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Abstract

In this thesis we consider the generalization of plane partitions known as d-fold partition

diamonds first introduced by George Andrews, Peter Paule, and Axel Riese counted by

rd(n). We also consider the Schmidt type d-fold partition diamond counting function sd(n).

We look at these structures from the lens of posets and use poset geometry to compute

their generating functions. Through this we connect d-fold partition diamonds to Euler-

Mahonian polynomials. This work yields an improvement over work by Dockery et al. as we

obtain that Euler-Mahonian connection along with an abstracted form that allows for the

efficient computing of identities for the generating functions of analogous partition diamond

constructions. One in particular is a further generalization of the Dockery et al. d-fold

partition diamonds which we call multifold partition diamonds.
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Chapter 1

Introduction
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Figure 1.1: A plane partiton diamond.

In 2001, plane partition diamonds were defined by George Andrews, Peter Paule, and Axel

Riese in [APR01] as integer partitions whose parts are given by the ai’s in Figure 1.1 where

each directed edge represents ≥. In 2024, Dalen Dockery, Marie Jameson, James A. Sellers,

and Samuel Wilson in [Doc+24] sought to generalize this partition construction and defined

d-fold partition diamonds; partitions whose parts are given by the ai’s in Figure 1.2. Notice

that Andrews, Paule, and Riese’s plane partition diamond is the d-fold partition diamond
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for d = 2. Both papers computed the generating function for the counting function of these

d-fold partition diamonds by means of MacMahon’s partition analysis and his Ω-operator.

In this paper, we seek to look at these partitions through the lens of partially ordered sets.

We will reprove and extend the results of Dockery, Jameson, Sellers, and Wilson through

machinery related to posets and geometry. This ends up being versatile in computing the

generating functions for analogous and further generalized constructions of these partitions.

For these purposes, we define d-fold partition diamonds inversely to that of the the cited

papers. Refer to Definition 2.1 and Definition 2.2 for formal definitions of a partition of n

and a poset respectively.

a1

a2

ad+1

ad+2

...
...

...
· · ·

Figure 1.2: A d-fold partition diamond.

Definition 1.1. We define a d-fold partition diamond of n to be a partition of n whose

parts are given by the non-negative integers ai in Figure 1.2 where each directed edge indicates

a ≤. Let the corresponding counting function be given by rd(n).

This construction allows for a more natural interpretation of Figure 1.2 as a poset with a
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minimum element. Before we tackle the infinite number of diamonds given in Figure 1.2, we

seek to understand a finite variation.

a1

a2

ad+1

ad+2

ac...
...

...
· · ·

Figure 1.3: A d-fold partition diamond of length M .

Definition 1.2. We define a d-fold partition diamond of n of length M to be a partition

whose parts are given by the non-negative integers ai in Figure 1.3 for i = 1, 2, . . . , c where

c =M(d+1)+ 1 and each directed edge corresponds to a ≤. Let the corresponding counting

function be given by rd,M(n).

Notice that in the finite case, this construction is nearly identical to that of Dockery, Jameson,

Sellers, and Wilson. We also formally define the corresponding poset.

Definition 1.3. We define a d-fold partition diamond poset of length M to be the

poset whose elements are the non-negative integers ai in Figure 1.3 and whose partial order

is given by the same figure where each directed edge indicates a ≤.

When discussing this poset, we will be thinking of it as a finite poset, so we sometimes omit

stating its length unless necessary. We now state the main results of the paper.
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Theorem 1.1. Let Π = [c] be a naturally labeled d-fold partition diamond poset and let

zi =


a if i ̸≡ 1 mod (d+ 1),

b if i ≡ 1 mod (d+ 1).

Then,

σKΠ
(z) =

∏M
n=1Ed(a

(n−1)dbn, a)

(1− aMdbM+1)
∏M

n=1

∏d
j=0 (1− ad−ja(n−1)dbn)

where σKΠ
(z) is the integer-point transform of the order cone KΠ (see Definitions 2.5 and

2.4 respectively) and Ed is the Euler-Mahonian polynomial (see Definition 3.4).

Specializing a = b = q in Theorem 1.1 gives the following result.

Corollary 1.1. The generating function for the number of d-fold partition diamonds is given

by
∞∑
n=0

rd(n)q
n =

∞∏
n=1

Ed(q
1+(n−1)(d+1), q)

1− qn
.

Dockery, Jameson, Sellers, and Wilson give a similar result in [Doc+24] using a polynomial

Fd, which they define via a recursion, with the exact same inputs as our polynomial Ed. As

of now, the current literature for the Euler-Mahonian polynomial does not show a matching

recursion. However, the similarities between our results suggest Fd = Ed and their recursion

is a recursion for the Euler-Mahonian polynomial. Corollary 1.1 is an improvement over the

result in [Doc+24] in that our numerator has a closed form with a known structure behind

it. In addition, it is a corollary to a more abstract theorem that shows versatility and ease

in computing these identities. An analogous result comes in the form of the Schmidt type
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d-fold partition diamond where we only sum over the connecting nodes of the the d-fold

partition diamond. This result is given by specializing a = 1 and b = q in Theorem 1.1.

Definition 1.4. A Schmidt type d-fold partition diamond of n is a partition of n

whose parts are given by the connecting nodes of a d-fold partition diamond. Let its counting

function be sd(n).

Dockery et al. give the generating function of sd(n). In this paper we give an alternative

proof using our poset machinery.

Corollary 1.2. The generating function for the number of Schmidt type d-fold partition

diamonds is given by
∞∑
n=0

sd(n)q
n =

∞∏
n=1

Ad(q
n)

(1− qn)d+1

where Ad is the Eulerian polynomial (see Definition 3.4).

We also introduce a generalized construction where each diamond has a different number of

folds.

Definition 1.5. Let {di}Mi=1 be some sequence of M positive integers. We define a multifold

partition diamond of n of length M corresponding to this sequence to be a partition whose

parts are given by a similar structure of Figure 1.3 and Definition 1.2, but the ith diamond

has di folds. Let the corresponding counting function be r{di},M(n). We similarly define the

multifold partition diamond poset of length M to Definition 1.3.
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Theorem 1.2. Let {di}Mi=1 be some sequence of M positive integers and let ωk =
∑M

i=k+1 di.

Let Ξ be a naturally labeled multifold partition diamond poset of length M and let

zi =


a if i ̸= 1 + k +

∑k
j=1 dj for all k,

b if i = 1 + k +
∑k

j=1 dj for some k.

Then,

σKΞ
(z) =

∏M
k=1Edk(a

ωkb1+M−k, a)

(1− aω0bM+1)
∏M

k=1

∏dk
j=0 (1− adk−jaωkb1+M−k)

.
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Chapter 2

Background

Almost all definitions, results, and corresponding proofs in this section are provided in various

chapters of [BS18]. We reference the said results accordingly.

Definition 2.1. A partition of n ∈ Z≥0 is a multiset of positive integers whose sum is n.

The elements of this multiset are known as the parts of the partition.

Definition 2.2. A partially ordered set, often times referred to as poset, is a pair (P,≤)

where P is a set and ≤ is a relation on P such that for all x, y, z ∈ P ,

x ≤ x,

if x ≤ y and y ≤ x then x = y,

if x ≤ y and y ≤ z then x ≤ z.
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2.1 Order Cones and Integer-Point Transforms

We will first be looking at posets from a geometric point of view. The theory in this section

will only be dealing with finite posets (Π,≤Π). As a result, we may assume Π = [c] :=

{ 1, 2, . . . , c } where ≤Π is some partial order on the elements of [c]. This allows us to label

the elements of Π in a convenient way.

Definition 2.3. We say Π is naturally labelled if i ≤Π j implies i ≤ j for all i, j ∈ [d].

4

3

1

2

Figure 2.1: Naturally labeled 2-fold partition diamond poset of length 1.

In Figure 2.1 we provide a running example of a 2-fold partition diamond. Notice that it is

labelled naturally. Now consider the set of functions from Π to R, RΠ. Notice that if Π = [c],

then RΠ ∼= Rc. We will be considering the subset of this set of functions that contains all

order preserving functions from Π to R≥0.

Definition 2.4. We define the order cone of Π to be the set of all order preserving functions

in RΠ
≥0,

KΠ :=

{
ϕ : Π → R≥0

∣∣∣∣ ϕ(a) ≤ ϕ(b) for all a ≤Π b

}
.
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Now consider the order cone for a d-fold partition diamond poset of length M . Notice that

every d-fold partition diamond of n corresponds to an integer point in this order cone. The

order cone corresponding to Figure 2.1 are the set of points (x1, x2, x3, x4) ∈ R4 such that

x1 ≤ x2, x1 ≤ x3, x2 ≤ x4, and x3 ≤ x4 where each point corresponds to a 2-fold partition

diamond of some n. As a result, enumerating d-fold partition diamonds is equivalent to

enumerating integer points in the corresponding order cone. This motivates the study of

multivariate generating functions.

Definition 2.5. The integer-point transform of a set S ⊂ Rc is defined as

σS(z1, . . . , zc) :=
∑

m∈S∩Zc

zm1
1 zm2

2 · · · zmc
c .

For shorter notation, we will write

σS(z) :=
∑

m∈S∩Zc

zm

where zm = zm1
1 zm2

2 · · · zmc
c .

Notice that if we specialize z1 = · · · = zc = q and let S be the order cone corresponding to

d-fold partition diamonds, we have exactly the generating function for rd,M(n). Eventually,

we will find the integer point transform of KΠ and specialize it in this way. A simple property

of integer point transforms to keep note of is the following: for C = ⊎n
i=1Si,

σC(z) =
n∑

i=1

σSi
(z).
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Decomposing our order cone into smaller disjoint cones will prove to be quite useful. Our goal

is to do this by avoiding inclusion-exclusion. We will be studying half-open decompositions

of cones and what their integer point transforms look like to accomplish just that.

2.2 Half Open Decompositions

Definition 2.6. We say P is a polyhedron if

P = { x ∈ Rc |Ax ≤ b }

for some A ∈ Rm×c and b ∈ Rm. The plural of polyhedron is polyhedra. For some a ∈

Rc \ {0} and b ∈ R, we call the sets

H := { x ∈ Rc | ⟨a, x⟩ = b }

H≤ := { x ∈ Rc | ⟨a, x⟩ ≤ b }

a hyperplane and a halfspace respectively. We say a hyperplane H is admissible for a

polyhedron P ⊂ Rc if P ⊂ H≤. A set of the form F = P ∩H is known as a face of P if H

is admissible. The dimension of a polyhedron P in Rc is the dimension of the smallest

affine subspace of Rc it is contained in. We call the faces of a full dimensional polyhedron

P ⊂ Rc with dimension c− 1 the facets of P .

Definition 2.7. A dissection of a polyhedron P ⊂ Rc is a collection of polyhedra P1, . . . , Pm

of the same dimension such that

P = P1 ∪ · · · ∪ Pm and P ◦
i ̸= P ◦

j for i ̸= j.
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Later we will go over how we can construct a dissection for our order cones, but for now let

us assume we have a general polyhedron and a dissection of said polyhedron.

Definition 2.8. Let P ⊂ Rc be a polyhedron and q ∈ Rc. The tangent cone of P at q is

defined as

Tq(P ) := { q + u | q + εu ∈ P for all ε > 0 sufficiently small } .

The tangent cone of P at face F ⊂ P is defined as

TF (P ) := Tq(P ) for all q ∈ F ◦.

We say F is visible from p ∈ Rc if p /∈ TF .

Figure 2.2: Edge of a hexagon visible from p

Note that TF (P ) is well defined as every point in F ◦ gives rise to the same tangent cone.

Definition 2.9. Let P ⊂ Rc be a polyhedron with facets F1, . . . , Fm.
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1. We say a point q ∈ Rc is generic relative to P if q is not contained in any facet

defining hyperplane of P .

2. Let P ⊂ Rd and q be generic relative to P . We define the half-open polyhedra

Hq(P ) := P \
⋃
j∈I

Fj

Hq(P ) := P \
⋃
j /∈I

Fj

where I := { j |Fj is visible from q }.

Intuitively, in Hq(P ), we are taking out the facets of P that are visible from q, i.e., q is not

in their tangent cones. In Hq(P ) we are taking out those that are not visible from q. This

definition provides us with the following lemma with proofs provided in chapter 5 of [BS18].

Lemma 2.1. Let P ⊂ Rc be a full dimensional polyhedron with dissection P = P1 ∪P2 · · · ∪

Pm. If q ∈ Rc is generic relative to each Pi, then

Hq(P ) = Hq(P1) ⊎ · · · ⊎Hq(Pm)

and

Hq(P ) = Hq(P1) ⊎ · · · ⊎Hq(Pm).

Notice that if q ∈ P ◦, then Hq(P ) = P and Hq(P ) = P ◦, giving the following.

Corollary 2.1. Let P ⊂ Rc be a full dimensional polyhedron with dissection P = P1 ∪

P2 · · · ∪ Pm. If q ∈ P ◦ is generic relative to each Pi, then

P = Hq(P1) ⊎ · · · ⊎Hq(Pm)
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and

P ◦ = Hq(P1) ⊎ · · · ⊎Hq(Pm).

This is known as a half open decomposition of P . We will later formalize this in the language

of order cones.

Figure 2.3: Half-open dissection Hq(P ) of a hexagon P according to Lemma 2.1

2.3 Unimodular Cones

Definition 2.10.

a) We define a cone generated by S = { s1, . . . , sm } such that si ∈ Rc as

cone(S) = R≥0s1 + · · ·+ R≥0sm.

b) We say a cone C = cone({ v1, . . . , vm }) is simplicial if its set of generators are linearly

independent.



CHAPTER 2. BACKGROUND 14

c) We say a cone C ⊂ Rc is unimodular if its set of primitive generators form a lattice

basis for Zc.

Notice that cones are polyhedra and that unimodular implies simplicial. We will show later

that we can decompose an order cone KΠ into unimodular cones, so those are the cones we

will be considering in this paper. The below lemma gives insight on the computation of the

integer point transform of a half open unimodular cone. See chapter 4 of [BS18] for more

insight.

Lemma 2.2. Let C ⊂ Rc
≥0 be a unimodular cone and q ∈ Rc be generic relative to C with

Hq(C) = R≥0v1 + · · ·+ R≥0vm−1 + R>0vm + · · ·+ R>0vc.

Then

σHq(C)(z) =
zvm+···+vc

(1− zv1) · · · (1− zvc)
.

Proof. Consider the fundamental parallepiped of Hq(C), which we define as

□Hq(C) := [0, 1) v1 + · · ·+ [0, 1) vm−1 + (0, 1] vm + · · ·+ (0, 1] vc.

If we let (j1, . . . , jc) ∈ Zc
≥0, then

j1v1+· · ·+jcvc+□Hq(C) = (j1+[0, 1))v1+· · ·+(jm−1+[0, 1))vm−1+(jm+(0, 1])vm+· · ·+(jc+(0, 1])vc

is simply a translation of □Hq(C). All these translations are disjoint as their open sides overlap

with their closed sides following from □Hq(C)’s half-open nature. As a result,

Hq(C) =
⊎

j1,...,jc∈Z≥0

j1v1 + · · ·+ jcvc +□Hq(C).
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Applying the integer point transform,

σHq(C)(z) =

 ∑
j1∈Z≥0

zj1v1

 · · ·

 ∑
jc∈Z≥0

zjcvc

σ□Hq(C)
(z)

=
σ□Hq(C)

(z)

(1− zv1) · · · (1− zvc)

=
zvm+···+vc

(1− zv1) · · · (1− zvc)
.

Since the only integer point of □Hq(C) is given by 0 for the coefficients of v1, . . . , vm−1 and 1

for the coefficients of vm, . . . , vc, we are given the last equality above.

This gives a formula for computing the integer point transforms of half open unimodular

cones. Now we will show how to obtain a dissection of KΠ in order to apply these results for

d-fold partition diamonds. For this, we consider poset refinements and linear extensions.

2.4 Order Cone Subdivisions

For this section, the ground set for our poset will be fixed, so we will write K≤Π
for the order

cone of (Π,≤Π). We first would like to understand the relationship between pairs of order

cones based on their partial orders.

Definition 2.11. Given two partial orders ≤1 and ≤2 on the same set Π, we say ≤2 refines

≤1 if for all a, b ∈ Π,

a ≤1 b implies a ≤2 b.
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This means ≤2 may have more relations than ≤1, but has all the relations of ≤1. As a result,

more relations for ≤2 will give rise to an overall less amount of order preserving functions for

that given order while still giving rise to the same order preserving functions that ≤1 does.

A rigorous proof of the following result is provided in chapter 6 of [BS18].

Proposition 2.1. Let ≤1 and ≤2 be partial orders on Π, then

≤2 refines ≤1 if and only if K≤2 ⊆ K≤1 .

Notice that poset refinement is a partial order on posets with the same ground set.

Definition 2.12. Given a poset (Π,≤Π), we define the poset ordered by refinement,

N(Π,≤Π) := { ≤′ | ≤′ refines ≤Π } .

Notice that ≤Π is the maximum element of N(Π,≤Π) and that ≤′ is a minimal element of

N(Π,≤) if and only if (Π,≤′) is a total order. Assuming Π = [c], any total order of Π is

given by a permutation τ ∈ Sc. We will denote this total order ≤τ where

i <τ j implies τ−1(i) < τ−1(j)

for all i, j ∈ [c]. Since ≤τ refines ≤Π,

i <Π j implies τ−1(i) < τ−1(j)

for all i, j ∈ [c].
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Definition 2.13. A linear extension is a strictly order preserving bijection

l : (Π,≤Π) → ([c],≤).

We denote the set of all linear extensions of Π as Lin(Π).

Assuming Π = [c], we have that l is simply a permutation of [c] for which

i <Π j implies l(i) < l(j)

for all i, j ∈ [c]. As a result, ≤τ refines ≤Π if and only if τ−1 ∈ Lin(Π).

Definition 2.14. We define the Jordan-Hölder set of Π as

JH(Π) :=
{
τ ∈ Sc | τ−1 ∈ Lin(Π)

}
= { τ ∈ Sc | ≤τ refines ≤Π } .

The permutation τ−1 ∈ Lin(Π) gives the position, τ−1(i), of an element i ∈ Π in a linear

order that respects the partial order ≤Π. In addition, JH(Π) is precisely the set of permu-

tations corresponding to the orders that are minimal elements of N(Π,≤Π). Since every

≤′∈ N(Π,≤Π) refines ≤Π, we have that K≤′ ⊂ KΠ which gives numerous cones to subdivide

KΠ with.
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4

3

1

2

⇒

2 31 4

1 3 2 4

Figure 2.4: Linear extensions for the 2-fold partition diamond poset of length 1.

The linear extensions in the Jordan-Hölder set of the poset given in Figure 2.4 are τ1 =

(1, 2, 3, 4) and τ2 = (1, 3, 2, 4).

Definition 2.15.

a) We say poset is an anti-chain if none of its elements are related

b) We say poset is a chain if all of its element are related to each other. We say a chain

C of maximal length in some poset N is a maximal chain.

c) Let 0̂ be the minimal element of N . A crosscut in a poset N is an anti-chain

{ c1, . . . , cm } ⊆ N −
{
0̂
}

such that for every maximal chain C ⊆ N , there is a

unique ci ∈ C.

Theorem 2.1. Let (Π,≤Π) be a poset and N = N(Π,≤Π) its poset refinements. Let ≤1,≤2

, . . . ,≤s∈ N be a collection of refinements of Π. Then

KΠ = K≤1 ∪ · · · ∪K≤s
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is a dissection of KΠ if and only if ≤1, . . . ,≤s is a crosscut in N such that every minimal

element is covered uniquely.

The most convenient crosscut of refinements that covers the minimal elements is the set of

minimal elements itself, i.e., JH(Π) gives a dissection of KΠ. Moreover, these cones give a

unimodular subdivision of KΠ. Since total orders correspond to permutations we will write

K≤τ as Kτ . For explicit proofs of these results, see chapter 6 of [BS18].

Corollary 2.2. Let Π be a finite poset. Then

KΠ =
⋃

τ∈JH(Π)

Kτ

is a dissection of KΠ into unimodular cones.

In Figure 2.4, Kτ2 is the set of points (x1, x2, x3, x4) ∈ R4 such that x1 ≤ x3 ≤ x2 ≤ x4.

Notice that for τ ∈ Sc, any ϕ ∈ K◦
τ satisfies

ϕ(τ(1)) < · · · < ϕ(τ(c)).

Such a function ϕ is generic relative to Kπ for all π ∈ Sc. Now the facets of Kπ are the

set of points ψ ∈ Kπ such that ψ(π(i)) = ψ(π(i + 1)) for some i ∈ Π. The corresponding

tangent cone for this facet is the set of points f ∈ RΠ
≥0 such that f(π(i)) ≤ f(π(i+1)). As a

result, the corresponding facet is visible from a point ϕ ∈ K◦
τ if ϕ(π(i)) > ϕ(π(i+ 1)). This

occurs when π(i) is in a higher position than π(i + 1) in a linear order given by τ , so when
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(τ−1 ◦ π)(i) > (τ−1 ◦ π)(i + 1). As a result, we take out all the facets with this property to

get a half-open order cone.

Definition 2.16. Given a permutation ρ, an index 1 ≤ i ≤ c−1 is a descent if ρ(i) > ρ(i+1)

and an ascent if ρ(i) < ρ(i+ 1). All the descents and ascents of ρ are collected in the sets

Des(ρ) :=
{
i ∈ [c− 1]

∣∣ ρ(i) > ρ(i+ 1)
}

and

Asc(ρ) :=
{
i ∈ [c− 1]

∣∣ ρ(i) < ρ(i+ 1)
}

respectively. In addition, we call des(ρ) := |Des(ρ)| the descent number of ρ and asc(ρ) :=

|Asc(ρ)| the ascent number of ρ.

We can now formalize a half open order cone as given in chapter 6 of [BS18].

Lemma 2.3. Let τ, π ∈ Sc be permutations and let ϕ ∈ K◦
τ . Then

HϕKπ =

x ∈ Rc

∣∣∣∣ 0 ≤ xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(c)

xπ(i) < xπ(i+1) if i ∈ Des(τ−1 ◦ π)

 .

Assuming Π = [c] is naturally labeled, the identity permutation, τ(i) = i for all i ∈ [c] is

in JH(Π). Its corresponding order cone contains the point ϕ(i) = i for all i ∈ [c] which is a

convenient point that is generic relative to Kπ for all π ∈ Sc. With this choice for ϕ, the

above set simplifies to

HϕKπ =

x ∈ Rc

∣∣∣∣ 0 ≤ xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(c)

xπ(i) < xπ(i+1) if i ∈ Des(π)

 .
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Combining Corollary 2.1, Corollary 2.2, and Lemma 2.3 gives these culminating results in

chapter 6 of [BS18].

Theorem 2.2. Let Π = [c] be a naturally labeled poset. Then

KΠ =
⊎

τ∈JH(Π)

HϕKτ =
⊎

τ∈JH(Π)

x ∈ Rc

∣∣∣∣ 0 ≤ xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(c)

xτ(i) < xτ(i+1) if i ∈ Des(τ)

 .

In Figure 2.4, we have that 2 is a descent of τ2 since τ2(2) ≥ τ2(3). As a result HϕKτ2 has the

facet corresponding to xτ2(2) = xτ2(3) removed, so HϕKτ2 is the set of points (x1, x2, x3, x4) ∈

R4 such that x1 ≤ x3 < x2 ≤ x4.

2.5 Bringing it All Together

We now have a means of dissecting KΠ into disjoint unimodular cones. Let π ∈ Sc and

uπj = (x1, . . . , xc) be the vector such that xπ(j+1) = · · · = xπ(c) = 1 and 0 everywhere else.

Since every cone in the dissection is unimodular, Lemma 2.3 says each HϕKτ is of the form

HϕKτ =
∑

j∈Des(τ)

R>0u
τ
j +

∑
j∈{ 0,...,c−1 }\Des(τ)

R≥0u
τ
j .

Applying the integer-point transform and Lemma 2.2,

σHϕKτ (z) =

∏
j∈Des(τ) z

uτ
j∏c−1

j=0(1− zu
τ
j )
.

Now, we are ready for the main result of this entire background section.
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Corollary 2.3. Let Π = [c] be a naturally labeled poset. Then,

σKΠ
(z) =

∑
τ∈JH(Π)

∏
j∈Des(τ) z

uτ
j∏c−1

j=0(1− zu
τ
j )
.

Looking at the poset in Figure 2.4 and using Corollary 2.3, the integer point transform

specialized to z1 = z2 = z3 = z4 = q of its corresponding order cone is given by

1 + q2

(1− q4)(1− q3)(1− q2)(1− q)
.
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Chapter 3

Main Results

For this section, let Π = [c] be a naturally labeled d-fold partition diamond poset. We first

seek to understand Π in a way that benefits computing the integer-point transform of its

corresponding order cone.

(d+ 2)k

(d+ 1)k

2k

...

Figure 3.1: The poset Dk.

Let ik := i+ (k − 1)(d+ 1) and consider the poset

Dk := { 2k, . . . , (d+ 2)k }
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pictured in Figure 3.1 where (d+ 2)k is the maximum element comparable to every element

in Dk, and every other element is a minimum element and only comparable to (d+ 2)k, for

1 ≤ k ≤M . Therefore, 2k, . . . , (d+ 1)k form an anti-chain in Dk.

Definition 3.1. Let P and Q be disjoint posets. We define the linear sum of P and Q to

be the partially ordered set

P ⊕Q := (P ⊎Q,≤⊕)

where x ≤⊕ y if and only if

x, y ∈ P and x ≤P y,

or x, y ∈ Q and x ≤Q y,

or x ∈P and y ∈ Q.

Notice that the linear sum is associative for pair-wise disjoint posets, so we can iteratively

sum numerous posets. As a result,

{ 1 } ⊕ D1 ⊕ · · · ⊕ DM = Π.

Definition 3.2. Let Q0, Q1, . . . , QM be naturally labelled posets on [qi] and let sj = q0+ q1+

· · ·+ qj−1 with s0 = 0. In addition, let

Q′
j = { sj + 1, sj + 2, . . . , sj + qj } ,

with order induced by Qj, for 0 ≤ j ≤ M . Given τi ∈ JH(Qi), define the function, τ :

[q0 + q1 + · · ·+ qM ] → [q0 + q1 + · · ·+ qM ] via
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τ(i) =



τ0(i) if i ∈ Q0,

τ1(i− s1) + s3 if i ∈ Q1,

τ2(i− s2) + s2 if i ∈ Q′
2,

τ3(i− s3) + s3 if i ∈ Q′
3,

...
...

τM(i− sM) + sM if i ∈ Q′
M ,

so that τ ∈ JH
(⊕M

j=0Q
′
j

)
.

There is one nuance that we should be aware of when thinking about the Jordan-Hölder

set of Di. In this context, we are considering a natural labeling of Di as this is a labeling

that can be understood by the Jordan-Hölder set and allows us to use the language of

permutations; whereas Di is defined in a way that allows us to use the power of the linear

sum. In addition, for our purposes we will let { 1 } = D0. Therefore, JH(D0) contains just

the identity permutation in S1, τ0(1) = 1. We now apply Definition 3.2 to the elements of

JH(Π). Notice that for τ ∈ JH(Π) in the form of the above definition,

Des(τ) =
M⊎
i=1

{ j + si | j ∈ Des(τi) }

where τi ∈ JH(Di). As a result, the numerator in Corollary 2.3 can in this case be rewritten

as
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∏
j∈Des(τ)

zu
τ
j =

M∏
k=1

∏
i∈Des(τk)

zu
τ
j (3.1)

where zu
τ
j = zτk(i+1)+sk · · · zτk(d)+skzτk(d+1)+skzτk+1(1)+sk+1

· · · zτM (d+1)+sM and i = j − sk.

We now seek to specialize Corollary 2.3 for KΠ. Here we give a two variable specialization

where

zi =


a if i ̸≡ 1 mod (d+ 1),

b if i ≡ 1 mod (d+ 1).

(3.2)

In essence, we assign the variable b to the connecting nodes of Π and the variable a to all

elements in the anti-chains of Π. With this specialization, and our definition for uτj , we care

less about where a given descent is and more about how many elements come after the descent

in the linear order given by the corresponding permutation, so we count those elements with

the variables a and b. Given some τ ∈ JH(Π) and an index j where (j + 1) ∈ Dk,

zu
τ
j = zτk(j+1−sk)+sk · · · zτk(d)+skzτk(d+1)+skzτk+1(1)+sk+1

· · · zτM (d+1)+sM

where τi ∈ JH(Di). In addition, si = 1+(i−1)(d+1) for 1 ≤ i ≤M and s0 = 0. Notice that

since τ and all the τi’s that constitute it must adhere to the order of Π, τi(d+1) = d+1 and

τi(l) ∈ [d] for l ∈ [d]. This implies τi(d+1)+si ≡ 1 mod (d+1) and τi(l)+si ̸≡ 1 mod (d+1)

for l ∈ [d]. As a result, we set

zτk(d+1)+sk = zτk+1(d+1)+sk+1
= · · · = zτM (d+1)+sM = b.
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This contributes a factor of b1+M−k in zu
τ
j . Now, we set each other zi to be a; we will

count how many a’s contribute. Let i = j − sk. There are d− i terms before zτk(d+1)+ sk;

referring to the part of the anti-chain in Dk after index j. This contributes a factor of ad−i. To

conclude, we look at all the z’s corresponding to the full anti-chains in Dk+1,Dk+2, . . . ,DM .

This is a total of M −k anti-chains, each contributing d elements. As a result, we contribute

an additional factor of a(M−k)d to zu
τ
j . Putting it together, the numerator in Corollary 2.3

becomes

∏
j∈Des(τ)

zu
τ
j =

M∏
k=1

∏
i∈Des(τk)

zu
τ
j =

M∏
k=1

∏
i∈Des(τk)

ad−ia(M−k)db1+M−k. (3.3)

Looking at the denominator of Corollary 2.3, we get a similar form as the numerator. How-

ever, the index corresponding to j = 0 gives an extra factor. Consider

zu
τ
0 = zτ0(1)zτ1(1)+s1 · · · zτ1(d+1)+s1 · · · zτM (d+1)+sM .

Notice that in this case, we have Md anti-chain elements and M + 1 connecting nodes, so

the specialization of (3.2) gives

zu
τ
0 = aMdbM+1.

As a result, looking at each diamond individually, the denominator of Corollary 2.3 is given

by

c−1∏
j=0

(
1− zu

τ
j
)
=

(
1− zu

τ
0
) M∏
k=1

d∏
j=0

(
1− zu

τ
j+sk

)
=

(
1− aMdbM+1

) M∏
k=1

d∏
j=0

(
1− ad−ja(M−k)db1+M−k

)
.
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Notice that this denominator is the same regardless of τ , so we can move the summation

in Corollary 2.3 to the numerator. Putting everything together from Corollary 2.3 and the

specialization of (3.2) gives

σKΠ
(z) =

∑
τ∈JH(Π)

∏M
k=1

∏
j∈Des(τk) a

d−ja(M−k)db1+M−k

(1− aMdbM+1)
∏M

k=1

∏d
j=0 (1− ad−ja(M−k)db1+M−k)

. (3.4)

In summary, we have that the ad−j term comes from zτk(j+1−sk)+sk . . . zτk(d)+sk referring to the

part of the anti-chain in Dk after the index j. The b1+M−k term comes from the 1 +M − k

connecting nodes above the corresponding anti-chain in Π. Finally the a(M−k)d term comes

from the (M − k)d elements in the remaining anti-chains. One thing we made notice of

earlier that is helpful to remark here is that each of the τi’s that make up some τ ∈ JH(Π)

fix d + 1. In this, τi ∈ JH(Di) is completely determined by some permutation in Sd. As a

result zu
τ
j in (3.1) can be written as

zu
τ
j = zπ(j+1−sk)+sk · · · zπ(d)+skz(d+1)+skz1+sk+1

· · · z(d+1)+sM

for some π ∈ Sd. As a result we can get a factored form of (3.4) summing over all possible

permutations in Sd,

σKΠ
(z) =

∏M
k=1

∑
τ∈Sd

∏
j∈Des(τ) a

d−ja(M−k)db1+M−k

(1− aMdbM+1)
∏M

k=1

∏d
j=0 (1− ad−ja(M−k)db1+M−k)

.

One valuable observation to make is that

{ Des(τ) | τ ∈ Sd } = { Asc(τ) | τ ∈ Sd } .
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As a result,

σKΠ
(z) =

∏M
k=1

∑
τ∈Sd

∏
j∈Asc(τ) a

d−ja(M−k)db1+M−k

(1− aMdbM+1)
∏M

k=1

∏d
j=0 (1− ad−ja(M−k)db1+M−k)

=

∏M
k=1

∑
τ∈Sd

∏
d−j∈Asc(τ) a

ja(M−k)db1+M−k

(1− aMdbM+1)
∏M

k=1

∏d
j=0 (1− ad−ja(M−k)db1+M−k)

.

To simplify further, we define a permutation in Sd such that

τ⊥(j) := τ(d+ 1− j).

With this definition, d−j ∈ Asc(τ) if and only if j ∈ Des(τ⊥), but since
{
τ⊥ | τ ∈ Sd

}
= Sd,

σKΠ
(z) =

∏M
k=1

∑
τ∈Sd

∏
j∈Des(τ) a

ja(M−k)db1+M−k

(1− aMdbM+1)
∏M

k=1

∏d
j=0 (1− ad−ja(M−k)db1+M−k)

. (3.5)

To simplify even further, we set n =M − k so that

σKΠ
(z) =

∏M−1
n=0

∑
τ∈Sd

∏
j∈Des(τ) a

jandb1+n

(1− aMdbM+1)
∏M−1

n=0

∏d
j=0 (1− ad−jandb1+n)

=

∏M
n=1

∑
τ∈Sd

∏
j∈Des(τ) a

ja(n−1)dbn

(1− aMdbM+1)
∏M

n=1

∏d
j=0 (1− ad−ja(n−1)dbn)

.

The desire to simplify even further is motivation enough for the following definitions. These

are thanks to Euler and MacMahon; the same MacMahon responsible for the Ω-operator

used in [Doc+24].

Definition 3.3. The major index of τ ∈ Sd is defined as

maj(τ) :=
∑

j∈Des(τ)

j.
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Definition 3.4. The Euler-Mahonian polynomial is defined as

Ed(x, y) :=
∑
τ∈Sd

xdes(τ)ymaj(τ).

The Eulerian polynomial is defined as

Ad(x) :=
∑
τ∈Sd

xdes(τ).

Notice that Ed(x, 1) = Ad(x). Given these definitions, we can write

σKΠ
(z) =

∏M
n=1

∑
τ∈Sd

amaj(τ)
(
a(n−1)dbn

)des(τ)

(1− aMdbM+1)
∏M

n=1

∏d
j=0 (1− ad−ja(n−1)dbn)

=

∏M
n=1Ed(a

(n−1)dbn, a)

(1− aMdbM+1)
∏M

n=1

∏d
j=0 (1− ad−ja(n−1)dbn)

.

This gives the desired identity for the integer-point transform of KΠ as stated in Theorem

1.1. Theorem 1.1 provides us with the identities for the generating functions for the variants

of d-fold partition diamonds that we discuss in the introduction section.

Proof of Corollary 1.1. We have that

∞∑
n=0

rd(n)q
n = lim

M→∞

∑
qa1+a2+···+ac = lim

M→∞
σKΠ

(q, q, . . . , q).

Let a = b = q in Theorem 1.1, which gives

σKΠ
(q, q, . . . , q) =

∏M
n=1Ed(q

1+(n−1)(d+1), q)

(1− q)(1− q2) · · · (1− qc)
.

Taking limM→∞ σKΠ
(q, q, . . . , q) gives,

∞∏
n=1

Ed(q
1+(n−1)(d+1), q)

1− qn
.
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Proof of Corollary 1.2. The parts of the partitions are given by the connecting nodes, there-

fore
∞∑
n=0

sd(n)q
n = lim

M→∞
σKΠ

(q, 1, . . . , 1, q, 1, . . . , q)

where all the q’s correspond to the connecting nodes and the 1’s correspond to the anti-chains.

Let a = 1 and b = q in Theorem 1.1, which gives

σKΠ
(q, 1, . . . , 1, q, 1, . . . , q) =

∏M
n=1Ed(q

n, 1)

(1− qM+1)
∏M

n=1(1− qn)d+1
=

∏M
n=1Ad(q

n)

(1− qM+1)
∏M

n=1(1− qn)d+1
.

Taking limM→∞ σKΠ
(q, 1, . . . , 1, q, 1, . . . , q) gives

∞∏
n=1

Ad(q
n)

(1− qn)d+1
.

We compute some examples that show up in [Doc+24]. First notice that

E2(q
1+3(n−1), q) =

∑
τ∈S2

qmaj(τ)+des(τ)(1+3(n−1)) = 1 + q1+1+3(n−1) = 1 + q3n−1,

E3(q
1+4(n−1), q) = 1 + 2q1+1+4(n−1) + 2q2+1+4(n−1) + q1+2+2(1+4(n−1))

= 1 + 2q4n−2 + 2q4n−1 + q8n−3

= 1 + 2q4n−2(1 + q) + q8n−3.

Therefore

∞∑
n=0

r2(n)q
n =

∏ 1 + q3n−1

1− qn
,

∞∑
n=0

r3(n)q
n =

∏ 1 + 2q4n−2(1 + q) + q8n−3

1− qn
.
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In addition,

A2(q
n) = 1 + qn,

A3(q
n) = 1 + 4qn + q2n,

since S3 has 1 permutation with no descent, 4 permutations with 1 descent, and 1 permu-

tation with 2 descents. As result,

∞∑
n=0

s2(n)q
n =

∞∏
n=0

1 + qn

(1− qn)3
,

∞∑
n=0

s3(n)q
n =

∞∏
n=0

1 + 4qn + q2n

(1− qn)4
.

We next think about the situation where each diamond has a different number of folds given

by Definition 1.5. In this situation, the anti-chains of the ith diamond of the corresponding

poset has di elements. Let Ξ be a naturally labeled multifold partition diamond poset of

length M corresponding to the sequence {di}Mi=1. Let ωk =
∑M

i=k+1 di. The zi corresponding

to the connecting nodes would be such that i = 1 + k +
∑k

j=1 dj for some k. We set those

zi’s to b and the rest to a. Modeled after (3.5) and this specialization, the corresponding

integer point transform is

σKΞ
(z) =

∏M
k=1

∑
τ∈Sdk

∏
j∈Des(τ) a

jaωkb1+M−k

(1− aω0bM+1)
∏M

k=1

∏dk
j=0 (1− adk−jaωkb1+M−k)

=

∏M
k=1Edk(a

ωkb1+M−k, a)

(1− aω0bM+1)
∏M

k=1

∏dk
j=0 (1− adk−jaωkb1+M−k)

.

which is as desired in Theorem 1.2.
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