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Professor of Mathematics

Matthias Beck
Professor of Mathematics

Federico Ardila
Professor of Mathematics



Using Polytopes to Derive Growth Series for Classical Root Lattices

Kimberly Holmes Seashore
San Francisco State University

2007

Given a lattice L finitely generated as a monoid by a set M, the growth series of L is

a generating function which encodes the number of elements with word length k in L.

The growth series is G(x) = h(x)
(1−x)d where d is the rank of the lattice and h(x) is the

coordinator polynomial with degree ≤ d. This thesis investigates the growth series for

the classical root lattices An−1 and Cn, reproving formulae given by Conway, Sloane,

Baake, and Grimm. Our approach is an application the theory presented by Beck and
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Chapter 1

Introduction

1.1 Lattices and Growth Series

A lattice L is a discrete subgroup of Rn for some n ∈ Z>0. The rank of a lattice

is the dimension of the subspace spanned by the lattice. We say that a lattice L is

generated as a monoid by a finite collection of vectors M = {a1, . . . , ar} ⊂ Rn

if each point u ∈ L is a non-negative integer combination of the vectors in M. For

convenience, we often write the vectors from M as columns of a matrix M ∈ Rn×r and

to make the connection between L and M more transparent, we refer to the lattices

as LM . The word length of u with respect to M, denoted w(u) is the min(
∑

ci)

where u =
∑

ciai. The growth function S(k) is defined to be the number of points

u ∈ L with word length w(u) = k with respect to M. The growth function of a lattice

generated as a monoid allows us to determine how rapidly the lattice expands. We

1
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define the growth series to be the generating function G(x) :=
∑

k≥0 S(k)xk. From

[4], G(x) = h(x)
(1−x)d where h(x) is a polynomial of degree less than or equal to the rank

d of LM . We call h(x) the coordinator polynomial of the growth series. Explicit

formulae for the growth series for the root lattices An−1, Cn and Dn, which we will

define below, are given by Baake and Grimm in [1]; the formulae for An−1 and Dn are

proven in Conway and Sloane [5].

In this paper we examine the growth series for the classical root lattices in terms

of their standard set of generators. We rederive formulae for An−1 and for Cn and

conjecture a method for determining the formula for the growth series for Dn. The

approach presented here is a natural extension of the proofs related to the growth series

of cyclotomic lattices presented in [2]. Using regular triangulations of the polytopes

formed by the convex hull of the generating vectors in M, we both determine the

growth series and extend the given set of lattice generators. Along the way, we will show

specific triangulations of these contact polytopes which facilitate these calculations and

determine that the coordinator polynomials arising from these constructions must be

palindromic. Finally we provide an argument for the application of this technique to

proving the growth series for Dn.

The majority of the material presented here is an explanation and synthesis of

theorems and techniques proved elsewhere. The results proven in this thesis are sum-

marized in the following theorems. The terms in these theorems are fully defined in

subsequent chapters.

Theorem 1.1. Given the lattice An−1, generated as a monoid by the vector config-

uration MAd
= {ei − ej : 1 ≤ i, j ≤ n}, the coordinator polynomial of the growth

series of An−1 is the h-polynomial of the boundary complex of any regular, unimodular
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triangulation of PAd
= conv(MAn−1).

Corollary 1.2. The coordinator polynomial for the growth series of An−1 generated as

a monoid by Mn−1 = {ei − ej, : 0 ≤ i, j ≤ n with i '= j} is

h(x) =
n∑

k=0

−1




d

k





2

xk.

Theorem 1.3. The coordinator polynomial for the lattice Cn generated as a monoid

by the standard generators MCn = {±ei ± ej : 0 ≤ i, j ≤ n} is given by

h(x) =
n∑

k=0




2n

2k



 xk.

While two different sets of generators M1 and M2 may generate the same lattice,

the rate at which the lattice grows relative to these generators might be quite different.

The growth functions for LM1 and LM2 allow us to quantify this difference.

Example 1.1. Let M1 =




0 1 −1

1 0 −1



 and M2 =




0 1 −1 0 1 −1

1 0 0 −1 −1 1



 .

Then LM1 = LM2 = Z2. Figure 1.1 shows the lattices generated by these matrices with

the generators shown in bold and points with word length less than 2 indicated on the

lattice. Let S1(k) and S2(k) denote the growth sequence for LM1 and LM2 respetively.

In every lattice, the origin is the only point with word length 0, so S1(0) = S2(0) = 1.

We can easily compute that for n ≥ 1, S1(k) = 3k while S2(k) = 6k. That is, LM2 is

growing twice as fast as LM1 .

In many cases it is easier to work with the growth function embedded in a series.
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Figure 1.1: LM1 and LM2 with generators.

Rather than looking for an explicit formula for S(k) in terms of k, we define the

generating function

G(x) :=
∑

k≥0

S(k)xk.

As cited above, G(x) = h(x)
(1−x)r where h(x) is called the coordinator polynomial of

L with respect to M. The degree of h(x) is ≤ r.

1.2 Polytope Basics

The theory that we use to determine the growth series for the root lattices depends on

some basic knowledge of polytopes and cones. The definitions and theorems summa-

rized here are from [3],[15], and [13], where the proofs and motivation are explained

more fully.

A polytope P ⊆ Rn can be defined either as the convex hull of a finite set of points

or as the bounded intersection of a finite collection of halfspaces.
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Definition 1.1. A V−polytope PM is the convex hull of a finite collection of points

in M = {v1, . . . ,vr} ⊂ Rn. Formally,

PM :=

{
r∑

i=1

λivi : λi ≥ 0 with
r∑

i=1

λi = 1

}
.

:= conv({v1, . . . ,vr}).

A hyperplane H ⊂ Rn is a subset of the form

H = {x ∈ Rn : a1x1 + a2x2 + · · ·+ anxn = b} where a1, a2, . . . , an, b ∈ R.

A hyperplane H separates Rn in two halfspaces H+ and H− given by the points

satisfying the following inequalities:

H+ = {x ∈ Rn : a1x1 + a2x2 + · · ·+ anxn ≥ b}

H− = {x ∈ Rn : a1x1 + a2x2 + · · ·+ anxn ≤ b}.

Any halfspace H+ can be written as H− by multiplying the both sides of the defining

inequality by −1. Thus we can write any finite collection of m halfspaces in Rn as

H = {H−
1 , . . . , H−

m} where H−
i = {x ∈ Rn : ai1x1 +ai2x2 + · · ·+ainxn ≤ bi}. We collect

the coefficients from these inequalities in the m× n matrix

A =





a11 . . . a1n

...
. . .

...

am1 . . . amn





and let b = (b1, . . . , bm).
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Definition 1.2. An H−polytope PH is the bounded intersection of a finite collection

of halfspaces H. Formally,

PH := {x ∈ Rn : Ax ≤ b},

where A ∈ Rm×n and b ∈ Rm.

The following theorem establishes that definitions 1.1 and 1.2 describe the same set

of objects.

Theorem 1.1. [15] Every V-polytope can be described by a finite set of inequalities as

an H-polytope. Every H-polytope is the convex hull of a minimal finite collections of

points called its vertices and is thus a V-polytope.

The proof of this theorem takes considerable work and is explained in fully [15].

As a result of this theorem, it makes sense to use the term polytope denoted P to

describe either a V-polytope or an H-polytope. We scale the polytope P by a factor k

to form the kth dilate of a polytope P given by

kP = {(kx1, kx1, . . . , kxn) : (x1, x2, . . . , xn) ∈ P}.

The dimension of a polytope P is one of the most fundamental invariants of P . To

precisely define the dimension of a polytope, we first consider the notion of an affine

space.

Definition 1.3. An affine space is any set of the form U = {x ∈ Rn : Ax = b}.

In other words, a non-empty affine space is simply a translation of a vector space
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{x ∈ Rn : Ax = 0}. The dimension of an affine space U is the same as the dimension

of the translated vector space.

dim({x ∈ Rn : Ax = b}) = dim({x ∈ Rn : Ax = 0}).

The affine hull of a set of points M = {v1, . . . ,vr} is the set of all affine combi-

nations of the points in M denoted

aff(M) :=

{
r∑

i=1

λivi : λi ∈ R and
r∑

i=1

λi = 1

}
.

Thus every affine hull is an affine space.

Definition 1.4. The dimension d of a polytope P is the dimension of the affine hull

of P . We denote this dim(P) = d and call P a d-polytope.

Given a polytope P ∈ Rn, dim(P) ≤ n. If dim(P) = n we say that P is full

dimensional. A supporting hyperplane of P is any hyperplane H = {x ∈ Rn :

cx = c0} such that P is completely contained in either H− or H+.

Definition 1.5. A face of P is a set of the form F = P ∩H where H is a supporting

hyperplane of P . If we let H be the degenerate hyperplane {x ∈ Rn : 0x = 0}, then P

is a face of itself. If we let H be any hyperplane that does not intersect P at all, then

∅ is a face of P .
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If we let P = {x ∈ Rn : Ax ≤ b} and H = {x ∈ Rn : cx = c0} then

F = P ∩H =






x ∈ Rn :





A

c

−c




x ≤





b

c0

−c0










.

It follows that every face of a polytope is itself a polytope. A face F of P is considered

a proper face if dim(F) < dim(P). The 0-dimensional faces of P are called vertices,

the 1-dimensional faces are edges and the (d − 1)-dimensional faces are facets of P .

The set of vertices of P is called the vertex set of P denoted vert(P). The boundary

of P , denoted ∂P , is the union of all proper faces of P .

Definition 1.6. Given a d-polytope P ∈ Rn where n > d,and a point v0 /∈ aff(P), we

call the polytope Q = conv({v0} ∪ P) the cone over P from v0.

Definition 1.7. A d-polytope P is a d-simplex if P has exactly d + 1 vertices. In

this case we denote P by #d.

When listing several simplices, we use δi to denote the ith simplex regardless of the

dimension.

Definition 1.8. A simplicial complex C is a finite collection of simplices in Rn such

that

1. the empty polytope ∅ is in C

2. if δ ∈ C, then every face of δ is in C

3. if δ1 ∈ C and δ2 ∈ C, then δ1 ∩ δ2 is a face of both δ1 and δ2.
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Each δ ∈ C is called face of C. A simplicial complex is pure if all maximal faces of C

have the same dimension.



Chapter 2

The Root Lattice An−1

We now take a closer look at the lattice An−1 and examples of the growth series for

specific values of n. In this chapter, we also define the contact polytope of An−1 and

examine the structure of this contact polytope.

2.1 Monoid Generators and Growth Series of An−1

The lattice An−1 is a subgroup of Zn given by An−1 = {x ∈ Zn |
∑n

k=1 xk = 0} . The

rank of this lattice is d = n− 1. To simplify the subscript, we will refer to this lattice

as Ad.

Proposition 2.1. The lattice Ad is generated as a monoid by the set of vectors MAd
=

{ei − ej, | 0 ≤ i, j ≤ d + 1 with i '= j}

10
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Proof. Let LMAd
be the lattice generated by MAd

. Choose u ∈ LMAd
, so u =

∑
i,j cij(ei − ej) =

∑
i,j cijei − cijej. Then

n∑

k=1

uk =
∑

i

(
∑

j

cij

)
−

∑

j

(
∑

i

cij

)
= 0.

Thus u ∈ Ad and LMAd
⊆ Ad.

Now choose u = (u1, u2, . . . , uk) ∈ Ad. Then ∀k, uk ∈ Z. Also

n∑

k=1

uk = 0 or un = −
n−1∑

k=1

uk.

We now construct the coefficients cij such that u =
∑

i,j cij(ei−ej). If (
∑i

k=1 uk) ≥ 0,let

ci(i+1) =
∑i

k=1 uk. If (
∑i

k=1 uk) < 0, let c(i+1)i = −(
∑i

k=1 uk). Otherwise let cij = 0.

∑

i,j

cij(ei − ej) = u1(e1 − e2) + [(u2 + u1)(e2 − e3)] + · · ·+
(

n−1∑

k=1

uk

)
(en−1 − en)

= u1e1 + u2e2 + · · ·+ un−1en−1 +

(
−

n−1∑

k=1

uk

)
en

= u.

Thus u ∈ LMAd
and Ad = LMAd

.

We represent the d(d + 1) vectors in MAd
, one for each possible combination of i

and j, as the columns in a (d + 1)× d(d + 1) matrix MAd
.
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Example 2.1. A2 is a rank 2 lattice in R3 generated as a monoid by the vectors

M2 =





1 1 −1 0 −1 0

−1 0 1 1 0 −1

0 −1 0 −1 1 1




.

While the rank of A2 is 2, this lattice, shown in Figure 2.1,is not a subset of Z2.

Instead, A2 lies in the hyperplane H = {x ∈ R3 : x1 + x2 + x3 = 0} in Z3.

Figure 2.1: The hexagonal lattice A2.

Recall that for the lattice Ad, the word length w(p) of a point p ∈ Ad is the minimum

number of generators from MAd
used to obtain p. The growth function Sd(k) is the

number of points p ∈ Ad with word length w(p) = k with respect to MAd
. Since the

origin is always considered to have word length 0, Sd(0) = 1. Each generating vector

in MAd
has word length 1, so Sd(1) = d(d + 1). Figure 2.2 shows the points in A2 with

word length ≤ 3 as sets of radiating hexagons. The hexagon P2 = conv(M2) is called

the contact polytope of A2. The radiating hexagons are dilations of P2 around the

origin. All of the points p ∈ A2 such that w(p) = k will lie on ∂(kPA2); that is, the
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number of points on the boundary of the kth hexagon equals S2(k). By observation,

we see that S2(k) = 6k for k ≥ 1.

Figure 2.2: Dilations of the contact polytope PA2 in A2.

2.2 The Contact Polytope of Ad

Definition 2.1. Let L be a lattice generated as a monoid by the columns of M ∈ Rn×r.

The contact polytope of L is PM = conv(M), the convex hull of the column vectors

in M . That is,

PM =

{
p ∈ Rn : p =

r∑

i=1

λiai, λi ≥ 0 and
∑

λi = 1.

}
.

where ai is the i-th column of M .

For the lattice Ad we denote the contact polytope PAd
. Since Ad is a lattice of rank

d in Rd+1, PAd
⊂ Rd+1 is d-dimensional.

In the example above, PA2 is a regular hexagon containing only the lattice points

in MAd
∪ 0. But what can we say about PAd

for d > 2? To get an idea about these,
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we examine a larger example.

Example 2.2. Consider PA4 ⊂ R5. The generators of this polytope are given by

M4 =





1 1 1 1 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0

−1 0 0 0 1 1 1 1 0 −1 0 0 0 −1 0 0 0 −1 0 0

0 −1 0 0 0 −1 0 0 1 1 1 1 0 0 −1 0 0 0 −1 0

0 0 −1 0 0 0 −1 0 0 0 −1 0 1 1 1 1 0 0 0 −1

0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1 1 1 1 1



.

PA4 = conv(M4). Consider the hyperplane H12 = {x ∈ R5 : x1 − x2 = 2}. Then

P4 ⊆ H−
12 and

PA4 ∩H12 =





1

−1

0

0

0




.

So e1 − e2 is a vertex of PM .

For any choice of i and j, PAd
intersects the supporting hyperplane Hij = {x ∈

Rd+1 : xi − xj = 2} in the point ei − ej, so the generalization of Example 2.2 is that

the columns in MAd
are exactly the vertices of PAd

. We call these vertices vij = ei−ej

and reorganize them in the (d + 1)× (d + 1) matrix Vd,whose entries are vij for i '= j

and 0 if i = j. In this context we write PAd
= conv(V4) to mean that PAd

is convex

hull of the entries in Vd. While this notation may initially seem a bit awkward, we

will shortly see that it is quite powerful.

Example 2.3. The contact polytope PA4 from Example 2.2 can be written as conv(V4)

where

V4 =





0 v12 v13 v14 v15

v21 0 v23 v24 v25

v31 v32 0 v34 v35

v41 v42 v43 0 v45

v51 v52 v53 v54 0




.
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Whether we are referring to the vertices vij or the components of a vector x ∈ Rn,

we often want to identify a subset of the indices. Let [d + 1] := {1, 2, 3, . . . , d + 1} and

S ! [d + 1] is a proper subset of {1, 2, 3, . . . , d + 1}.

Proposition 2.2. Pd is contained the hyperplane H0 = {x ∈ Rd+1 :
∑d+1

i=1 xi = 0} and

for every S ! [d + 1], S '= {∅}

HS :=

{
x ∈ Rd+1 :

∑

i∈S

xi = 1

}

is a facet defining hyperplane. Also, each facet of PAd
is equal to PAd

∩HS for some S !

[d + 1].

Proof. Since PAd
= conv(V),each vector vij ∈ H0, then PAd

⊆ H0. Fix S ⊂ [d + 1]

with |S| > 0. For HS to define a facet of PAd
, dim(PAd

∩HS) = d− 1. That is, there

must exist d affinely independent vertices of PAd
that also lie on HS. Fix s ∈ S. Let

T = [d + 1] − S. Then ∀t ∈ T , (vst)s = 1 and (vst)t = −1 and (vst)i = 0 when

i '= s, i '= t. Since
∑

i∈S(vst)i = 1, then vst ∈ H. For a fixed s ∈ S, the set of vectors

{vsj : j ∈ T} is affinely independent with |T | = n − k vectors. Now fix a t ∈ T and

consider {vit : i ∈ S, i '= s}. These form an affinely independent set with k−1 vectors.

So {vsj|j ∈ T}∪{vit|i ∈ S, i '= s} is the desired set of (d+1− k)+ (k− 1) = d affinely

independent vectors. So PAd
∩HS is a facet of PAd

.

Let F be a facet of PAd
. Then there exists

H− = {x ∈ Rn : c1x1 + c2x2 + · · ·+ cnxn ≤ b}

such that PAd
⊂ H− and F = (PAd

∩H−). Since the PAd
contains the origin, we can

assume that b = 1. Without loss of generality, let v12 ∈ F . Since every point in PAd
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satisfies the equation
∑

xi = 0, we can add enough copies of this equation to make

c1 = 1. Let T = j : v1j ∈ F . For each j ∈ T , 1− cj = 1 so cj = 0, in particular c2 = 0.

Now consider vkm where k,m /∈ T and k '= 1. Then 1− cm < 1 so cm > 0. If vkm ∈ F

then ck−cm = 1,so ck > 1. But then ck−c2 > 1 means that vk2 /∈ H−, a contradiction

to the assumption PAd
⊂ H−. Therefore ∀k,m /∈ T , vkm /∈ F . Finally, since F is a

facet, there must be d affinely independent vertices that satisfy x1+c2x2+· · ·+cnxn ≤ 1

with equality. Thus for each k /∈ T , at least one vector vkj with j ∈ T must lie on F .

So ck = 1. Let S = [d + 1]− T. Then H = {x ∈ Rd+1 :
∑

xi = 1 fori ∈ S}.

Corollary 2.3. The integer points in PAd
are exactly MAd

∪ 0.

Proof. By the definition of PAd
, the points in MAd

are contained in PAd
. Since e1−e2

and e2 − e1 are both in MAd
, then 0 = 1

2(e1 − e2) + 1
2(e2 − e1) ∈ PAd

. Let x be an

integer point in PAd
, so x =

∑
λijvij with

∑
λij = and ∀k |xk| ≤ 1. If x '= 0, then

there exists i such that xi = 1 or xi = −1. Without loss of generality, assume that

x1 = 1. Then
∑

j

λ1j = 1

and λij = 0 if i '= 1. Choose s such that λ1s > 0. Then xs = −λ1s. Since xs is an

integer, then λ1s = 1. Thus, x = e1 − es.

Given any S ⊂ [n], the vertices of each of the facets of PAd
are the columns of Md

where xs = 1 for exactly one s ∈ S and xi = 0 for all i ∈ S, i '= s. We denote this facet

by FS, and the corresponding set of vertices VS. The vertices of FS are

VS = {vij : i ∈ S, and j ∈ T = [n]− S} .
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There is a one-to-one correspondence between the vertices of a facet FS and the entries

in k× (n− k) submatrices of Vd with rows given by the indices in S and columns from

the indices in T . We will call these submatrices VS.

Example 2.4. The vertices of F{1,4}, the facet given by the intersection of PA4 and

the hyperplane x1 + x4 = 1, appear in the 2 × 2 matrix formed by rows 1 and 4 and

columns 2, 3, and 5 of the matrix V4:

F{1,4} = conv(V{1,4}) = conv




v12 v13 v15

v42 v43 v45



 . (2.1)

Definition 2.2. [15] The product of two polytopes P and Q is given by

P ×Q :=









x

y



 : x ∈ P, y ∈ Q





.

P × Q is a polytope of dimension dim(P) + dim(Q) whose faces are the products of

faces of P and Q.

Continuing with the example of PA4 , the vertices v12,v13, and v15 are affinely

independent and the convex hull of these points is a triangular face, #2, of F{1,4}.

The vertices v12 and v42 are also affinely independent with convex hull a segment,

#1, forming an edge of F14. In this case, F14 = conv(v12,v13,v15) × conv(v12,v42) =

#2 ×#1. This example is generalized in the following proposition.

Proposition 2.4. Every facet of the contact polytope of Ad is a product of simplices

#k−1 ×#(n−k−1) for 1 ≤ k ≤ n− 1.
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Proof. Let FS be a facet of PAd
with S = {i1, i2, . . . , ik} ⊆ [n] and T = [n] − S.

Without loss of generality, we can assume that S = {1, 2, . . . , k} and T = {k+1, . . . , n}.

Consider only the vertices in the first row of the submatrix of vertices of this facet. All

of the these vertices will be of the form

vij =





1

0

...

−1

0

...

0





where exactly one of the first k components is 1 and exactly one of the last n − k

components is −1. If Ik is the k × k identity matrix, then let P = conv(Ik) = #(k−1)

and Q = conv(−I(n−k)) = #(n−k−1). Then the vertices vij of FS are exactly the vertices

of P ×Q thus FS = #k−1 ×#(n−k−1).

Summarizing, we know the following about the combinatorial structure of PAd
: it

is a d-polytope with d(d+1) vertices, all of the vectors in MAd
. Each vertex vij shares

an edge with the vertices of the form vkj or vil. There are 2(d−1) such vertices, so vij

lies on 2(d− 1) edges. To find the total number of edges we multiply d(d + 1) vertices

by 2(d− 1) edges per vertex and divide by two, since every edge contains two vertices.

PAd
has (d − 1)d(d + 1) edges and the Pythagorean theorem gives the length of each

edges as
√

2. PAd
has

(
d+1
k

)
facets of the form #(k−1)×#(n−k−1) for each 1 ≤ k ≤ n−1

for a total of 2k − 2 facets. The integer points in PAd
are MAd

∪ 0.
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2.3 Triangulations and Unimodularity of PAd

In the next chapters, we will explore how embedding the monoid structure of a lattice

in an algebra will enable us to use more tools to determine the growth series of this

lattice. A critical step is a triangulation of the polytope PAd
. In Chapter 4, we will use

a specific triangulation of PAd
to derive a formula for the coordinator polynomial of

Ad. In this section, we develop the notion of triangulating a polytope and examining

when this triangulation has a special property called unimodularity.

Definition 2.3. [3] A triangulation T of a convex d-polytope P is a pure simplicial

complex where P is the union of the simplices in T .

The fact that every convex polytope P can be triangulated using only the vertices

of P is proven in the appendix of [3]. For a contact polytope PL of a lattice L, we are

primarily interested in triangulations which use only the points in PL ∩ L.

Example 2.5. Consider the hexagon PA2 with vertices {v12, v13, v21, v23, v31, v32}. T =

{δ1, δ2, δ3, δ4} is a triangulation of PA2 as shown in Figure 2.3 with

δ1 = conv({v12, v13, v23}), δ2 = conv({v12, v23, v21}),

δ3 = conv({v12, v21, v31}), δ4 = conv({v12, v31, v32}).

Definition 2.4. A simplex with vertices v0, v1, . . . , vd ∈ Zn is unimodular in a given

lattice L if for any ordering of the vertices, {v1 − v0, v2 − v0, . . . , vd − v0} generates L.

In the case where L is isomorphic to Zd, this characterization is equivalent to

| det(v1 − v0, v2 − v0, . . . , vd − v0)| = 1
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Figure 2.3: A triangulation T of PA2

.

In other words, given a d-simplex in with vertices Zd, this simplex is unimodular if

when you translate the simplex so that any one of the vertices is at the origin, then

the set of vectors from the origin to the other translated vertices will span Zd.

Definition 2.5. A unimodular triangulation of a polytope P is a triangulation

into unimodular simplices with vertices in P ∩ Zd.

Definition 2.6. A matrix M is called totally unimodular if every square submatrix

of M has determinant 0, +1, or −1.

Proposition 2.5. The matrix MAd
is totally unimodular.

For the proof of proposition 2.5 we use an alternate characterization of totally

unimodular matrices proven by Schrijver in [9].

Theorem 2.6. [9, Theorem 19.3] If M is an n×m matrix with entries 0, +1 and −1,

then M is totally unimodular if each collection of columns of M can be split into two
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parts B1 and B2 so that the sum of the columns in B1 minus the sum of the columns

B2 is a vector with entries only 0, +1 and −1.

We abuse the notation slightly to create the following shorthand for this condition:

S12 =
∑

B1 −
∑

B2 ∈ (−1, 0, +1)n.

Proof of Proposition 2.5. For d = 1, M1 =




1 −1

−1 1



 is totally unimodular by

simply applying Definition 2.6. We proceed by induction on the dimension d. Assume

that for d < k, MAd
is totally unimodular. Let B = b1, . . . ,br be a collection of

columns of MAk
so bk = ei − ej for some i, j ∈ [n]. We use the following algorithm to

transfer the vectors from B into the sets B1 and B2 one at a time so that the property

S12 ∈ (−1, 0, +1)k+1 is preserved at every step. We begin with B1 and B2 empty.

(1) For every pair of vectors bs and bt such that bs +bt = 0, place both bs and bt in

B1. Go to (2)

(2) Let c = 1. Choose any of the remaining vectors ei1 − ej1 in B and add it to B1.

Go to (3)

(3) At this step there are three cases:

(3a) If all of the vectors from B have been distributed to either B1 or B2, go to

(5);

(3b) If there are no remaining vectors in B of the form ejc − ejc+1 , go to (4);

(3c) If there remains vectors in B of the form ejc − ejc+1 , add this vector to B1.

There are now two new cases.

i. If jc+1 = i1, then
∑

B1 −
∑

B2 = 0, so return to (2).
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ii. If jc+1 '= i1, let c := c + 1 and go to (3).

(4) Again, there are two cases:

(4a) If there are no remaining vectors with a 1 or −1 in the jc position, go to

(5);

(4b) If there is still a vector in B are of the form ejc+1 − ejc , add this vector to

B2, let c := c + 1 and return to (3).

(5) Either

(5a) All of the vectors from B have been separated into B1 and B2; or

(5b) All of the remaining vectors have entry 0 in the jc row.

In both cases, either S12 = 0 or S12 = ei1 − ejc . In case (5a), we are done. In case (5b),

let the matrix B′ be the remaining vectors in B with the jk row eliminated. The vectors

in B′ are a subset of the columns of Mk−1. By the induction hypothesis, Mk−1 is totally

unimodular, and thus the vectors in B′ can be divided into two sets B′
3 and B′

4 such

that S ′34 =
∑

B′
3−

∑
B′

4 ∈ (−1, 0, +1)k−1. Thus, we separate the remaining vectors in

B into the same two groups, B3 and B4 such that S34 =
∑

B3 −
∑

B4 ∈ (−1, 0, +1)k

and the jc component of this sum is 0. If the i1 component of this sum is −1 or 0, then

we simply add all of the columns from B3 to B1 and the columns from B4 to B2 and

we are done. If the i1 component of S34 is 1, then we switch and add the columns from

B4 to B1 and the columns from B3 to B2 and again we are done. Thus, we conclude

that Mk is totally unimodular, and by induction, MAd
is totally unimodular for all

d ∈ Z>0.
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Example 2.6. Let B ⊂MA4 be given by

B =





1 1 1 0 0 −1 0 0

−1 0 0 −1 1 1 0 0

0 −1 0 1 0 0 1 0

0 0 −1 0 0 0 0 1

0 0 0 0 −1 0 −1 −1





= {v12,v13,v41,v32,v25,v21,v35,v45}.

The results for each step in the algorithm above are as follows:

• (1) v12 + v21 = 0; place both in B1,and go to (2).

B1 = {v12,v21} B2 = {} B = {v13,v41,v32,v25,v35,v45}
∑

B1 = 0
∑

B2 = 0
∑

S12 = 0

• (2) Place v13 in B1, c = 1, i1 = 1 and j1 = 3. Go to (3)

B1 = {v12,v21,v13} B2 = {} B = {v41,v32,v25,v35,v45}
∑

B1 = v13

∑
B2 = 0

∑
S12 = v13

• (3c) Place v35 in B1, c = 2 and j2 = 5. Go to (3)

B1 = {v12,v21,v13,v35} B2 = {} B = {v41,v32,v25,v45}
∑

B1 = v15

∑
B2 = 0

∑
S12 = v15
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• (3b to 4b) Place v25 in B2, c = 3 and j3 = 2. Go to (3)

B1 = {v12,v21,v13,v35} B2 = {v25} B = {v41,v32,v45}
∑

B1 = v15

∑
B2 = 0

∑
S12 = v15

• (3b to 4b) Place v32 in B2, c = 4 and j4 = 3. Go to (3)

B1 = {v12,v21,v13,v35} B2 = {v25,v32} B = {v41,v45}
∑

B1 = v15

∑
B2 = v35

∑
S12 = v13

• (3b to 4b)B′ = {v31,v34} ∈ MA3 . Let B′
3 = {v31} and B′

4 = {v34},so S ′34 = v41.

Then B3 = {v41} and B′
4 = {v45} and S34 = v51 in R5 and the final result is

B1 = {v12,v21,v13,v35,v41} B2{v25,v32,v45}
∑

B1 = v45

∑
B2 = v34

∑
S12 = v35

So the entries of
∑

B1 +
∑

B2 are only −1, 0 and 1.

We now consider the simplicial complex formed by the boundary of PAd
. Let T be

a triangulation of ∂(PAd
) using only the vertices of PAd

. A maximal simplex of T is

a (d − 1)-simplex with d vertices {v1, . . . ,vd} which are a subset of columns of MAd
.

Since 0 ∈ PAd
, we can construct a triangulation T ′ of PAd

by coning over each of the

maximal simplices in T from the origin. Then the vertices of any d-simplex in T ′ are

{0,v1, . . . ,vd}. Since m is totally unimodular, then | det(v1−v0, v2−v0, . . . , vd−v0)| =

1. From this we conclude the following proposition.

Proposition 2.7. Any triangulation of PAd
constructed by coning from the origin over

a triangulation of the boundary using no new vertices is unimodular.



25

2.3.1 The rational cone over PAd

In many cases, it is easier and more natural to work with a cone rather than a polytope.

The cones that we are defining in this section differ from those defined in Definition

1.6 in that these are unbounded polyhedra. We construct the rational cone over a

polytope P as follows. If VP = (v1,v2, . . . ,vr) are the vertices of P in Rn then let

V ′
P =




v1 a2 . . . ar

1 1 . . . 1



 .

Define the rational polyhedral cone generated by M ′ as

KV ′
P

= cone(V ′) =






r+1∑

i=1

ci




ai

1



 : ci ∈ R≥0





.

Let us take a closer look at case we are concerned with here: when P is the contact

polytope of a lattice LM. Then {M∪{0}} is the set of lattice points with word length

≤ 1 contained in P . In this case we let M ′ =




M 0

1 1



 . Since P = conv(M), then

KV ′
P

= KM ′ . This construction can be interpreted geometrically as follows. We embed

the contact polytope P in Rn+1 in the hyperplane xn+1 = 1 and draw a ray from

the origin through each of the vertices of P , and find the convex hull of these rays.

KV ′
P
∩ {x : xn+1 = k} is an isomorphic copy of kP .

We would like to say, therefore, that the integer points in KM ′ ∩ {x : xn+1 = k}

are in bijection with the set of points in the LM with word length less than or equal
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Figure 2.4: Dilations of PA2 as cross-sections of K′
M .

to k, however this is not always the case. This equality does hold when PM has a

unimodular triangulation [2, Lemma 11]. Theorem 2.7 guarantees that the polytope

PAd
has a unimodular triangulation, thus the integer points x ∈ K′

M are an exact copy

of the points in Ad with word length ≤ k.



Chapter 3

Translating to Commutative Algebra

In this chapter, we consider a different problem, that of determining the number of

basis vectors of a given degree in a monoid algebra. The theory outlined in this chapter

is explained in depth in [7] and [13] and is the backbone of the proofs of coordinator

polynomials of cyclotomic lattices in [2].

3.1 From Lattices to Monoid Algebras

Thus far, we have considered the points in a lattice LM ∈ Rn as vectors generated by

non-negative integer combinations of M = (a1, a2, . . . , ar). Alternately, we can choose

to consider these points as exponents of monomials in a K-algebra as follows. Let

K[x] = K[x1, . . . , xr, xr+1] be the ring of polynomials with coefficients in an arbitrary

field K. A monomial of K[x] is a product of powers of variables, xu = xu1
1 xu2

2 . . . xur+1
r+1

27
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where u = (u1, u2, . . . , ur+1) is the exponent vector. Let t = (t1, t2, . . . , tn) and the

Laurent polynomial ring T = K[t1, t
−1
1 , . . . , tn, t−1

n , s] where the monomials can have

exponent vectors with negative coordinates (except in the last position.) The variable

s is a distinguished variable which we will use to keep track of the degree of monomials

in a subring of T . As in Section 2.3.1, let

M ′ =




a1 a2 . . . ar 0

1 1 . . . 1 1



 .

We now define the ring homomorphism ψ : K[x] → T by ψ(x) = M ′(t, s) which gives

the monomial mapping

ψ(xi) = tais = tai1
1 tai2

2 . . . tain
n s.

The image of the map ψ is the monoid algebra K[M ′] = K[ta1s, ta2s, . . . , tars, s]. Let

IM ′ be the kernel of ψ. By the first isomorphism theorem for rings, IM ′ is an ideal of

K[x] called the toric ideal, K[M ′] is a sub-ring of T and K[x]/IM ′ ∼= K[M ′]. Elements

in K[M ′] are monomials of the form tvsr where

v =
∑

ui∈M∪{0}

ciui with ci ∈ Z≥0 and
∑

ci = r.

We define a grading on the monomials in K[M ′] by letting the degree of the monomial

tvsr be r. K[M ′]k is a K vector space generated by the set of monomials in K[M ′] with

deg(tvsk) = k. The dimension of K[M ′]k as a vector space, written dimK(K[M ′]k) is

equal to the number of monic monomials with degree k in K[M ′]. Let us step back

and look at a geometric interpretation of this construction in relationship to the lattice

LM . By construction, we see that the set of vectors {v : tvsk ∈ K[M ′]} are in bijection
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with the points in LM with word length less than or equal to k. Thus counting the

number of basis vectors of K[M ′]k is the same as finding the number of lattice points

in LM with word length less than or equal to k; that is,

dimK(K[M ′]k) =
k∑

i=0

S(i).

Example 3.1.

M ′
2 =





1 1 −1 0 −1 0 0

−1 0 1 1 0 −1 0

0 −1 0 −1 1 1 0

1 1 1 1 1 1 1





.

Then K[M ′
2] = K[ t1

t2
s, t1

t3
s, . . . , t3

t1
s, s]. The monomials

{tv1
1 tv2

2 tv3
3 sk where

3∑

i=1

vi = 0 and |vi| ≤ k}

form a basis for K[M ′
2]k.

3.2 The Hilbert Series

Definition 3.1. Let V be a finitely generated graded K-algebra, with grading by

degree. Then the function HV : N → N given by

HV (k) := dimK(Vk)

is called the Hilbert function of V.
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We apply this definition to the algebra K[M ′] and simplify the notation by letting

H(k) = dimK(K[M ′]k).

As with the growth function, we embed the Hilbert function in a generation function.

Definition 3.2. The Hilbert series of K[M ′] is the generating function

H(K[M ′]; x) :=
∑

k≥0

H(k)xk =
∑

k≥0

dimk(K[M ′]k)x
k.

The following theorem is a standard result from algebraic geometry.

Theorem 3.1. [6] If H(K[M ′]; x) is the Hilbert series of the finitely generated graded

standard K-algebra K[M ′], then

H(K[M ′]; x) =
h(x)

(1− x)d+1
,

where h(x) is a polynomial of degree at most d.

Here we call h(x) the Hilbert polynomial of K[M ′].

Proposition 3.2. The Hilbert polynomial of K[M ′] is precisely the coordinator poly-

nomial of the growth series of LM .

Proof. Since the number of elements in LM with word length less than or equal to k

is dimK(K[M ′]k) then S(k) = dimK(K[M ′]k)− dimK(K[M ′]k−1). The growth series of
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LM is given by

G(x) =
∑

k≥0

S(x) x2

=
∑

k≥0

(dimK(K[M ′]k)− dimK(K[M ′]k−1)) xk

= H(K[M ′]; x)− x(H(K[M ′]; x)) = (1− x)H(K[M ′]; x)

=
h(x)

(1− x)d
.

3.3 Initial Ideals and Regular Triangulations

In section 3.1, we established that ker ψ is the toric ideal IM ′ of the polynomial ring

K[x] = K [x1, . . . , xr+1]. We now take a closer look at this ideal with the goal of

building a connection between the initial ideal of IM ′ and regular triangulations of the

polytope PM .

Definition 3.3. A term order ≺ is a well ordering of all the monomials in K[x] with

the following properties:

1. there exists a minimum element x0 = 1;

2. for any monomial xw, if xu ≺ xv then xwxu ≺ xwxv.

We can think of the term order ≺ either as applying to the monomials in K[x] or

as applying to the exponent vectors in Nn+1. Since the exponent vectors that we are

considering are elements in the lattice L, this term order induces an ordering on the

points in the lattice, and in particular on the lattice points in contact polytope PM ′ .
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Definition 3.4. Given a nonzero polynomial f ∈ K[x] and a term order ≺, we let

in≺(f), the initial term of f , be the largest monomial of f with respect to ≺. If I is an

ideal of K[x], the initial ideal of I with respect to the term order ≺ is the monomial

ideal generated by all the initial terms of polynomials in I denoted by

in≺(I) := 〈in≺(f) : f ∈ I〉.

Theorem 3.3. [6] Let I be a homogeneous ideal in K[x] and ≺ any term order. Then

for all k, (K[x]/I)k and (K[x]/in≺(I))k are isomorphic K-vector spaces, and therefore

H(K[x]/I; x) = H(K[x]/in≺(I); x).

The implication of this proposition for our problem is as follows:

H(K[M ′]; x)H(K[x]/in≺(IM ′); x) =
h(x)

(1− x)d+1

for any term order ≺. The next task is to identify a term order that enable us to

determine h(x). For this we introduce the notion of a weight vector.

Definition 3.5. For ω ∈ Rn+1, ≺ω is the term order induced by ω given by

xα ≺ω xβ if ω ·α ≤ ω · β. For a polynomial f ∈ I, inω(f)) is the sum of the terms cαxα

of f where ω · α is maximal. So we define the initial ideal with respect to ω by

inω(I) := 〈inω(f) : f ∈ I〉.

We can also use weight vector ω to induce a triangulation of PM by first trian-

gulating the cone KM ′ into simplicial cones and then finding the intersection of these

cones with the hyperplane H1 = {x ∈ Rn+1 : xn+1 = 1}. Geometrically, given a generic
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weight vector ω and set of vectors M , we construct Tω, the regular triangulation of

PM induced by ω, as follows:

a. Lift each vector ui ∈ M ∪ {0} ⊂ Rn to (ui, 1) ∈ M ′ ⊂ Rn+1.

b. Lift the points in M ′ into Rn+2 again using the weight vector ω to construct M̂ ′ =

{(a1, 1, ω1), . . . , (ar, 1, ωr), (0, 1, ωr+1)}.

c. Form the cone KM̂ ′ , then project the lower hull of this cone back onto the first (n+1)

coordinates. This projected image is a triangulation of M ′ written Tω(M′).

d. The intersection of Tω(M ′) with H1 yields Tω, a triangulation of PM in Rr.

In section 2.3 we defined a unimodular triangulation of a polytope. The following

theorem establishes the connection between the initial ideal inω(IM ′) and the regular

triangulation Tω. A monomial ideal such as inω(IM ′) is squarefree if the minimal

generators are monomials not divisible by x2
i for any i.

Theorem 3.4. [7, Theorem 6.2] The initial ideal inω(IM ′) is squarefree if and only if

the regular triangulation Tω is unimodular.

From Theorem 2.5, we know that MAd
is totally unimodular, thus every triangu-

lation of PM ′ is unimodular. In particular, any regular triangulation of PAd
is uni-

modular, so every initial ideal inω(IM ′) will be squarefree. To complete the connection

between the triangulation of PM and the toric ideal I ′M we need a few more definitions.

In Section 1.2, we defined the terms faces, facets and simplicial complex for polytopes.

Here we generalize these definitions to work in that context of abstract algebra.

Definition 3.6. [13, Chapter 13] An abstract simplicial complex Γ on the set [n]

is a collection of subsets of [n] such that if F ∈ Γ and G ⊂ F , then G ∈ Γ as well.
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The elements F ∈ Γ are called the faces of Γ. The dimension of a face F ∈ Γ is

|F | − 1 and maximal dimensional faces are called facets. If all of the facets of Γ have

the same dimension, then we say that Γ is pure. Any set H ⊆ [n] such that H /∈ Γ

is called a non-face of Γ. A minimal non-face of Γ is a non-face H such that for

all G ! H, G ∈ Γ. Notice that when the set [n] is the subscripts of the vertices of a

polytope, these definitions agree with those in Section 1.2.

We now return to the discussion of the columns of M ′ as a set of r + 1 vectors in

Rn+1. Any triangulation Tω of M ′ is a simplicial complex on [r+1]. Then Tω is also a

triangulation of PM which uses all of the lattice points in PM .

Definition 3.7. The Stanley-Reisner ideal of a simplicial complex Γ on [n] is the

squarefree monomial ideal

IΓ := 〈xi1xi2 . . . xin : {i1, i2, . . . , in}is a minimal non-face of Γ〉.

In this context, the face ring of Γ is given by

K[Γ] := K[x1, . . . , xn]\IΓ.

Example 3.2. The simplicial complex

C = {{x1, x2, x3}, {x3, x4}, {x4, x5}, {x3, x5}}

is shown in Figure 3.1. If we consider x1, x2, x3, x4, x5 as indeterminants and form the

ring K[x1, x2, x3, x4, x5], then the Stanley-Reisner ideal IC is generated by the mono-

mials {x1x4, x1x5, x2x4, x2x5, x3x4x5}, corresponding to the minimal non-faces of C.
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Figure 3.1: The simplicial complex C.

The following theorem connects the squarefree ideal inω(IM ′) with the Stanley-

Reisner ideal of a simplicial complex.

Theorem 3.5. [11, Theorem 8.3] Let I ′M be the toric ideal of M ′ and let ω ∈ Rr+1

such that in≺(IM ′) = inω(IM ′) is squarefree. Then inω(IM ′) is the Stanley-Reisner ideal

of the simplicial complex Γ induced by Tω of M ′.

3.4 From h-vectors to Coordinator Polynomials

The f-vector of a simplicial complex Γ is given by f(Γ) = (fo, f1, . . . , fn−1) where

f−1 = 1, f0 = r + 1, and fi = the number of i-dimensional faces of Γ. The f-

polynomial is given by

fΓ(x) =
n∑

i=0

fi−1x
d−i.
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We define the h-polynomial in terms of the f -polynomial by

hΓ(x) = fΓ(x− 1) =
n∑

i=0

fi−1(x− 1)d−i.

The following theorem from Stanley makes the final link in the connection between the

coordinator polynomial of LM and the h-polynomial of a simplicial complex.

Theorem 3.6. [10, Theorem II.1.4] For a simplicial complex Γ with vertex set

{x1, x2, . . . , xr} and Stanley-Reisner ideal IΓ, the Hilbert series of K[Γ] is given by

H(K[Γ]; x) =
hΓ(x)

(1− x)d+1

where hΓ(x) is the h-polynomial of the complex Γ.

We summarize the results from this chapter as follows: By Theorem 3.1, the nu-

merator of the Hilbert series H(K[M ′]; x) is equal to the coordinator polynomial of the

growth series for LM . From Theorem 3.3, H(K[x]/I; x) = H(K[x]/in≺(I); x) for any

term order ≺. Next, we consider the triangulation Γ(PM) induced by a weight vector ω

(called regular triangulations.) Theorem 3.4 tells us that if Γ(PM) is unimodular, then

inω(I) is squarefree and by Theorem 3.5 inω(I) is the Stanley-Reisner ideal IΓ of the

boundary complex of Γ(PM). Finally, with Theorem 3.6, we get the full connection:

G(x) = (1− x)H(K[M ′]; x) = H(K[x]/I; x) = H(K[x]/inw ≺ (I); x)

= H(K[x]/IΓ); x) =
hΓ(x)

(1− x)d+1
.

This chain of reasoning depends on the unimodularity of the regular triangulation

induced by ω.
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Now consider the lattice An. By choosing a weight vector such that the origin is the

lowest point in the lifting, we can induce a regular triangulation of PAn equal to a union

of cones from the origin over a triangulation of the boundary of PAn . By Theorem 2.7,

every such triangulation will be unimodular. Thus, we have completed the proof of

Theorem 1.

Theorem 1.1. Given the lattice An−1, generated as a monoid by the vector config-

uration MAn−1, the coordinator polynomial of the growth series of An−1 is the h-

polynomial of the boundary complex of any regular, unimodular triangulation of PM =

conv(MAn−1).

The Dehn-Sommerville Relations [15, Theorem 8.21] give that the coefficients

of the h-polynomial of the boundary complex of a simplicial d-polytope satisfy the

relationship

hk = hd−k.

Thus, the h-polynomial is palindromic. Hence, we conclude that the coordinator poly-

nomial for the growth series for Ad is palindromic. In the next chapter, we describe

a specific regular triangulation of PAd
and use the face numbers resulting from this

triangulation to derive the explicit formula for the Hilbert polynomial for K[M ′
Ad

] and

thus the coordinator polynomial for the lattice Ad.

The formulae for the coordinator polynomial of the root lattices Cn and Dn given

in [1] are also palindromic, leading to the conjecture that the growth series for these

lattices can also be derived using regular, unimodular triangulations of the contact

polytopes. Conversely, since the coordinator polynomial for Bn is not palindromic, we

know that it is not the h-vector of a simplicial polytope, hence this method for deriving
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the coordinator polynomial will not apply. In Chapter 5, we will define Cn, derive

the growth series using Ehrhart theory, and also demonstrate the specific unimodular

triangulation that can be used to form the Hilbert series proving that the coordinator

polynomial is palindromic.



Chapter 4

The Growth Series of Ad

We now describe a specific regular, unimodular triangulation of the boundary of PAd

and apply the theorems from Chapter 3 to derive an explicit formula for the coordinator

polynomial of Ad. To simplify notation in this chapter, we describe a polytope (or face

of a polytope) using only its vertex set and leave the “conv” implied.

Let M be a totally ordered set of points ai ∈ Rd, where a1 ≺ a2 ≺ · · · ≺ ar. We

define a face F of this point configuration to be an ordered subset of points given by

the intersection of M and a face F ∈ PM .

Definition 4.1. [11, Proposition 8.6] The reverse lexicographic triangulation

(also called the pulling triangulation) Γrevlex(M) is defined recursively as follows:

• If M is affinely independent, then Γrevlex(M) = {M}.

39
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• Otherwise,

Γrevlex(M) =
⋃

F

{{a1} ∪ G : G ∈ Γrevlex(F)}

where the first union is taken over all facets F of M not containing a1.

We use the following example to illustrate this definition.

Example 4.1. Let M = {v12,v13,v15,v42,v43,v45} ⊂ MAd
with term order v12 ≺

v13 ≺ v15 ≺ v42 ≺ v43 ≺ v45. PM is the facet F14 of PA4 , shown on the left in Figure

4.1. Since M is not affinely independent, we look at each facet of PM that does not

contain v12. There are two such facets:

F1 = {v42,v43,v45}

F2 = {v13,v15,v43,v45}.

Figure 4.1: Reverse lexicographic triangulation of F14.
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F1 is affinely independent, so Γrevlex(F1) = {F1}. F2 is not affinely independent, so

we apply the second part of the definition to F2. The facets of F2 that do not contain

v13 are F3 = {v15,v45} and F4 = {v43,v45} both of which are affinely independent.

Assembling the pieces we get

Γrevlex(F2) = {{{v13} ∪ F3}, {{v13} ∪ F4}}

= {{v13,v15,v45}, {v13,v43,v45}}

Γrevlex(M) = {{{v12} ∪ F1}, {{v12} ∪ {v13,v15,v45}}, {{v12} ∪ {v13,v43,v45}}

= {{v12,v42,v43,v45}, {v12,v13,v15,v45}, {v12,v13,v43,v45}}.

The tetrahedra on the right of Figure 4.1 show the facets of Γrevlex(M).

By [11, Chapter 8] we know that every reverse lexicographic triangulation can be

induced by some weight vector ω and is therefore regular. In [11], Sturmfels describes

a specific reverse lexicographic triangulation, the staircase triangulation, on a poly-

tope that is a product of simplices. In Chapter 2 we proved that every facet of PAd

is the product of simplices. By ordering the integer points in PAd
appropriately, we

can use the staircase triangulation on each of the facets to create a reverse lexico-

graphic triangulation for PAd
. Recall that the integer points in PAd

are 0∪MAd
where

vij ∈MAd
is given by vij = ei − ej. Let v0 = 0 and define a partial ordering on these

lattice points by:

v0 ≺ vij and vij ≺ vkm if i ≤ k and j ≤ m.

Letting v0 be the minimal element in this ordering allows us triangulate each of the
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facets of PAd
and then cone over them from the origin to construct the triangulation

Γ(PAd
). We will see that these cones match up; that is, their intersections are faces of

both cones.

The staircase triangulation on a polytope P = #s−1 ×#t−1 is obtained as follows:

Label each of the vertices of xij ∈ P so that for any fix k, conv({xkj}) = #s−1.

Similarly for a given m, conv({xim}) = #t−1. Let X = [xij] ∈ Rs×t be the matrix

whose entries or the vertices of P . Order the vertices by xij ≺ xkl whenever i ≤ k and

j ≤ l. The facets of the staircase triangulation are the convex hull of sets of vertices

that form maximal chains in this poset. These sets of s + t− 1 vertices will lie on each

of the maximal increasing paths from x11 to xst. In the matrix X, these paths appear

as staircases, hence the name staircase triangulation.

Example 4.2. If the matrix

X =





x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34





represents the vertices of a polytope P = conv(X) = #2 ×#3. The set

{x11,x12,x22,x23,x33,x34} is the vertices of one facet Q of the staircase triangulation

Γ(P). Placing these vertices in the original matrix X, it is obvious that they form a

staircase from the top left corner to the bottom right.

Q =





x11 x12 − −

− x22 x23 −

− − x33 x34




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There are 10 facets in Γ(P) corresponding to the 10 increasing paths from x11 to

x34.

4.1 Triangulating PAd

We now apply the staircase triangulation to each facet FS of PAd
. We let Γ(FS) denote

the triangulation of a facet FS and Γ(∂PAd
) represent the simplicial complex formed

by
⋃

S⊂[n] Γ(FS). It will follow from Proposition ?? that by ordering the vertices in Vd

as above, the triangulations of the facets will patch together nicely so that Γ(FS) and

Γ(FT ) induce the same triangulation on FS ∩ FT .

Example 4.3. F14 and F124, shown in Figure 4.2 are facets of P4 given by:

F14 = conv




v12 v13 v15

v42 v43 v45





F124 = conv





v13 v15

v23 v25

v43 v45





These facets intersect in the square F14 ∩ F124 = conv




v13 v15

v43 v45



 As we saw in
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Figure 4.2: The intersection of Γ(F14) and Γ(F124) is Γ(F14 ∩ F124).

Example 4.1, Γ(F14) is the simplicial complex with facets:

δ1 = {v12,v13,v15,v45}

δ2 = {v12,v13,v43,v45}

δ3 = {v12,v42,v43,v45}

Using the same term order, Γ(F124) is the simplicial complex with facets:

δ4 = {v13,v15,v25,v45},

δ5 = {v13,v23,v25,v45},

δ6 = {v13,v23,v43,v45}.

In both cases, Γ(F14 ∩ F124) = {{v13,v15,v45}, {v13,v43,v45}.
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The total number of facets in Γ(PAd
) can be found by triangulating each of the

facets FS ∈ PAd
, then summing across all facets FS. For S ⊆ [n] with |S| = k, there

are
(

n
k

)
distinct facets FS corresponding to k × (n − k) submatrices of VI ⊆ Vd. Each

of these matrices contains
(

n−2
k−1

)
staircases, thus in the staircase triangulation, these

facets are divided into
(

n−2
k−1

)
simplices. Summing over all k ≤ n yields

n−1∑

k=1

(
n

k

)(
n− 2

k − 1

)

facets in Γ(PAd
).

While this approach works for determining the number of facets of Γ(PAd
), we

need a more global approach to count the lower dimensional faces of the triangulation.

Simply counting the number of m-faces in each facet will result in serious over-counting.

Rather, we will count the number of m-faces that belong to Γ(PAd
) by determining the

locations of the vertices of these faces in the matrix Vd.

4.2 The f -vector of Γ(∂PAd
)

If F is an m-face of Γ(PAd
), F will be the convex hull of m + 1 affinely independent

vertices and F must be contained in a facet of Γ(PAd
). So there exists an S ⊂ [d + 1]

such that the vertices of F are all contained in a staircase (an increasing path) of FS

as defined in Section 2.2.

Proposition 4.1. The m-dimensional faces of the triangulation Γ(PAd
) are the poly-

topes of the form F = conv({virjr ∈ Vd for 1 ≤ r ≤ m + 1}), that meet the following

conditions:
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1. is '= jt, 1 ≤ s, t ≤ m + 1, and

2. 1 ≤ i1 ≤ i2 ≤ . . . ≤ im+1 ≤ d + 1 and 1 ≤ j1 ≤ j2 ≤ . . . ≤ jm+1 ≤ d + 1.

Proof. Let F be an m-face of Γ(PAd
). Then F is an m-simplex with m + 1 vertices

given by {vir jr ∈ Vd 1 ≤ r ≤ m + 1}. Since F is a face of Γ(PAd
), the vertices of F

must all be contained in a common facet of PAd
. From Section 2.2, the vertices of a

facet of PAd
are given by vij where i ∈ S and j ∈ T = [n]−S for some S ⊂ [n]. This is

precisely the same condition as is given in 1. Further, F must be contained in a facet

of Γ(PAd
), so vir jr ≺ vir+1 jr+1 for all 1 ≤ r ≤ m. By the definition of ≺, we have that

ir ≤ ir+1 and jr ≤ jr+1 which give condition 2.

Assume that F satisfies conditions 1 and 2. Let S = {i : ∃j such that vij ∈ F} and

T = {j : ∃i such that vij ∈ F}. By condition 1, S ∩ T = ∅, so T ⊂ [d + 1]− S. Thus

{virjr ∈ Vd for 1 ≤ r ≤ m + 1} ⊂ vert(FS) where FS is the facet of PAd
defined by S.

By condition 2,{virjr} lie on an increasing path in the matrix of vertices of FS. Thus,

F is a face of the triangulation Γ(PAd
).

The problem of counting the m-faces of Γ(PAd
) has now been reduced to counting

the possible choice for indices irjr of the vertices vir jr that meet the conditions in

Proposition 4.1. From condition 2, the possible choices for {i1, . . . , im+1} must satisfy

1 ≤ i1 ≤ i2 ≤ . . . ≤ im+1 ≤ n. We can replace this weakly increasing condition with

the following strictly increasing condition:

1 ≤ i1 < i2 + 1 < i3 + 2 < . . . < im+1 + m ≤ d + 1 + m.

There are
(

d+1+m
m+1

)
possible choices for the set of indices {i1, . . . , im+1}. Similarly, we
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change condition 2 for the j’s to the strictly increasing condition

1 ≤ j1 < j2 + 1 < i3 + 2 . . . < jm+1 + m ≤ d + 1 + m.

But condition 1 gives that the choices for j must be distinct from the choices for the i,

thus there are
(
(d+1+m)−(m+1)

m+1

)
=

(
d

m+1

)
possible choices for the indices {j1, . . . , jm+1}.

The resulting number of possibilities for the vertices virjr ∈ Vd for 1 ≤ r ≤ m + 1 is
(

d+1+m
m+1

)(
d

m+1

)
. We summarize this result as a proposition.

Proposition 4.2. Let Γ(PAd
) be the simplicial complex resulting from the reverse lex-

icographic triangulation of the boundary of PAd
with the ordering 0 < vij ∀i, j and

vij ≺ vkl if i ≤ k and j ≤ l. The f -vector of Γ(PAd
) is f(Γ) = {f0, . . . , fm, . . . , fd−1}

where

fm =

(
d + 1 + m

m + 1

)(
d

m + 1

)
=

(d + 1 + m)!

(m + 1)! (m + 1)! (d−m− 1)!
.

Then the h-polynomial of Γ(PAd
) is

hΓ(x) = fΓ(x− 1) =
d−1∑

m=−1

fm(x− 1)d+1−i,

where f−1 = 1 and fm = (d+1+m)!
(m+1)!(m+1)!(d−(m+1))! . From Theorem 3.4, the coordinator

polynomial of the growth series of the lattice Ad with respect to the generators M =

{ei − ej : 0 ≤ i, j ≤ d + 1} is the precisely hΓ(x). So the growth series of Ad is

G(x) =
h(x)

(1− x)d
=

∑d−1
m=−1

(d+1+m)!
(m+1)! (m+1)! (d−(m+1))!(x− 1)d−(m+1)

(1− x)d
. (4.1)
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4.3 Simplifying h(x) with a WZ Proof

While we have reached our goal of finding an explicit expression for the coordinator

polynomial hd(x), this formula is still quite complicated. In the paper Low-Dimensional

Lattice VII: Coordination Sequence[5], Conway and Sloane prove the coordinator poly-

nomial for Ad is given by

h(x) =
d∑

k=0

(
d

k

)2

xk. (4.2)

We now show that these formula for h(x) given in equations (4.1) and (4.2) are equiva-

lent. First we simplify equation (4.1) by the change of variable m = r−1 and rewriting

the fraction as a product of binomials.

h(x) =
d−1∑

m=−1

(d + 1 + m)!

(m + 1)!(m + 1)!(d− (m + 1))!
(x− 1)d−(m+1)

=
d∑

r=0

(d + r)!

(r)!(r)!(d− r)!
(x− 1)d−r

=
d∑

r=0

(
2r

r

)(
d + r

d− r

)
(x− 1)d−r

= (x− 1)d +

(
2

1

)(
d + 1

d− 1

)
(x− 1)d−1 +

. . . +

(
2r

r

)(
d + r

d− r

)
(x− 1)d−r +

(
2d

d

)(
2d

0

)
.
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Next, we expand the binomials (x− 1)d−r to obtain hk, the coefficient of xk in h(x).

hk = (−1)d−k

(
d

k

)
+ (−1)(d−1)−k

(
2

1

)(
d + 1

d− 1

)(
d− 1

k

)
+

+(−1)(d−r)−k

(
2r

r

)(
d + r

d− r

)(
d− r

k

)
+

(
2(d− k)

d− k

)(
d− k

k

)

=
d−k∑

r=0

(−1)(d−r)−k

(
2r

r

)(
d + r

d− r

)(
d− r

k

)
.

To show that Equations (4.1) and (4.2) are the same, it suffices to prove the following

identity.
d−k∑

r=0

(−1)(d−r)−k

(
2r

r

)(
d + r

d− r

)(
d− r

k

)
=

(
d

k

)2

. (4.3)

We now employ a technique for proving combinatorial identities known as the WZ

(Wilf, Zeilberger) method. For more details and a proof of this method, we refer

the reader to [14]. We are grateful to Akalu Tefera [12] for the WZ proof we present

here. Rewrite the summand from Equation 4.3 as

s(d, k, r) = (−1)(d−k+r)

(
2r

r

)(
d + r

k + 2r

)(
k + 2r

k

)

Divide both sides of the identity by
(

d
k

)2
and set f(d, k, r) = s(d,k,r)

(d
k)

2 . Let F (d, k) =
∑d−k

r=0 f(d, k, r). Proving the identity in 4.3 is equivalent to showing F (d, k) = 1. It is

sufficient to show

F (d + 1, k)− F (d, k) = 0 and F (0, 0) = 1.
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This second condition is trivial since

F (0, 0) =
(−1)0

(
0
0

)(
0
0

)(
0
0

)
(
0
0

)2 = 1.

Courtesy of the WZ method and Akalu Tefera, we introduce the function g(d, k, r)

given by

g(d, k, r) = f(d, k, r)
(2d + 2− k)r2

(d + 1− r − k)(d + 1)2

=
(−1)(d−k+r)(2d + 2− k)r2

(
2r
r

)(
d+r

k+2r−1

)(
k+2r−1

k

)

(d + 1)2
.

The magic of the function g(d, k, r) is that it satisfies the WZ-equation

f(d + 1, k, r)− f(d, k, r) = g(d, k, r + 1)− g(d, k, r).

Letting
(

m
n

)
= 0 when b > a, gives that

f(d, k, d + 1− k) = (−1)

(
2(d + 1− k)

d + 1− k

)(
2d + 1− k

2d + 2− k

)(
2d + 2

k

)
= 0.

Finally

d+1−k∑

r=0

[(f(d + 1, k, r)− f(d, k, r)] =
d+1−k∑

r=0

[g(d, k, r + 1)− g(d, k, r)]

F (d + 1, k)− F (d, k) = g(d, k, d + 1− k)− g(d, k, 0)

= 0.
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This completes the proof that the formula that we obtained for the coordinator poly-

nomial of the growth series of An is equivalent to the formula presented by in [5].



Chapter 5

The Root Lattice Cn

We now investigate the structure and the growth series of another of the root lattices,

Cn. In this chapter, we demonstrate a regular unimodular triangulation of PCn and use

the Hilbert series of the facets of PCn to derive a formula for the coordinator polynomial

for Cn with respect to the natural generators. We also apply Ehrhart theory to derive

the coordinator polynomial for Cn.

5.1 The Lattice Cn and Contact Polytope PCn

The lattice Cn ∈ Rn is defined by Cn := {x ∈ Zn :
∑

i xi is even}.

Proposition 5.1. The lattice Cn is a rank n lattice generated as a monoid by M =

{±2ei, ±ei ± ej for i < j}.
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To prove this proposition, we denote the vectors in M by

{vi,j for − n ≤ i ≤ j ≤ n, i, j '= 0, i '= −j}

as follows: ei + ej = vi,j, (−ei) + ej = v−i,j,(−ei) + (−ej) = v−i,−j, ei + (−ej) = vi,−j,

2ei = vi, i and −2ei = v−i,−i.

Proof of Proposition 5.1. For all vi,j ∈ M,
∑n

k=1 vi,jk
is −2, 0 or 2. Choose u ∈ LM.

Then u =
∑

i,j cijvi,j. Thus

∑

k

uk =
∑

k

(
∑

i,j

cijvi,jk

)
=

∑

i,j

cij

(
∑

k

vi,jk

)
=

(
∑

k

cka

)
,

where a is −2, 0 or 2. Thus u ∈ Cn.

Choose u ∈ Cn. Construct the coefficients cij such that u =
∑

i,j cijvi,j. For each

ui, if ui ≥ 0 then ci,i = 51
2(ui)6 and wi = ui − 251

2(ui)6. If ui < 0 then c−i,−i = 51
2(ui)6

and wi = ui − 251
2(ui)6. Consider the vector w = (w1, . . . , wn). Each wk is 1, 0 or

−1, and since
∑

k uk is even, then we also know that
∑

k wk is even. Hence the total

number of non-zero coordinates of w must be even and we can pair them up. For

each pair wi and wj of non-zero coordinates of w, let cwi,wj = 1. All other coefficients

cij = 0, so

∑

i,j

cijvi,j =
∑

i,i

ciivi,i +
∑

i)=j

cijvi,j = (u−w) + (w) = u.

Now that we have established that the vectors in M generate Cn, we will refer
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to these generators as MCn . Since M consists of 2n2 vectors, we let the matrix

MCn ∈ Rn×2n2
be the matrix whose columns are the generators in MCn .

Example 5.1. The lattice C2 is a rank 2 lattice generated by

MC2 =




2 1 0 −1 −2 −1 0 1

0 1 2 1 0 −1 −2 −1





= [v1,1,v1,2,v2,2,v−1,1,v−1,−1,v−1,−2,v−2,−2,v1,−1].

The bold points in Figure 5.1 show a portion of C2 as a subset of the lattice Z2. Since

(1, 0) is not contained in C2,then C2 is a proper subset of Z2.

Figure 5.1: C2 as a subset of Z2.

Definition 5.1. The cross-polytope !n in Rd is given by the hyperplane and vertex

descriptions

!n :=

{
x ∈ Rn :

∑

i

|xi| ≤ 1

}
= conv({e1,−e1, . . . , en,−en}).
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As in Section 2.2 we define the contact polytope PCn = conv(MCn). It turns out

that PCn is simply a dilation of the cross-polytope, PCn = 2!n.

Example 5.2. The 3-dimensional cross-polytope !3 is a regular octahedron. Figure

5.2 shows the contact polytope PC3 along with the generators MC3 in blue. The six

gray integer points inside of PC3 are not contained in the lattice C3. These points are

the vertices of !3. Here we can see that PC3 = 2!3.

Figure 5.2: The contact polytope PC3 in R3.

Since the hyperplane H = {x ∈ Rn : xk = 2} intersects PCn in exactly the point

vk,k, we generalize that the vertices of PCn are vk,k where −n ≤ k ≤ n, k '= 0. For any

vi,j ∈ MCn with i '= j, vi,j = 1
2vi,i + 1

2vj,j, thus vi,j is contained in an edge of PCn .
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Therefore, all of the points in MCn are in ∂PCn and these are the only integer points

contained in ∂PCn . The only other integer points contained in PCn are the vertices of

!n and the origin.

5.2 The Zig-Zag Triangulation of PCn

In order to apply the theorems from Chapter 3 to the lattice Cn, we must have a

regular, unimodular triangulation of PCn . As with Ad, we can do this by constructing

a reverse lexicographic triangulation Γ(PCn) using only the points in {MCn ∪0}. If we

let v0 = 0 be the least element in the ordering, then the triangulation Γ(PCn) comes

from triangulating each of the facets and then coning over these facets from the origin.

Since each facet of PCn is standard simplex dilated by a factor of two, we will choose

to order the vertices in MCn in a manner which yields a nice triangulation on these

simplices.

The zig-zag triangulation is a reverse lexicographic triangulation on 2#k−1 where

the lattice points are labeled xi,j with i ≤ j as follows: each of the vertices is xi,i for

i ∈ [k] and the point in the middle of the edge joining xi,i with xj,j is labeled xi,j

(where i < j). Define the term order ≺z by

xi1,j2 ≺z xi1,j2 if i1 ≤ i2 and j1 ≥ j2.

The vertices of the facets of the zig-zag triangulation are given by the maximal chains

in this poset.

Example 5.3. Figure 5.3 shows the polytope P = 2#2 with integer points V =

{x1,1, x1,2, x1,3, x2,2, x2,3, x3,3}. Order the integer points in P using the term order ≺z
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Figure 5.3: The zig-zag triangulation of 2#2.

described above. Then x1,3 is the smallest element in this set. F1 = {x1,1, x1,2, x2,2}

and F2 = {x2,2, x2,3, x3,3} are the facets of P not containing x1,3. The minimal ele-

ments of F1 and F2 are x1,2 and x2,3 respectively. Again we look at the facets of F1

and F2 not containing these minimal elements. Since the F1 and F2 are vertices, which

are trivially affinely independent sets, we are ready to work our way back up by coning

over faces of the triangulation from the minimal elements.

Γ(F1) = {{x1,2,x2,2}, {x1,2,x1,1}}

Γ(F1) = {{x2,3,x3,3}, {x2,3,x2,2}}

Γ(PCn) = {{x1,3, x1,2, x2,2}, {x1,3, x1,2, x1,1}, {x1,3, x2,3, x3,3}, {x1,3, x2,3, x2,2}}

The polytope P = 2#k has k vertices xi,i for i ∈ [k +1] and
(

k
2

)
= k(k−1)

2 points xi,j

with i < j, one in the middle of each edge. When these integer points are ordered by≺z,
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the point x1,k is the minimal point of all chains in the poset. Of the k facets in 2#k, only

2 will not contain x1,k. Since all of the facets of a k−simplex are (k−1)−simplices, each

of these two will have a minimal point contained in all but two facets. This process

will repeat until the facets that are examined are 0-simplices, that is vertices of P .

When we build up the triangulation by coning over the triangulated facets, there are

2k facets of the triangulation Γ(P).

The triangulation Γ(PCn) is formed by ordering all of the vertices in vi,j ∈ MCn

by ≺z, forming the triangulation Γ(∂PCn) of the boundary of PCn , then coning over

each of facets of Γ(∂PCn) from the origin. Since each of the n-simplices in Γ(PCn)

contain the origin and n − 1 affinely independent points from MCn , these simplices

will be unimodular in the lattice generated by MCn. From the theorems in Chapter 3,

the coordinator polynomial for Cn must be the h-polynomial of a simplicial complex.

The Dehn-Sommerville Relations imply that the coordinator polynomial must also be

palindromic.

5.2.1 A Patchwork of Hilbert Series

While the zigzag triangulation is quite simple to explain and apply, it does not provide

an easy method for counting the face numbers. Here we give a different derivation of

the formula for the coordinator polynomial using the Hilbert series of the facets.

We have already shown that for 0 < k < n every k-face of PCn is 2#k. The Hilbert

series for 2#k is given in [8, Corollary 2.6] as

H(K[2#k], x) =
hk(x)

(1− x)k
=

∑k
i=0

(
k
2i

)
xi

(1− x)k
.
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Note. Here we are following the convention
(

n
m

)
= 0 if m > n.

The Hilbert series for the boundary complex of PCn can be constructed by a series

of inclusions and exclusions. The product

fn−1
hn−1(x)

(1− x)n−1

is the sum of the Hilbert series for each of the facets; however, this product double

counts the series on each of the (n − 2)-faces. So we must subtract those. Then add

back in the sum of the series for the (n − 3)-faces and so on. The resulting growth

series for Cn is

G(x) =
n∑

j=0

(−1)n−j (fj−1)
hj−1

(1− x)j−1

where f−1 = 1 and fj−1 is the number of j − 1-faces of PCn . By the duality of the

n-dimensional cross-polytope and the n-dimensional hypercube, we can replace fj−1

with gn−j the number of n − j-faces of the n-dimensional hypercube. The number of

n− j-faces of an n-dimensional hypercube is given by gn−j =
(

n
n

)
− j 2j, thus

G(x) =
n∑

j=0

(−1)n−j

(
n

n− j

)
2j

∑j−1
i=0

(
j−1
2i

)
xi

(1− x)j−1
.

Example 5.4. For the lattice C3, we first compute the Hilbert series for the faces of

PCn : h2 = 1 + 3x, h1 = 1 + x and h0 = 1. The f -vector for PCn is (6, 12, 8) so the

growth series for Cn is

G(x) = −1 +
6(1)

(1− x)
− 12(1 + x)

(1− x)2
+

8(1 + 3x)

(1− x)3

=
1 + 15x + 15x2 + x3

(1− x)3
.
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While this formula is correct and makes good use of the Hilbert series, it is quite

cumbersome to use in practice. In the next section we use the Ehrhart series of PCn

to re-derive the concise formula for the coordinator polynomial of Cn given in [1].

5.3 Finding the Growth Series from the Ehrhart Polynomial

The growth function SCn(k) will count the number of point in the lattice Cn with word

length k relative to the generators MCn .

Proposition 5.2. For u ∈ Cn, w(u) = k if and only if u is contained in the boundary

the kth dilate of PCn.

Proof. Choose u ∈ Cn. Since
∑

ui is even, then u must be an even combination of the

generators of 7n. The w(u) with in the lattice generated by the vertices of 7n is 2m for

some integer m, thus u ∈ ∂(2m7n) = ∂(m(27n)) = ∂(mPCn). So every u ∈ Cn lies on

the boundary of a dilate of PCn .

Assume w(u) = k with respect to MCn . ∃{cij} such that

u =
∑

i,j

cijvi,j where
∑

i,j

cij = k.

u =
∑

i,j

cij

k
(kvi,j) where

∑

i,j

cij

k
= 1.

Thus, u ∈ k(PCn). If u is not on the boundary of kPCn , then u ∈ k′PCn where k′ < k

so u can be represented as a sum of fewer than k vectors, which contradicts w(u) = k.

So u ∈ ∂(kPCn). Conversely, if u ∈ ∂(kPCn) then u ∈ ∂(2k!n). If w(u) = k′, then by

writing each of the vectors vi,j as a sum of two vertices of !n we can see that u must

lie on ∂(2k′!n). Hence 2k′ = 2k and w(u) = k.
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Since kPCn = 2k!n, Proposition 5.2 implies that the growth function SCn(k) actu-

ally counts the number of integer points on the boundary of 2k!n. It turns out that the

question of counting integer points contained in any dilation of k!n is quite straight

forward. To count only the points on the boundary, we can simply count all of the

integer points in k!n and then subtract the points in the interior of k!n. Fortunately,

the points in the interior of k!n are just the integer points contained in (k− 1)!n. To

show just how this works, we need a few definitions about counting integer points in

polytopes.

Definition 5.2. [3] Given a finite set S, the function #(S) counts the number of

elements in S. For a polytope P ∈ Rn, the lattice-point enumerator LP(t) is

a function that counts the number of lattice points contained in the tth dilate of P .

Formally, LP(t) := #(tP∩Z). The Ehrhart series of P is defined to be the generating

function

EhrP(x) := 1 +
∑

t≥1

LP(t)xt.

The cross polytope !n has a particularly nice feature which will help with deter-

mining a formula for Ehr!n(x). For any n > 0,!n is a bipyramid over !(n−1). Thus,

the number of lattice points in t!n can be found as a sum of lattice points in dilations

of L!(n−1)
as follows.

L!n(t) = 2 + 2L!n−1(1) + 2L!n−1(2) + · · ·+ 2L!n−1(t− 1) + L!n−1(t)

= 2 +
t−1∑

j=1

2L!n−1(j) + L!n−1(t). (5.1)

This identity allows us to compute the Ehrhart series of !n recursively resulting in the
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following formula.

Theorem 5.3. The Ehrhart series of the n-dimensional cross polytope is

Ehr!n(x) =
∑

t≥0

L!nxt =
(1 + x)n

(1− x)n+1
.

Proof. Ehr!n(x) =
∑

t≥0 L!nxt = 1 +
∑

t≥1 L!nxt. Substituting equation 5.1 into the

definition of the Ehrhart series for !n gives

Ehr!n(x) = 1 +
∑

t≥1

L!n(t)xt = 1 +
∑

t≥1

(
2 +

t−1∑

j=1

2L!n−1(j) + L!n−1(t)

)
xt

= −1 +
∑

t≥0

2xt +
∑

t≥0

t−1∑

j=1

2L!n−1(j)x
t +

∑

t≥0

L!n−1(t)x
t

=
2

1− x
+ 2

∑

j≥1

(
L!n−1(j)

∑

t≥j

xt

)
−

(
1 +

∑

t≥1

L!n−1(t)x
t

)

=
2

1− x
+ 2

∑

j≥1

L!n−1(j)
xj

1− x
− Ehr!n−1(x)

=
2(1 +

∑
L!n−1x

j)

1− x
−

(1− x) Ehr!n−1(x)

1− x

=
2 Ehr!n−1(x)− (1− x) Ehr!n−1(x)

1− x

=
1 + x

1− x
Ehr!n−1(x).

A bit of induction will yield the desired result. Since !0 is simply the origin,L!0 = 1

and Ehr!0 = 1 +
∑

t≥1 xt = 1
1−x = (1+x)0

(1−x)1 . Assume that for k < n, Ehr!k
(x) = (1+x)k

(1−x)k+1 .
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Then, by the recursive relationship above,

Ehr!n(x) =
(1 + x)

(1− x)
Ehr!n−1(x)

=
(1 + x)

(1− x)

(1 + x)n−1

(1− x)n

=
(1 + x)n

(1− x)n+1
.

We now make the connection back to the growth series for Cn. By Proposition 5.2,

the points u ∈ Cn with word length k are exactly the integer points contained in the

boundary of (2k)!n. So Scn(k) = L!n(2k)−L!n(2k− 1). This gives the growth series

of Cn as

G(x) =
∑

k≥0

S(k)xk = 1 +
∑

k≥1

(L!n(2k)− L!n(2k − 1)) xk

The change of variable y =
√

x, gives

G(y2) =
∑

k≥0

L!n(2k)y2k − y
∑

k≥1

L!n(2k − 1)y2k−1.

The coefficients in the series
∑

k≥0 L!n(2k)y2k are simply the coefficients of the even

terms of Ehr*n(y) and the coefficients of
∑

k≥1 L!n(2k− 1)y2k−1 are the coefficients of

the odd terms of Ehr*n(y). We now use a little trick from [14] to pick out the desired
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coefficients.

∑

k≥0

L!n(2k)y(2k) =
1

2
(Ehr!n(y) + Ehr!n(−y))

∑

k≥1

L!n(2k − 1)y(2k−1) =
1

2
(Ehr!n(y)− Ehr!n(−y)) .

Replacing these expressions in the growth series G(y2) gives

G(y2) =
∑

k≥0

L!n(2k)y2k − y
∑

k≥1

L!n(2k − 1)y2k−1

=
1

2
[Ehr!n(y) + Ehr!n(−y)− y(Ehr!n(y)− Ehr!n(−y))]

=
1

2
[(1− y) Ehr!n(y) + (1 + y) Ehr!n(−y)]

=
1

2

[
(1− y)

(1 + y)n

(1− y)n+1
+ (1 + y)

(1− y)n

(1 + y)n+1

]

=
1

2

[
(1 + y)n

(1− y)n
+

(1− y)n

(1 + y)n

]

=
1

2

[
(1 + y)2n + (1− y)2n

(1 + y)n(1− y)n

]

=
1
2 [(1 + y)2n + (1− y)2n]

(1− y2)n
.

(5.2)

Replacing y with
√

x gives the following formula for the growth series of Cn.

GCn(x) =
1
2 [(1 +

√
x)2n + (1−

√
x)2n]

(1− x)n
.

We simplify the coordinator polynomial a bit further by expanding and combining like

terms:
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(1 +
√

x)2n = 1 +

(
2n

1

)√
x +

(
2n

2

)
(
√

x)2 +

(
2n

3

)
(
√

x)3 + · · ·+
(

2n

2n

)
(
√

x)2n

(1−
√

x)2n = 1−
(

2n

1

)√
x +

(
2n

2

)
(
√

x)2 −
(

2n

3

)
(
√

x)3 + · · ·+
(

2n

2n

)
(
√

x)2n.

hCn(x) =
1

2
[(1 +

√
x)2n + (1−

√
x)2n]

= 2 + 2

(
2n

2

)
x +

(
2n

4

)
x2 + · · ·+

(
2n

2n

)
xn

=
n∑

k=0

(
2n

2k

)
(x)k.

We summarize this section with the final theorem:

Theorem 1.3. The coordinator polynomial for the lattice Cn generated as a monoid

by the standard generators MCn = {±ei ± ej : 0 ≤ i, j ≤ n} is given by

h(x) =
n∑

k=0




2n

2k



 xk.



Chapter 6

Conclusion

In this thesis, we have derived the growth series using Hilbert series and triangulation

of the polytopes formed by the natural monoid generator, or roots, of these lattices.

In the case of Cn, while we were able to produce a regular unimodular triangulation

to satisfy Theorem 3.4, we did not use that triangulation to produce the formula for

the coordinator polynomial. We are still interested in finding a method for counting

the faces of the zig-zag triangulation of PCn or finding another triangulation which is

more easily counted.

The coordinator series for the root lattice Dn is given in [1] by

h(x) =
n∑

k=0

[(
2n

2k

)
− 2k(n− k)

n− 1

(
n

k

)]
xk.

Since this formula is palindromic, the Dehn-Sommerville Relations suggest that it is

66
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the h-polynomial for a simplicial complex. We would like to extend the results from

this paper to include a specific triangulation of Dn that would enable us to compute

the growth series.
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