

without changing the rest of the edge labels. We now have a tree on n nodes, which

needs integral labels. Thus the only integer points in Z(S) are its vertices.

Thus the relative volume of Z(S), where GS is a tree component, is 1.

HC: We claim that, for a subset S ⊂ Bd whose graph GS is a half edge com-

ponent, the only integer points of Z(S) are its vertices; that is, every edge of GS

receives an integer label. As with TC, we shall proceed by induction.

Consider the graph GS that has a single half edge. This half edge must have an

integral label — again, either 0 or 1 — in order for L(1) to be integral; thus the

only integer points in Z(S) are its vertices.

Suppose, now, that the edges of every HC on n nodes needs integral labels in

order for L(i) to be integral for every node i. Suppose, then, that GS is a half edge

component on n+ 1 nodes. As with the TC, there exists a leaf. Applying the same
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steps as with the TC shows that every edge of GS needs integral labels; thus the

only integer points in Z(S) are its vertices.

Thus the relative volume of Z(S), where GS is a half edge component, is 1.

CC: We claim that, for a subset S ⊂ Bd whose graph GS is a cycle component,

the only integer points of Z(S) occur when GS is labeled such that the non-cycle

edges receive integer labels and the cycle edges receive labels from {0, 1, 1
2
}.

Suppose G is a cycle component. There are two options: either G is just a cycle,

or G is a cycle with more edges coming out of it, and the set of edges that stem

from node i form a tree for each node on the cycle, as demonstrated in Figure 3.6.

Applying the same argument as in TC shows that these edges that are not a part

of the cycle need integer labels.

Figure 3.6: A graph that contains a cycle and edges that are not a part of the cycle.

Thus it suffices to consider an unbalanced cycle on n nodes. Let each λj = 1
2
, as
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shown in Figure 3.7; then for each node i on the cycle, our options are

L(i) =
1

2
+

1

2
= 1

L(i) =
1

2
− 1

2
= 0

L(i) = −1

2
− 1

2
= −1.

In any case, L(i) is integral. Thus we have at least one integer point in Z(S) that

is not a vertex.

Figure 3.7: A cycle with all λj = 1
2
.

Claim: The only non-integer labeling of the cycle edges that yields an integer

point stems from all edges being labeled 1
2
.

We shall make use of the notation we used in the proof of Lemma 3.2; that is,

the edge j(j + 1) has sign σj. Thus we need

λ1(e1 − σ1e2) + λ2(e2 − σ2e3) + · · ·+ λn−1(en−1 − σn−1en) + λn(e1 − σnen) ∈ Zn.
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Rearranging the left hand side gives

(λ1 + λn)e1 + (λ2 − σ1λ1)e2 + · · ·+ (λn−1 − σn−2λn−2)en−1 + (−σn−1λn−1 − σnλn)en

=
n−1∑
j=2

(λj − σj−1λj−1)ej + (λ1 + λn)e1 + (−σn−1λn−1 − σnλn)en.

Thus we need L(j) = λj − σj−1λj−1 ∈ Z for all j = 2, . . . , n − 1, as well as L(1) =

λ1 + λn ∈ Z and L(n) = −σn−1λn−1 − σnλn ∈ Z.

Since our cycle is unbalanced, there are an odd number of σj = −1. Suppose,

for a minute, that just one σj is negative; say, for instance, σ3 = −1 (Figure 3.8).

Fix λ ∈ (0, 1), and let λ1 = λ. Then

λ1 = λ and λ2 − λ1 ∈ Z⇒ λ2 = λ

λ2 = λ and λ3 − λ2 ∈ Z⇒ λ3 = λ

λ3 = λ and λ4 + λ3 ∈ Z⇒ λ4 = 1− λ

λ4 = 1− λ and λ5 − λ4 ∈ Z⇒ λ5 = 1− λ
...

λj = 1− λ and λj+1 − λj ∈ Z⇒ λj+1 = 1− λ
...

λn−1 = 1− λ and − λn − λn−1 ∈ Z⇒ λn = λ

λn = λ and λ1 + λn ∈ Z⇒ λ1 = 1− λ.
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Thus λ1 = λ and λ1 = 1− λ1; it follows that λ = 1
2
.

Figure 3.8: An unbalanced cycle with only one minus sign.

More generally, if σn = 1, the only “switches” between λ and 1− λ occur for λj

when σj−1 = −1 — an odd number of times — as well as the two switches at λn

and λ1. Thus there are an odd number of switches from λ1 to λ1, which means that

λ1 = λ and λ1 = 1− λ, which further implies that λ1 = 1
2
.

Figure 3.9: An unbalanced cycle with three minus signs, one of which is between
nodes n and 1.

If σn = −1, we will have all the switches that occur for λj when σj−1 = −1,

which is now an even number of switches, as well as one switch at λ1. There are,
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then, an odd number of switches total, and thus λ1 = 1
2

once more. Figure 3.9 shows

one example in which σn = −1.

Thus the only integer points in a cycle component occur when the non-cycle

edges receive integer labels and the cycle edges receive labels from {0, 1, 1
2
}.

Thus the relative volume of Z(S), where GS is a cycle component, is 2.

Let P ⊂ Bd be a set of linearly independent vectors. By the multiplication of

volume, the relative volume of Z(P ) is 2cc(GP ), where cc(GP ) is the number of cycle

components of GP .

3.1.3 The Ehrhart Polynomial of Z(Bd)

Theorem 3.4. Let

Γd := {signed graphs on [d] with only CC, HC, and TC}.

Z(Bd) is an integral zonotope, and

LZ(Bd)(t) =
∑
G∈Γd

(
2cc(G)

)
td−tc(G).

Before proving this, let’s return to our original example from this section: Z(B2).

Figure 3.10 shows the graphs that are in Γ2; there are six full-dimensional subsets,

four 1-dimensional subsets, and one 0-dimensional subset. Only one graph contains
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Figure 3.10: All signed graphs that correspond to linearly independent subsets of B2.

a cycle, and it is full-dimensional. The formula in Theorem 3.4 yields

LZ(B2)(t) =
∑
G∈Γ2

(
2cc(G)

)
t2−tc(G)

=
(
20t2−2

)
+ 4

(
20t2−1

)
+ 5

(
20t2−0

)
+
(
21t2−0

)
= 1 + 4t+ 7t2,

which is exactly what we got in (3.1).

Proof. By Theorem 2.13, the coefficient of tk is the sum of the relative volumes of

the k-dimensional parallelepipeds in the decomposition of Z(Bd). By Lemma 3.1,

there is a bijection between subsets on Bd and certain signed graphs on [d], and by

Lemma 3.2, these subsets are linearly independent (and thus form a parallelepiped)

if and only if their corresponding graph contains only CC, HC, and TC. Thus we

are summing over signed graphs on [d] that have only CC, HC, and TC.

Consider such a signed graph GP on [d] corresponding to a subset P of Bd. Z(P )

is a parallelepiped, so we need to determine its dimension and relative volume.



62

By Lemma 3.3, the relative volume of Z(P ) is 2cc(GP ).

The dimension of Z(P ) is the number of vectors in P . We turn to GP once more.

Since the edges of GP correspond to the vectors in P , we need only count the edges

of GP . Consider each component type: CC, HC, and TC. CC and HC both have as

many edges as nodes, and TC have one less edge than nodes. Since we are starting

with d nodes, we can subtract 1 from that number for every TC to get the number

of edges; that is, the number of edges of GP , and thus the dimension of Z(P ), is

d− tc(G).

3.1.4 On or Off the Lattice?

What happens to the lattice point count when we translate our Coxeter permuta-

hedra? Given our tendency to look at the parallelepipeds that tile our shapes thus

far, it should come as no surprise that we look at these parallelepipeds for answers

in this situation as well.

Since all of our generating vectors are integral, all these parallelepipeds also

have integral vertices before being translated, regardless of which zonotopal decom-

position is chosen. Therefore, since we are translating the permutahedra by a half

integral vector, the vertices of the translated parallelepipeds are half integral; this

can be seen for the 2-dimensional type B permutahedron in Figure 3.11.

Thus our question becomes, “What happens to the lattice point count of a par-

allelepiped when its vertices are half integral?” In Figure 3.11, each parallelepiped
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Figure 3.11: Zonotopal decompositions of Z(B2) (left) and Z̃(B2) (right).

of that decomposition either keeps all of its integer points or loses all of its inte-

ger points when translated. Let Z∗(S) refer to a half-open parallelepiped whose

generating vectors are the vectors in S.

Lemma 3.5. Let S ⊂ Bd be linearly independent. The number of lattice points of

the Z∗(S) + 1
2

is

• the number of lattice points of the Z∗(S) if every TC of its corresponding graph

GS has an even number of nodes,

• 0 otherwise.

We call a tree component an even TC if it has an even number of nodes and

an odd TC if it has an odd number of nodes.

Proof. We first consider a single tree T . In contrast to the proof of Lemma 3.3, we

are looking for a labeling such that, for every node i, the sum of the labels of the

edges of the form ij, ji, and i, which we call L(i), is half integral. We will also be
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choosing our labels from [0, 1) instead of from (0, 1]. One thing to note is that for

a tree, the number of odd degree nodes is even; thus there are an even number of

even degree nodes if and only if the total number of nodes is also even.

Even TC: Let S ⊂ Bd such that the graph corresponding to S is an even TC.

We claim that Z∗(S)+ 1
2

contains an integer point. We proceed by strong induction.

Let T be a tree with two nodes. Thus T has one edge, and we must label this

edge 1
2
.

Suppose, then, that every tree with 2, 4, . . . , 2n nodes can be labeled such that

for every node, the sum of the labels of each edge going into that node is half integral.

Let T be a tree on 2n+ 2 nodes. Start by finding all nodes of even degree; if there

are none, we are done — we can label all edges with 1
2
, and since each node has odd

degree, we will be adding an odd number of 1
2
s, which is half integral.

Figure 3.12: A tree T with an even number of nodes with the tree convex hull
highlighted.

Suppose that there are at least two even degree nodes. Take the tree convex hull

of these nodes; since there are at least two even degree nodes, this tree convex hull
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contains at least one edge.

Every edge outside this tree convex hull must receive the label of 1
2
; every edge

connected to a leaf l needs to be labeled with 1
2

so that L(l) is half integral. If

there are any edges that are not yet labeled, then there is at least one node i with

an even number of labeled edges—that is, an even number of edges connected to

leaves. We can prune these leaves (that is, remove the leaf and its edge), since they

contribute an integral value to L(i). Then i becomes a new leaf, and its edge must

be labeled with 1
2
. We can repeat this process until the only unlabeled edges are

a part of the tree convex hull. Looking back at our original graph, we have now

labeled every edge outside of the tree convex hull with 1
2

and shown that this is the

only labeling that works. An example of this labeling and tree convex hull is shown

in Figure 3.12.

The tree convex hull is also a tree; this tree has at least one leaf. This leaf has

an odd number of 1
2
s being contributed to it, since every edge outside of this tree

has been labeled with a 1
2
. Thus this edge must be labeled with an integer value; we

Figure 3.13: T with an edge labeled 0.
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label it 0. Figure 3.13 shows this in the same example tree T used in Figure 3.12.

Removing this edge, therefore, does not influence the rest of the labels needed;

let us remove this edge. Figure 3.14 shows what this looks like for T . We are now

left with two smaller trees, and if we are able to show that both of these smaller

trees has an even number of nodes, we are done.

Figure 3.14: The two subtrees of T when the edge labeled with 0 is removed.

It suffices to show that one of the subtrees has an even number of nodes, since

the total number of nodes did not change and the subtrees do not share nodes. In

particular, let us consider the subtree in which every edge is already labeled with 1
2
.

Every node in this subtree has odd degree, and as we stated at the start of our

proof, the number of odd degree nodes in a tree is even. Thus this subtree has an

even number of nodes, and therefore the other subtree also has an even number of

nodes. Each subtree has at most 2n nodes and thus can be labeled in such a way

that for every node i, L(i) is half integral. Figure 3.15 shows the labeling for T .

Thus a half-open parallelepiped with a corresponding graph whose TC are all
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Figure 3.15: T labeled such that for every node i, L(i) is half integral.

even TC stays on the lattice.

Odd TC: Let S ⊂ Bd such that the graph corresponding to S is an odd TC.

We claim that Z∗(S) + 1
2

does not contain an integer point. We shall again proceed

by strong induction.

Consider a single node. Clearly there are no edge labels contributing to its sum,

so the sum of the labels of the edges going into it is 0.

Consider also a tree with three nodes. We can try very hard to find a way to

label the edges such that L(i) is half-integral for each node i, but as soon as we

label one edge 1
2

to get the half integral value on one of the leaves, then we have to

choose between labeling the other edge 0, to satisfy the degree two node, or 1
2
, to

satisfy the other leaf. Examples of failed labelings are shown in Figure 3.16.

Figure 3.16: Possible labelings for a tree with 3 nodes.
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Suppose, then, that every tree with 1, 3, . . . , 2n − 1 nodes cannot be labeled in

the way we want. Let T be a tree with 2n + 1 nodes. There are an odd number

of even degree nodes; take their tree convex hull once more, and as in the even TC

case, everything outside the tree convex hull must be labeled with 1
2
.

Figure 3.17: A tree T with an odd number of nodes and the tree convex hull
highlighted.

Suppose that T has only one even degree vertex. Then we just labeled every edge

in T with 1
2
, which means that the sum of the labels of the edges going into is even

degree vertex is an even number times 1
2
, which is integral instead of half integral.

Suppose that T has three or more even degree vertices. Then the tree convex

hull is a tree with at least two edges. As before, at least one of the nodes has

degree one in the tree convex hull; we must label its edge with a 0, demonstrated in

Figure 3.18.

As before, we can remove this edge without consequence, thus creating two

subtrees, as shown in Figure 3.19.

Since the total number of nodes has not changed and the subtrees share no nodes,
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Figure 3.18: T with an edge labeled 0.

Figure 3.19: The two subtrees of T created by removing the edge labeled 0.

there must be one subtree with an even number of nodes and one subtree with an

odd number of nodes. In particular, the subtree with an odd number of nodes has

at most 2n − 1 nodes, and therefore this subtree cannot be labeled such that the

sum of the edge labels for each node is half integral. Thus a half-open parallelepiped

whose corresponding graph contains an odd TC is shifted off the lattice.

CC, HC, and even TC: We have one more thing to show: for S ⊂ Bd, the

number of lattice points in the half-open parallelepipeds Z(S) and Z(S) + 1
2

is the
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same when GS contains only CC, HC, and even TC.

Let S ⊂ Bd such that GS contains only CC, HC, and even TC. Say S =

{u1, . . . ,un}. If GS contains only CC and HC, then n = d; that is, S contains

d linearly independent vectors. It follows that the Z∗(S) + 1
2

has the same number

of lattice points as the Z∗(S).

Suppose, then, that GS contains at least one even TC. We just showed that the

translated half-open parallelepiped that corresponds an the even TC contains an

integer point; call this point p. Note that Z∗(S) is a fundamental parallelepiped of

span S = {x + λ(y − x) : x,y ∈ S, λ ∈ R}. Note also that span S contains the

origin. Let

span S +
1

2
=

{
x + λ(y− x) +

1

2
: x,y ∈ S, λ ∈ R

}
;

Z∗(S) + 1
2

is a fundamental parallelepiped of span S + 1
2
. Then p ∈ span S + 1

2
.

Our goal is to find a bijection between integer points in Z∗(S) and integer points

in Z∗(S) + 1
2
, thus showing that each of these half-open parallelepipeds have the

same number of integer points.

Let ϕ : span S → span S + 1
2

be the map such that ϕ(v) = v + p. Since

p is integral, v is integral if and only if v + p is integral. In particular, if v ∈

Z∗(S) is integral, then p+ v is an integral point in some translate of Z∗(S) + 1
2
, so

p+ v mod Z∗(S) + 1
2

is an integer point in Z∗(S) + 1
2
. Then a point q ∈ Z∗(S) + 1

2

comes from the point q− p ∈ span S, and q− p mod Z∗(S) is a point in Z∗(S).
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3.1.5 Putting It All Together

Theorem 3.6. Let

Γd := {signed graphs on [d] with only CC, HC, and TC}

and

Γ̃d := {signed graphs on [d] with only CC, HC, and even TC}.

Z̃(Bd), the Bd-permutahedron centered at the origin, is a half-integral zonotope, and

LZ̃(Bd)(t) =


∑
G∈Γd

(
2cc(G)

)
td−tc(G) if t even,

∑
G∈Γ̃d

(
2cc(G)

)
td−tc(G) if t odd.

Let’s try this with Z̃(B2). When t is even, we have the Ehrhart polynomial for

Z(B2), LZ(B2) = 7t2 + 4t+ 1. When t is odd, we only consider the graphs that have

no odd TC.

As we can see from Figure 3.20, there are three graphs that have a TC that has an

odd number of nodes. These are the graphs that correspond to the parallelepipeds

from Figure 3.11 that lost their integer points when translated. Thus we are left

with six full-dimensional subsets, two 1-dimensional subsets, and no 0-dimensional

subsets. As before, only one, full-dimensional graph contains a cycle. The formula
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Figure 3.20: All signed graphs that correspond to subsets of B2 with the graphs
containing “odd TC” circled.

in Theorem 3.6 yields

LZ(B2)(t) =
∑
G∈Γ̃2

(
2cc(G)

)
t2−tc(G)

= 0
(
20t2−2

)
+ 2

(
20t2−1

)
+ 5

(
20t2−0

)
+
(
21t2−0

)
= 2t+ 7t2.

Thus the Ehrhart quasipolynomial for Z̃(B2) is

LZ̃(B2)(t) =


7t2 + 4t+ 1 if t even,

7t2 + 2t if t odd,

confirming (3.2).

Proof of Theorem 3.6. If t is even, the vertices are integral; thus the even case fol-

lows from Theorem 3.4.

If t is odd, the vertices are half-integral. We want to add up the relative volumes



73

of all k-dimensional half-open parallelepipeds that stay on the lattice, as this will

give us the coefficient of tk. By Lemma 3.5, the only parallelepipeds that are shifted

off the lattice are those that have a tree component with an odd number of nodes.

Thus we are summing over signed graphs on [d] that have only TC with an even

number of nodes, CC, and HC.

As in the proof of Theorem 3.4, for some signed graph GP on [d] with only even

TC, CC, and HC that corresponds to P ⊂ Bd, the relative volume of Z(P ) is 2cc(GP )

and its dimension is d− tc(G).

3.2 Type A

3.2.1 Half On, Half Off

Proposition 3.7. The Ad−1-permutahedron centered at the origin, Z̃(Ad−1), is in-

tegral when d is odd and half integral when d is even.

Proof. Recall that Ad−1 = {ei − ej : 1 ≤ i < j ≤ d}. Since Z(Ad−1) is a zonotope,

Z(Ad−1) is centrally symmetric. In particular, we can determine the center of mass

by finding the midpoint of the line segment between two opposite vertices; we use

the vertices 0 and
∑

1≤i<j≤d
(ei − ej).
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∑
1≤i<j≤d

(ei − ej) =



1

−1

0

0

...

0


+ · · ·+



1

0

0

...

0

−1


+



0

1

−1

0

...

0


+ · · ·+



0

1

0

...

0

−1


+ · · ·+



0

0

...

0

1

−1



=



d− 1

−1

−1

−1

...

−1


+



0

d− 2

−1

−1

...

−1


+



0

0

d− 3

−1

...

−1


+ · · ·+



0

0

...

0

1

−1



=



d− 1

(d− 2)− 1

...

(d− i)− (i− 1)

...

1− d


=

d∑
i=1

(d− 2i+ 1)ei.
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Thus the ith entry is d− 2i+ 1.

If d is odd, d − 2i + 1 is even, so 1
2
(d − 2i + 1 − 0) is integral; thus the center

of mass of Z(Ad−1) is integral. To translate the center of mass to the origin, we

therefore translate Z(Ad−1) by an integral vector, thus Z̃(Ad−1) is integral.

If d is even, d−2i+1 is odd, so 1
2
(d−2i+1−0) has denominator 2; thus the center

of mass of Z(Ad−1) is half-integral. To translate the center of mass to the origin,

we translate Z(Ad−1) by a half integral vector, thus Z̃(Ad−1) is half integral.

3.2.2 Quasipolynomial for Type A

Note that the generators of Ad−1 are all of the form ei − ej, i < j. Applying the

construction of the corresponding graph GS to a subset S ⊂ Ad−1 ⊂ Bd yields a

graph with only positive edges. Thus we use unsigned graphs.

Lemma 3.8. The subsets of Ad−1 are in bijection with graphs on [d] that have no

half edges.

Proof. Let S be a subset of Ad−1. Similarly to the Definition 3.1, we construct the

corresponding graph GS by adding the edge ij for each vector ei − ej ∈ S.

Lemma 3.9. Subsets of Ad−1 are linearly independent if and only if their corre-

sponding graph contains only TC.

Proof. Let S ⊂ Ad−1 and GS be its corresponding graph. As shown in the proof

of Lemma 3.2, balanced cycles correspond to linearly dependent vectors. If we
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consider S as a subset of Bd, all edges of GS would have a positive sign, so GS is

not independent. Thus if GS contains a cycle, S is linearly dependent. On the other

hand, if GS contains no cycles, then GS has only TC, which are shown in the proof

of Lemma 3.2 to correspond to linearly independent vectors.

Theorem 3.10. Let

Fd := {forests on [d]},

F̃d := {forests on [d] with only even TC}.

The permutahedron Z̃(Ad−1) is a half-integral zonotope, and

LZ̃(Ad−1)(t) =


∑
G∈Fd

td−tc(G) if t even,

∑
G∈F̃d

td−tc(G) if t odd.

Proof. This follows from Theorem 3.4 and Lemma 3.9.

3.3 Type D

Proposition 3.11. The permutahedron Z̃(Dd) is integral.

Proof. Recall that Dd = {ei − ej, ei + ej : 1 ≤ i < j ≤ d}. Like with Z̃(Ad−1), we

need to show that 1
2

∑
v∈Dd

v is integral. Since Ad−1 ⊂ Dd, we just need to compute∑
1≤i<j≤d

(ei + ej).
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∑
1≤i<j≤d

(ei + ej) =



1

1

0

0

...

0


+ · · ·+



1

0

0

...

0

1


+



0

1

1

0

...

0


+ · · ·+



0

1

0

...

0

1


+ · · ·+



0

0

...

0

1

1



=



d− 1

1

1

1

...

1


+



0

d− 2

1

1

...

1


+



0

0

d− 3

1

...

1


+ · · ·+



0

0

...

0

1

1



=



d− 1

(d− 2) + 1

...

(d− i) + (i− 1)

...

d− 1


=

d∑
i=1

(d− 1)ei.
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Thus

1

2

∑
v∈Dd

v =
1

2

( ∑
1≤i<j≤d

(ei − ej) +
∑

1≤i<j≤d

(ei + ej)

)

=
1

2

(
d∑
i=1

(d− 2i+ 1)ei +
d∑
i=1

(d− 1)ei

)

=
1

2

d∑
i=1

(2d− 2i)ei

=
d∑
i=1

(d− i)ei,

which is integral.

Thus Z̃(Dd) and Z(Dd) have the same Ehrhart polynomial; see [1].

3.4 Type C

Theorem 3.12. The permutahedron Z̃(Cd) is integral.

Proof. Recall that Cd = {ei − ej, ei + ej : 1 ≤ i < j ≤ d} ∪ {2ei : 1 ≤ i ≤ d}. Like

with Z̃(Ad−1) and Z̃(Dd), we need to show that 1
2

∑
v∈Cd

v is integral. Since Dd ⊂ Cd,
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Figure 3.21: The vertices of Z̃(C2) stay on the lattice.

the only additional part is
d∑
i=1

(2ei). Thus

1

2

∑
v∈Cd

v =
1

2

( ∑
1≤i<j≤d

(ei − ej) +
∑

1≤i<j≤d

(ei + ej) +
d∑
i=1

(2ei)

)

=
1

2

d∑
i=1

(2d− 2i+ 2)ei

=
d∑
i=1

(d− i+ 1)ei,

which is integral.

Thus Z̃(Cd) and Z(Cd) have the same Ehrhart polynomial; see [1].
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