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Abstract

The Arithmetic of Graph Polynomials

by

Maryam Farahmand

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Matthias Beck, Chair

We investigate three graph polynomials including antimagic, super edge-magic, and chro-
matic polynomials. The Antimagic Graph Conjecture asserts that every connected graph
G = (V,E) except K2 admits an edge labeling such that each label 1, 2, . . . , |E| is used
exactly once and the sums of the labels of the edges incident to each vertex are distinct. We
introduce partially magic labelings where the vertex sums are the same in a subset of V . By
using the quasi-polynomial structure of the partially magic labeling counting function, we
show that every bipartite graph satisfies a relaxed version of the Antimagic Graph Conjec-
ture (that is, repetition of labels are allowed).

A total labeling f : E ∪ V → Z≥0 of a graph G = (V,E) is called super edge-magic if each
vertex label is in {1, . . . , |V |} and the sum of the edge label plus labels of its two ends is the
same for all edges of G. We prove that the counting function of super edge-magic labelings of
every tree is a polynomial. This helps us to show that every tree admits a relaxed super edge
magic labeling which is the relaxed version of Super Edge-Magic Tree Conjecture. Moreover,
we show that every tree with one extra edge that makes a unique even cycle admits a su-
per edge-magic labeling. On the other hand, a harmonious labeling is an injective function
L : V → {0, 1, . . . , |E| − 1} such that the induced edge labels L∗(e) ≡ L(u) + L(v) (mod
|E|) for every edge e = {u, v} ∈ E, are distinct. The Harmonious Tree Conjecture indicates
that every tree admits a harmonious labeling. We use our results on super edge-magic la-
belings to prove that every tree admits a relaxed version of the Harmonious Tree Conjecture.

Lastly, we extend classic order polynomials to a two variable version and we drive a reci-
procity theorem for strict and weak order polynomials, reminiscent of Stanley’s reciprocity
theorem. We also study the bivariate chromatic polynomial which counts the number of
vertex coloring of G with 1 ≤ x colors allowing the same colors for adjacent vertices if the
color is ≥ y (1 ≤ y ≤ x). We decompose bivariate chromatic polynomial into bivariate order
polynomials and we find a reciprocity relation linking bivariate chromatic polynomials to
acyclic orientations.
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Chapter 1

Introduction

In this thesis, we explore polynomials concerning two main streams in graph theory, that is,
graph labelings and graph colorings.

In 1967, Rosa [46] introduced graph labelings (or what he has called valuations) in an at-
tempt to solve a famous conjecture by Ringel [44]. The conjecture claimed that the complete
graph K2n+1 can be decomposed into 2n + 1 subgraphs that are all isomorphic to a given
tree with n edges.

Graph labelings have many applications in fields such as circuit design, communication
networks, coding theory, crystallography, astronomy, and data base management (see, for
example, [59]). There are many types of graph labelings: graceful labelings, harmonious
labelings, magic labelings, antimagic labelings, etc. [28].

In Chapter 3, we work on a long-standing and still-wide-open conjecture, the Antimagic
Graph Conjecture which asserts that every connected graph G = (V,E) except K2 admits
an antimagic labeling, that is, an edge labeling such that each label 1, 2, . . . , |E| is used ex-
actly once and the sums of the labels of the edges incident to each vertex are distinct [31]. We
will prove that bipartite graphs satisfy a relaxed version (i.e., label repetition allowed) of the
conjecture (Theorem 3.1.5). The complete graph Kn for n ≥ 3 [31] and regular graphs [14]
are among those graphs that admit antimagic labelings. The Antimagic Graph Conjecture
is one of the most famous conjectures in the theory of labeled graphs that has been studied
excessively (see, e.g., [35, 2, 14, 26, 17, 3, 21, 9, 18]). On the other extreme, an edge labeling
is magic if the sums of the labels on all edges incident to each vertex are the same. Kn for
n = 2 and n ≥ 5 and the bipartite graph Kn,n for n ≥ 3 are among those graphs that admit
magic labelings [55].

We approach antimagic labelings by introducing partially magic labelings, where “magic
occurs” just in a subset of V (Definition 3.1.6). The partially magic labelings have a semi-
group structure which allows us to use techniques from commutative algebra (Section 3.2).
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We generalize Stanley’s theorem (Theorem 3.1.3) about the magic labeling counting func-
tion to the associated counting function of partially magic labelings and prove that it is a
quasi-polynomial of period at most 2, and in the case that G is a bipartite graph it is a
polynomial (Theorem 3.1.7). In the process of the proof we use the fact that the partially
magic labelings are in bijection with lattice points in a rational polytope defined by the
vertex sum equations in the definition of partially magic labelings (Section 3.2). Therefore,
we can employ the rich techniques of polyhedral geometry, specifically, Ehrhart theory [5].
This work has been published in [4].

In Chapter 4 we study harmonious and super edge-magic labelings. A harmonious labeling,
introduced by Graham and Sloane in the 1980s [30], is a vertex labeling such that each vertex
label 0, . . . , |E| − 1 is used exactly once and the induced edge labels L∗(e) ≡ L(u) + L(v)
(mod |E|) are unique for every edge e = {u, v} ∈ E. It has been conjectured for more than
three decades [30] that every tree admits a harmonious labeling (Conjecture 2.1.3). The
complete graph Kn for n ≤ 4, the cycle Cn for odd n, and the complete bipartite graph
Km,n, when m or n is equal to 1, are among graphs that admit harmonious labelings [30].
Various other classes of graphs have been shown to be harmonious [19, 25, 16].

A total labeling f : E ∪ V → Z≥0 is called edge-magic if there exists a constant c (called
magic constant or valance of f) such that f(u)+f(v)+f(e) = c for all edges e = {u, v} ∈ E.
In addition, if f is an edge-magic total labeling such that f(V ) = {1, . . . , |V |}, then f is
called super edge-magic. Centeneo et.al. [24, Theorem 17] showed that if a tree G admits a
super-edge magic labeling, then it is harmonious. Super edge-magic labelings have a semi-
group structure (Section 4.2) like partially magic labelings, and we apply our techniques to
show that every tree has a relaxed super edge-magic labeling (that is, label repetition is al-
lowed) (Theorem 4.1.4). Moreover, we will show that a tree with one extra edge that makes
a unique even cycle has also a super edge-magic labeling (Theorem 4.1.5). Then we will
use Centeno’s theorem (Theorem 4.1.3) to attack the Harmonious Tree Conjecture (Conjec-
ture 2.1.3). Specifically, we prove that every tree admits a relaxed harmonious labeling (that
is, repetition of labels are allowed). Furthermore, every tree with extra edge that makes a
unique even cycle admits relaxed harmonious labeling (Corollary 4.1.6).

Chapter 5 concerns ordered structures and graph coloring. A partially ordered set or poset
is a set P along with a binary relation � that is reflexive, antisymmetric, and transitive.
A map ϕ : P → {1, . . . , n} is called order preserving if for any two elements a, b ∈ P ,
the relation a � b −→ ϕ(a) ≤ ϕ(b) holds. The map ϕ is called strictly order preserving
if a ≺ b −→ ϕ(a) < ϕ(b) holds. The polynomials ΩP (n) and Ω◦P (n) count the number of
order preserving maps and strictly order preserving maps, respectively. Stanley in [52] found
a formula to compute ΩP (n) (Theorem 2.3.2). He also found in [49] a reciprocity relation
between ΩP (n) and Ω◦P (n) (Theorem 2.3.3).

In Section 5.2 we introduce bivariate order polynomials which are an extension of order poly-
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nomials into two variables. A bicolored poset is a poset such that elements are colored by
two colors, celeste and silver. A map ϕ : P → {1, . . . , y, . . . , x} is called an order preserving
(x, y)-map if it is a classic order preserving map and additionally for every celeste element
c, the relation ϕ(c) ≥ y holds. The map ϕ is called a strictly order preserving (x, y)-map
if it is strictly order preserving map and for every celeste element c, the relation ϕ(c) > y
holds. The polynomials ΩP (x, y) and Ω◦P (x, y) count the number of order preserving (x, y)-
maps and strictly order preserving (x, y)-maps, respectively. We find formulas to compute
both ΩP (x, y) and Ω◦P (x, y) (Theorems 5.2.8 and 5.2.10). We generalize Stanley’s reciprocity
theorem (Theorem 2.3.3) and we find a reciprocity relation between ΩP (x, y) and Ω◦P (x, y)
(Theorem 5.2.12).

Graph coloring is an assignment of colors to the elements of graphs (vertices, edges, or both)
subject to some specific constraints. The chromatic polynomial of a graph G in k counts the
number of vertex colorings of G using at most k colors such that adjacent vertices receive
different colors. The chromatic polynomial is in fact a polynomial in k (Theorem 2.2.1).
Stanley in [50] showed that the chromatic polynomials can be decomposed into order poly-
nomials (Theorem 2.3.4).

In [20], Dohman et.al. introduced the bivariate chromatic polynomial which is a general-
ization of the chromatic polynomial into two variables. The bivariate chromatic polynomial
counts the number of coloring of vertices of a graph with colors {1, . . . , y, . . . , x} such that
adjacent vertices get different colors from {1, . . . , y} and they can be colored with the same
colors if the colors are from {y + 1, . . . , x}. The bivariate chromatic polynomials were the
motivation for the bivariate order polynomials defined in Section 5.2.

We decompose bivariate chromatic polynomials into bivariate order polynomials (Theorem
5.3.1) which is a generalization of Theorem 2.3.4. We also find a reciprocity relation linking
bivariate chromatic polynomials to acyclic orientations (Theorem 5.4.1). Chapter 5 is joint
work with Gina Karunaratne and Sandra Zuniga Ruiz.
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Chapter 2

Background

2.1 Graph Labelings

Let G be a finite unoriented graph without loops and multiple edges. We shall denote the set
of vertices of G by V, the set of edges by E, the number of vertices by p, and the number of
edges by q. A labeling of G is a map that assigns a set of numbers called labels to the graph
elements and have some properties depending on the type of labeling we are considering.
The graph elements can be the vertices alone (vertex labeling), or the edges alone (edge
labeling) or both vertices and edges (total labeling) and the set of numbers can be positive
integers, nonnegative integers, or integers modulo q.

Example 2.1.1. Let G be the graph of an octahedron and L : V → {0, . . . , 12} be a vertex
labeling of G such that for every edge {u, v} ∈ E, the value |L(v)− L(u)| is distinct. Such
a labeling is called a graceful labeling and was introduced by Rosa [46]. Figure 2.1 shows
a graceful labeling of the graph of an octahedron.

We are studying an edge labeling of G which is an assignment L : E → Z≥0. A magic
labeling is an injective function L : E → Z≥0 such that the sum of all the edge labels inci-
dent with any vertex is the same. If the function is not injective, we call it relaxed magic
labeling. On the other hand, an edge labeling is called antimagic where the vertex sums
are distinct. G is antimagic if it admits and antimagic labeling. Figure 2.2 presents a magic
labeling on wheel W5 and a magic labeling on K5.

The following has been conjectured for more than two decades:

Conjecture 2.1.2 (Antimagic Graph Conjecture [31]). Every connected graph except
for K2 admits an antimagic labeling.

Surprisingly this conjecture is still open even for trees , i.e., connected graphs without cycles,
though it has been proven that trees without vertices of degree 2 are antimagic [35]. More-
over, the validity of the Antimagic Graph Conjecture was proved in [2] for connected graphs
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Fig. 2.1 Some examples of graceful labeled graphs

The ˇ-valuation was renamed graceful by Golomb [13] and a graph that admits
a graceful labeling is called a graceful graph. We mention that the term graceful
labeling has become more popular than the original one. Although an entire chapter
will be devoted to graceful labelings, we introduce in Fig. 2.1 some examples of
graceful graphs with a corresponding graceful labeling. We also propose some open
problems in the subject, although we leave the most famous conjecture on graceful
labelings (and probably in the world of graph labelings) for Chap. 5.

Before getting started with the open problems, we introduce the following special
case of graceful labelings called ˛-labelings.

Definition 2.2 ([31]) A graceful labeling f of a .p; q/-graph G is said to be an ˛-
valuation of G if there exists an integer k with 0 ! k < q, called the characteristic
of f , such that minff .u/; f .v/g ! k < maxff .u/; f .v/g, for every edge uv of G.

˛-valuations are also named ˛-labelings .

An interesting question that remains open about graceful labelings is the
following one.

Problem 2.1 ([27 ]) Characterize the set of graceful generalized Petersen graphs.

Graceful 
Octahedron

10
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2

9

7

8

11

53

4

1

6

Figure 2.1: A graceful labeling on the graph of an octahedron.
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Figure 2.2: A magic labeling on the wheel W5 and an antimagic labeling on K5.

with minimum degree ≥ c log |V | (where c is a universal constant), for connected graphs with
maximum degree ≥ |V | − 2, and in [21] for graphs with average degree at least a universal
constant. We also know that connected k-regular graphs with k ≥ 2 are antimagic [18, 9,
14]. Furthermore, all Cartesian products of regular graphs of positive degree are antimagic
[17], as are joins of complete graphs [3]. For more related results, see [28].

A harmonious labeling is a type of vertex labelings defined as an injective function
L : V → {0, 1, . . . , q − 1} such that the induced edge labels L∗(e) ≡ L(u) + L(v) (mod q)
for every edge e = {u, v} ∈ E, are distinct [30]. For trees exactly one vertex label may be
repeated. The following has been conjectured for more than thirty years:

Conjecture 2.1.3 (Harmonious Tree Conjecture [30]). Every tree admits a harmonious
labeling.

Determining whether a graph has a harmonious labeling is a hard problem and, in fact, was
shown to be NP-complete [37]. It has been checked by computer that the conjecture is valid
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for any tree with ≤ 26 vertices [1]. It has also been shown that paths and caterpillars (that
is, trees with the property that the removal of its endpoints leaves a path) are harmonious
(i.e., admits a harmonious labeling) [30]. Moreover, Graham and Sloane proved that the
complete graph Kn is harmonious if and only if n ≤ 4, the cycle Cn is harmonious if and
only if n is odd, and the complete bipartite graph Km,n is harmonious if and only if m or n
is equal to 1, that is, when it is a star [30]. Different classes of graphs have been shown to
be harmonious [19, 25, 16].

Graham and Sloan obtained that almost all graphs are not harmonious [30]. In fact, a neces-
sary condition for a graph to admit a harmonious labeling is the following: for a harmonious
graph G with an even number of edges q, if the degree of every vertex is divisible by 2α,
then q is divisible by 2α+1 [30, Theorem 11]. Consequently, if q ≡ 2 (mod 4) and each ver-
tex has even degree, then G is not harmonious. Furthermore, for a harmonious graph with
even q, there exists a partition of V into two sets A and B such that the number of edges
joining the vertices of A and B is q

2
[39]. Liu and Zhang [38] have generalized this condition:

if a harmonious graph has degree sequence d1, d2, . . . , dn, then gcd(d1, d2, . . . , dn, q) divides
q(q−1)

2
. They have also proved that every graph is a subgraph of a harmonious graph. More

generally, it has been shown that any given set of graphs G1, G2, . . . , Gt can be embedded
in a harmonious or graceful graph (i.e., a graph that admits a vertex labeling with labels
between 0 and q such that no two vertices share a label, each edge label is the absolute
difference of its end points, and they are all distinct) [48].

Another type of edge labelings is edge-magic labeling. The injection function f : V ∪ E →
{1, . . . , p+ q} is called an edge-magic labeling if there exists a constant c (called the magic
constant or valance of f) such that f(u) + f(v) + f(e) = c for all edges e = {u, v} ∈ E
[36]. In addition, if f is an edge-magic labeling such that f(V ) = {1, . . . , p} and f(E) =
{p+ 1, . . . , p+ q}, then f is called super edge-magic [45]. Figure 2.3 shows an edge-magic
labeling with valance 29 on the Peterson graph. Super edge-magic labelings were introduced
by Ringel et. al. in 1989 [45] (Wallis [60, 41] calls these labelings strongly edge-magic). In
order to approach the Harmonious Tree Conjecture (Conjecture 2.1.3), we are going to apply
techniques from super edge-magic labelings.

Ringel et. al. 1989 in [45] showed the following: Cn is super edge-magic if and only if n is
odd; caterpillars are super edge-magic; Km,n is super edge-magic if and only if m = 1 or
n = 1; and Kn is super edge-magic if and only if n = 1, 2, or 3. They also proved that if a
graph with p vertices and q edges is super edge-magic, then q ≤ 2p− 3. The following is the
main conjecture on edge-magic labelings by Ringel et. al.

Conjecture 2.1.4 (Super Edge-Magic Tree Conjecture [45]). Every tree admits a super
edge-magic labeling.

It has been verified for trees with up to 17 vertices with a computer [42]. In [27], the authors
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showed that if T is a tree of order p ≥ 2 that has diameter greater than or equal to p − 5,
then T has a super edge-magic labeling. Ichishima et. al. have shown that any tree of order
p is contained in a tree of order at most 2p− 3 has a super edge-magic labeling [34].

The reader refers to the comprehensive survey on graph labelings by Gallian in [28].

2.2 Chromatic Polynomials

Let G = (V,E) be an undirected graph with vertex set V and edge set E that has no loops
and multiple edges. We denote the number of vertices by p and the number of edges by q.

A (vertex) k-coloring of G is an assignment ϕ : V → {1, . . . , k}, where we think of
{1, . . . , k} as the set of available colors. It is called proper if for adjacent vertices u, v ∈ V,
the relation ϕ(v) 6= ϕ(u) holds. Otherwise, we say that ϕ is improper . The function PG(k)
counts the number of proper k-coloring of G.

Theorem 2.2.1. [29, 12] For any graph G, PG(k) is a polynomial in k of degree p.

Based on this theorem, the function PG(k) is called chromatic polynomial of G. Theo-
rem 2.2.1 can be proven by induction on the number of edges and the fact that chromatic
polynomials satisfy the Fundamental Reduction Theorem , or deletion-contraction
recurrence :

Theorem 2.2.2. [43] For a graph G and e ∈ E,

PG(k) = PG−e(k)− PG/e(k)
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where G − e denotes the graph obtained by removing the edge e, and G/e is obtained by
merging the two end vertices of e and removing all resulting loops and duplicated edges.

Example 2.2.3. [43] The chromatic polynomial of any tree with p vertices is k(k − 1)p−1

and for any p-gon is (k − 1)p + (−1)p(k − 1).

The next theorem includes some properties of chromatic polynomials.

Theorem 2.2.4. [43] Let G be a graph with p vertices. Then

1. PG(k) is a monic polynomial of degree p;

2. PG(k) has no constant term;

3. the terms in PG(k) alternate in sign;

4. the absolute value of the second coefficient of PG(k) is the number of edges in G;

5. G is a tree if and only if PG(k) = k(k − 1)p−1.

To study chromatic polynomials further, we refer to [43, 13, 11].

2.3 Ordered Structures

A partially ordered set or poset is a set P along with a binary relation � that is reflexive
(a � a), antisymmetric (a � b and b � a means a = b), and transitive (a � b and b � c
means a � c). A chain (or linearly ordered set) is a poset in which any two elements
are comparable. The set {1, . . . , n} with the natural order is a chain and we denote it by [n].
We call ϕ : P → [n] a (weakly) order-preserving map if for a, b ∈ P

a � b −→ ϕ(a) ≤ ϕ(b).

Similarly, a map ϕ is strictly order preserving if

a ≺ b −→ ϕ(a) < ϕ(b).

The functions ΩP (n) and Ω◦P (n) count the number of order preserving maps and strictly
order preserving maps, respectively.

Theorem 2.3.1. [49] For a finite poset (P,�) the functions ΩP (n) and Ω◦P (n) are polyno-
mials in n with rational coefficients.

Let S be a set of n elements. A permutation of S is defined as a linear ordering (ω1, . . . , ωn)
of the elements of S. We can think of ω as a word ω1 · · ·ωn in the alphabet S. In general if
S = {x1, . . . , xn}, the word ω corresponds to the bijection ω : S → S given by ω(xi) = ωi.
Among many statistics associated with permutations, we will study descents and ascents. A
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descent of the word ω = ω1 · · ·ωn is 1 ≤ i ≤ n− 1 with ωi > ωi+1. The descent set of ω
is defined as

D(ω) = {i : ωi > ωi+1}
Similarly, an ascent of the word ω = ω1 · · ·ωn is 1 ≤ i ≤ n− 1 with ωi < ωi+1. The ascent
set of ω is defined as

A(ω) = {i : ωi < ωi+1}.
The number of descents of ω is denoted by des(ω) = |D(ω)| and the number of ascents of ω
is denoted by asc(ω) = |A(ω)|. In particular, des(ω) + asc(ω) = n − 1. For further details,
see [52] and [54].

Let P be a poset with n elements. A natural labeling of P is a bijection ω : P → [n]
where a ≺ b in P implies ω(a) < ω(b). Similarly, a natural reverse labeling of P is where
a ≺ b in P implies ω(a) > ω(b). A linear extension L is a chain that refines P so that
a � b in P gives a � b in L. We find all possible linear extensions of P by considering two
cases between each pair of incomparable elements: a ≺ b or b ≺ a (e.g., Figure 2.4).

a

b

c
d

e

c

a

b

c

d

e

a

b

d

c

e

a

d

b

c

e

!" !# !$%

Figure 2.4: A poset P and its linear extensions L1, L2, and L3.

Theorem 2.3.2. [52] Let P be a poset with n elements and a fixed natural labeling ω. Then

ΩP (x) =
∑
L

(
x− des(ωL)

n

)
where the sum is over all possible linear extensions L of P and ωL is the word associated
with the natural labeling ω.

The following is the relation between order preserving maps and strictly order preserving
maps:

Theorem 2.3.3 (Order Polynomial Reciprocity Theorem [49]). Let P be a finite poset.
Then

ΩP (n) = (−1)|P |Ω◦P (−n).
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An orientation of any graph G is an assignment of a direction to each edge {u, v} ∈ E
denoted by u→ v or v → u. An orientation of G is acyclic if it has no coherently directed
cycle. There is a natural way that any acyclic orientation on a graph G gives rise to a
poset. Given an orientation σ of G, let P be a poset with elements that are vertices of G.
For any a, b ∈ P , define a � b if and only if there is a coherently oriented path from a to b in σ.

There is a connection between the graph colorings and the ordered structures. It says that
a chromatic polynomial can be decomposed into order polynomials that come from acyclic
orientations of a graph.

Theorem 2.3.4 (Chromatic Polynomial Decomposition Theorem [50]). Let G be a
graph. Then

PG(x) =
∑
σ

Ω◦σ(x),

where the sum is over all possible acyclic orientations σ of G.

2.4 Hyperplane Arrangements

This section presents background information on the geometric approach of our work. Let
K be a field. An (affine) hyperplane is a set of the form

H := {x ∈ Kd : a · x = b}

where a is a fixed nonzero vector in Kd, b is a displacement vector in K and a · x is the
standard dot product. A hyperplane arrangement A is a finite set of hyperplanes in
a finite-dimensional vector space Kd. The arrangement has combinatorial properties when
K = R. It divides Rd into regions. A region of A is a maximal connected component of
Rd − ∪H∈AH.

Example 2.4.1. The d-dimensional real braid arrangement is the arrangement B =
{xj = xk : 1 ≤ j < k ≤ d} with

(
d
2

)
hyperplanes.

Let us assume that G is a simple graph on the vertex set [p] with edges E. To each edge
{i, j} ∈ E we associate a hyperplane Hij := {x ∈ Rp : xi = xj}. The graphical arrange-
ment AG in Rp is then

{Hij : {i, j} ∈ E}.

The graphical arrangement is a sub-arrangement of the braid arrangement B introduced in
Example 2.4.1. If G = Kp, the complete graph on p vertices, then AKp is the full braid
arrangement.

Each region of the hyperplane arrangement AG corresponds to an acyclic orientation of G:
each region of the AG is determined by some inequalities xi < xj or xi > xj where i and j
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come from edge {i, j} ∈ E. Naturally, xi < xj implies that we can orient the edge {i, j} ∈ E
from i→ j and xi > xj implies that we can orient the edge {i, j} ∈ E from j → i. This can
be generalized by the following proposition.

Proposition 2.4.2. [51] Let G be a simple graph and AG be the graphical arrangement of
G. The regions of AG are in one-to-one correspondence with the acyclic orientations of G.

A flat of G = (V,E) is a set of edges F ⊆ E such that for any edge e ∈ E \ F , the number
of connected components of the graph GF := (V, F ) is strictly larger than that of GF∗ :=
(V, F ∪ {e}). On the other hand, a flat of the graphical arrangement AG corresponding to
F ⊆ E is

F = ∩ij∈FHij = {x ∈ Rp : xi = xj for all ij ∈ F}.
Particularly, we can think of a flat in the following different ways. First, all possible inter-
sections of the arrangement are the possible flats. Because the graphical arrangement comes
from a graph G these hyperplane intersections come from the possible contractions of G.

Proposition 2.4.3. [6] The set of contractions of G are in bijection with the set of flats of
the graphical arrangement AG.

Secondly, we can also think of a flat through transitivity. Suppose that we have the hyper-
planes x1 = x2, x2 = x3, . . . , xk−1 = xk. Then it must be true that x1 = xk since the equality
is transitive. Transitivity gives us the tools to be able to decompose the bivariate chromatic
polynomial in Chapter 4. See [51, 6] for more interesting results.

2.5 Ehrhart Theory

Let {v1, v2, . . . , vn} be a finite set of points in Rd. The convex hull C of these points is the
smallest convex set containing them. That is,

C =

{
n∑
i=1

λivi : λi ∈ R≥0 for all i and
n∑
i=1

λi = 1

}
.

A convex polytope P is the convex hull of finitely many points in Rd. This definition is
called the vertex description of P , and we use the notation

P = conv{v1, . . . , vn}.

Polytopes can be described as the bounded intersection of finitely many half-spaces and hy-
perplanes. This is called hyperplane description of a polytope which is equivalent to the
vertex description of the polytope. The equivalence is highly nontrivial and we refer to [5, 62].

The dimension of a polytope P is the dimension of the affine space spanned by P :

spanP := {x+ λ(y − x) : x, y ∈ P , λ ∈ R} .

We note that if P ⊂ Rd, then it does not necessarily have dimension d.
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Example 2.5.1. Let ei ∈ Rd+1 for 1 ≤ i ≤ d+ 1 be standard basis vectors. The standard
d-simplex is a d-dimensional polytope defined as

∆d = conv{e1, . . . , ed+1} =

{
x ∈ Rd+1 :

d+1∑
i=1

xi = 1, xi ≥ 0

}
.

Example 2.5.2. The unit d-cube is defined as

�d = conv{(x1, . . . , xd) : allxi = 0 or 1} = {(x1, . . . , xd) ∈ Rd : 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ d}.

We say that the hyperplane H = {x ∈ Rd : a.x = b} is a supporting hyperplane of
P , if P lies entirely on one side of H. A face of P is the set of the form P ∩ H, where
H is a supporting hyperplane of P . P and ∅ are defined to be faces of P . For a convex
polytope P ⊂ Rd, the (d − 1)-dimensional faces are called facets , 1-dimensional faces are
called edges , and 0-dimensional faces are called vertices of P .

A convex polytope P is called lattice if all of its vertices have integer coordinates, and P is
called rational if all of its vertices have rational coordinates.

Let P ⊂ Rd be a d-dimensional lattice polytope. Then kP = {(kx1, . . . , kxd) : (x1, . . . , xd) ∈
P} is the kth dilation of the polytope P . The lattice point enumerator for the kth dilate
of P is

EP(k) := #(kP ∩ Zd)

for k ∈ Z>0. Here is the fundamental theorem concerning lattice point enumeration in
integral convex polytopes.

Theorem 2.5.3 (Ehrhart’s Theorem [22]). Let P be an integral convex polytope of di-
mensional d. Then EP(k) is a polynomial in k of degree d with rational coefficients.

We recall that a quasi-polynomial is a function f : Z→ C of the form f(k) = cd(k) kd +
· · ·+c1(k) k+c0(k) where c0(k), . . . , cd(k) are periodic functions in k and the period of f is the
least common multiple of the periods of c0(k), . . . , cd(k). For every quasi-polynomial f there
exist an integer N > 0 (namely, the least common multiple of the periods of c0(k), . . . , cd(k))
and polynomials p0, . . . , pN−1 (which are called the constituents of f) such that f(k) =
pi(k) when k ≡ i (mod N). The following theorem says that EP(k) is a quasi-polynomial if
P is a rational polytope.

Theorem 2.5.4 (Ehrhart’s Theorem fo Rational Polytopes [22]). Let P be a rational
convex polytope of dimensional d. Then EP(k) is a quasi-polynomial in k of degree d. Its
period divides the least common multiple of the denominators of the coordinates of the vertices
of P.
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Based on Theorem 2.5.3, we call EP(k) the Ehrhart polynomial . The interior of P ,
denoted by P◦, is defined as the set of all points x ∈ P such that for some ε > 0, the ε-ball
Bε(x) around x is contained in P . Similarly, the relative interior is the set of all points
x ∈ P such that for some ε > 0, the intersection Bε(x) ∩ aff(P ) is contained in P [33].

Theorem 2.5.5 (Ehrhart–Macdonald Reciprocity Theorem [22, 40]). For any d-
dimensional rational polytope P,

EP ◦(k) = (−1)dEP (−k).

Example 2.5.6. Consider the unit d-cube in Example 2.5.2. For d = 1, the unit 1-cube is
[0, 1] and the kth dilate of 1-cube is [0, k]. Therefore E�1(k) = (k + 1). In general,

E�d
(k) := #([0, k]d ∩ Zd) = (k + 1)d.

Similarly, the interior of 1-cube is (0, 1) and its kth dilate is (0, k). Thus E�◦
1
(k) = (k − 1)

and in general,
E�◦

d
(k) := #((0, k)d ∩ Zd) = (k − 1)d.

Notice that evaluation of (k + 1)d at negative integers is equal to (−1)d(k − 1)d, confirming
the Ehrhart–Macdonald Reciprocity Theorem.

For more details and results on polytopes, we refer to [5, 33, 62].
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Chapter 3

Partially Magic Labeling

3.1 Introduction

Graph theory is abundant with fascinating open problems. In this chapter we propose a new
ansatz to the Antimagic Graph Conjecture (Conjecture 2.1.2). Our approach generalizes
Stanley’s enumeration results for magic labelings of a graph [53] to partially magic labelings,
with which we analyze the structure of antimagic labelings of graphs.

Our work concerns magic and antimagic labelings introduced in section 2.1, for which there
are various (conflicting) definitions in the literature; thus we start by carefully introducing
our terminology. Let G = (V,E) be a graph with vertex set V and edge set E.

Definition 3.1.1. Let L : E → Z≥0 be an edge labeling. We call L an [a, b]-labeling when
each edge label is in {a, . . . , b} ⊂ Z, and we call L injective if no label repetition is allowed.

Definition 3.1.2. An [a, b]-labeling is called magic (respectively antimagic) if all the
vertex sums, i.e., the sums of the labels of the edges incident to each vertex, are equal
(respectively distinct); here the label of a loop at a given vertex is counted only once.

The index of a magic labeling is the constant vertex sum. Magic labelings are also called
regularisable [10], while antimagic [0,∞)-labelings are also called irregular [15]. Graphs
are commonly called magic (respectively antimagic) if they admit an injective magic (re-
spectively antimagic) [1, |E|]-labeling.

Our first motivation is the well-known, decades-old conjecture [31] that says that every
connected graph except for K2 is antimagic (the Antimagic Graph Conjecture, Conjecture
2.1.2). Our second motivation is the following result.

Theorem 3.1.3 (Stanley [53]). Let HG(r) be the number of magic [0,∞)-labelings of G
of index r. Then there exist polynomials PG(r) and QG(r) such that HG(r) = PG(r) +
(−1)rQG(r). Moreover, if the graph obtained by removing all loops from G is bipartite, then
QG(r) = 0, i.e., HG(r) is a polynomial of r.
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Fig. 2.1 Some examples of graceful labeled graphs

The ˇ-valuation was renamed graceful by Golomb [13] and a graph that admits
a graceful labeling is called a graceful graph. We mention that the term graceful
labeling has become more popular than the original one. Although an entire chapter
will be devoted to graceful labelings, we introduce in Fig. 2.1 some examples of
graceful graphs with a corresponding graceful labeling. We also propose some open
problems in the subject, although we leave the most famous conjecture on graceful
labelings (and probably in the world of graph labelings) for Chap. 5.

Before getting started with the open problems, we introduce the following special
case of graceful labelings called ˛-labelings.

Definition 2.2 ([31]) A graceful labeling f of a .p; q/-graph G is said to be an ˛-
valuation of G if there exists an integer k with 0 ! k < q, called the characteristic
of f , such that minff .u/; f .v/g ! k < maxff .u/; f .v/g, for every edge uv of G.

˛-valuations are also named ˛-labelings .

An interesting question that remains open about graceful labelings is the
following one.

Problem 2.1 ([27 ]) Characterize the set of graceful generalized Petersen graphs.
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Figure 3.1: A partially magic labeling of a graph G = (V,E) over S ⊆ E.

Theorem 3.1.3 can be rephrased in the language of quasi-polynomials (defined in Section 2.5).
It says that HG(r) is a quasi-polynomial of period at most 2.

We emphasize that Theorem 3.1.3 is not about injective magic labelings; in fact, for this
more restrictive notion, one still obtains quasi-polynomial counting functions, but there does
not seem to be any bound on the periods [7]. Our first main result is as follows.

Theorem 3.1.4. The number AG(k) of antimagic [1, k]-labelings of G is a quasi-polynomial
in k of period at most 2. Moreover, if G minus its loops is bipartite, then AG(k) is a
polynomial in k.

We remark that antimagic counting functions of the flavor of AG(k) already surfaced in [8].
Theorem 3.1.4 implies that for bipartite graphs we have a chance of using the polynomial
structure of AG(k) to say something about the antimagic character of G, in a non-injective
sense. Borrowing a leaf from the notion of relaxed graceful labelings [47, 58], we call a graph
relaxed antimagic if it admits an antimagic [1, |E|]-labeling.

Theorem 3.1.5. Suppose G has no K2 component and at most one isolated vertex. Then
G admits an antimagic [1, 2|E|]-labeling. If, in addition, G is bipartite, then G is relaxed
antimagic.

We approach antimagic labelings by introducing a new twist on magic labelings which might
be of independent interest. Fix a subset S of vertices of G.

Definition 3.1.6. A labeling of G is partially magic over S if the vertex sums are equal
for all vertices of S (Figure 3.1).

Theorem 3.1.7. Let G be a finite graph and S ⊆ V. The number MS(k) of partially magic
[0, k]-labelings over S is a quasi-polynomial in k with period at most 2. Moreover, if G minus
its loops is bipartite, then MS(k) is a polynomial in k.

In order to prove Theorem 3.1.7, we will follow Stanley’s lead in [53] and use linear Dio-
phantine homogeneous equation and Ehrhart quasi-polynomials to describe partially magic
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labelings of the graph G; Section 3.2 contains a proof of Theorem 3.1.7. In Section 3.3
we prove Theorems 3.1.4 and 3.1.5. We conclude in Section 3.4 with some comments on a
directed version of the Antimagic Graph Conjecture, as well as open problems.

3.2 Enumerating Partially Magic Labeling

Given a finite graph G = (V,E) and a subset S ⊆ V , we introduce a variable xe for each edge
e and let {v1, . . . , vs} be the set of all vertices of S, where |S| = s. In this setup, a partially
magic [0, k]-labeling over S corresponds to an integer solution of the system of equations and
inequalities

∑
e incident to vj

xe =
∑

e incident to vj+1

xe (1 ≤ j ≤ s− 1) and 0 ≤ xe ≤ k . (3.1)

Define Φ as the set of all pairs (L, k) where L ∈ Z|E|≥0 is a partially magic [0, k]-labeling; that
is, (L, k) is a solution to (3.1). If L is a partially magic [0, k]-labeling and L′ is a partially
magic [0, k′]-labeling, then L+ L′ is a partially magic [0, k + k′]-labeling. Thus Φ is a semi-
group with identity 0. This is also evident from (3.1).

For the next step, we will use the language of generating functions, encoding all partially
magic [0, k]-labelings as monomials. Let q = |E| and define

F (Z) = F (z1, . . . , zq, zq+1) :=
∑

(L,k)∈Φ

z
L(e1)
1 · · · zL(eq)

q zkq+1 . (3.2)

Note that if we substitute z1 = · · · = zq = 1 in F (Z), we enumerate all partially magic
[0, k]-labelings:

F (1, zq+1) =
∑

(L,k)∈Φ

zkq+1 =
∑
k≥0

MS(k) zkq+1, (3.3)

where we abbreviated 1 := (1, 1, . . . , 1) ∈ Zq.

Definition 3.2.1. We call a nonzero element L = (L1, . . . , Lq, k) ∈ Φ fundamental if it
cannot be written as the sum of two nonzero elements of Φ; furthermore, L is completely
fundamental if no positive integer multiple of it can be written as the sum of nonzero,
nonparallel elements of Φ (i.e., they are not scalar multiple of each other).

In other words, a completely fundamental element (L, k) ∈ Φ is a nonnegative integer vector
such that for each positive integer n, if nL = α + β for some (α, a), (β, b) ∈ Φ, then α = jL
and β = (n − j)L for some nonnegative integer j. Note that by taking n = 1 in the above
definition, we see that every completely fundamental element is fundamental. Also note that
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any fundamental element (L1, . . . , Lq, k) ∈ Φ necessarily satisfies k = max{L1, . . . , Lq}.

Now we focus on the generating function (3.2) and employ [52, Theorem 4.5.11], which says
in our case that the generation function F (Z) can be written as a rational function with
denominator

D(Z) :=
∏

(L,k)∈CF(Φ)

(
1− Z(L,k)

)
, (3.4)

where CF(Φ) is the set of completely fundamental elements of Φ and we used the monomial

notation Z(L,k) := z
L(e1)
1 z

L(e2)
2 · · · zL(eq)

q zkq+1. To make use of (3.4), we need to know some
information about completely fundamental solutions to (3.1). To this extent, we borrow the
following lemmas from magic [0,∞)-labelings [53], i.e., the case S = V :

Lemma 3.2.2. Every completely fundamental magic [0,∞)-labeling of G has index 1 or 2.
More precisely, if L is any magic [0,∞)-labeling of G, then 2L is a sum of magic [0,∞)-
labelings of index 2.

Lemma 3.2.3. The following conditions are equivalent:

1. Every completely fundamental magic [0,∞)-labeling of G has index 1.

2. If G′ is any spanning subgraph of G such that every connected component of G′ is a
loop, an edge, or a cycle of length ≥ 3, then every one of these cycles of length greater
than or equal to 3 must have even length.

Lemma 3.2.2 implies that every completely fundamental magic [0,∞)-labelings has index 1
or 2 and therefore, it cannot have a label ≥ 3 (because labels are nonnegative). By the same
reasoning, if G satisfies the condition (2) in Lemma 3.2.3, every completely fundamental
magic [0,∞)-labelings of it has index 1 and so cannot have labels ≥ 2. We now give the
analogous result for partially magic labelings:

Lemma 3.2.4. Let k ∈ Z≥3. Every completely fundamental partially magic [0, k]-labeling of
G over S has labels 0, 1, or 2.

Proof. If S = V , then every completely fundamental partially magic [0, k]-labeling over S is
a completely fundamental magic [0, k]-labeling over G. By Lemma 3.2.2, it has index 1 or 2
and so the labels are among 0, 1, or 2.

Suppose that S ( V and let L be a partially magic [0, k]-labeling of G over S that has a
label ≥ 3 on the edge e incident to vertices u and v. We will show that L is not completely
fundamental. There are three cases:
C ase 1: u, v /∈ S, that is, e is not incident to any vertex in S. We can write L as the sum
of L′ and L′′, where all the labels of L′ are zero except for e with L′(e) = 1 and all the
labels of L′′ are the same as L except e with L′′(e) = L(e)− 1; see Figure 3.2. Since L′ and
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Figure 3.2: A non-completely fundamental partially magic [0, k]-labeling in Case 1.

L′′ are both partially magic [0, k]-labelings over S, then by definition L is not a completely
fundamental partially magic [0, k]-labeling over S.

C ase 2: u /∈ S and v ∈ S. Let GS be the graph with vertex set S obtained from G by
removing all the edges of G that are not incident to some vertex of S and making loops out
of those edges that are incident to both S and V \S. Now define a labeling LS over GS such
that all the edges that are incident to S get the same labels as L and all the new loops get
the labels of L that were on the original edges, as in Figure 3.3.
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Figure 3.3: A graph GS and magic [0, k]-labeling LS in Case 2.

Since L is partially magic over S, LS is a magic [0, k]-labeling of GS. However, LS(e) =
L(e) ≥ 3 and so S has a vertex with sum ≥ 3. Therefore, by Lemma 3.2.2, LS is not a
completely fundamental magic [0, k]-labeling of GS and so there exist magic [0, k]-labelings
LiS of index 2 such that 2LS =

∑
LiS, as in Figure 3.4. Now we extend each magic [0, k]-
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S .
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labeling LiS to a partially magic [0, k]-labeling Li over G as follows, for i = 1, 2 we define

Li(e) :=

{
LiS(e) if e is incident to vertices of S or e is incident to vertices of S and V \ S,

L(e) if e is not incident to S.

For i ≥ 3, the extensions are

Li(e) :=

{
LiS(e) if e is incident to vertices of S or e is incident to vertices of S and V \ S,

0 if e is not incident to S.

Therefore 2L(e) =
∑
Li(e) for all e ∈ E; see Figure 3.5. By definition, Li is nonzero partially

magic [0, k]-labeling of G over S with labels among 0, 1, 2, for every i > 1. This proves that
L is not a completely fundamental partially magic [0, k]-labeling.
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Figure 3.5: A non-completely fundamental partially magic [0, k]-labeling L with 2L =∑4
i=0 L

i .

C ase 3: u, v ∈ S. The argument is similar to Case 2, by constructing the graph GS with
the labeling LS. Since L is partially magic [0, k]-labeling over S, LS is a magic [0, k]-labeling
of GS. However, it is not completely fundamental because it has an edge e with label
LS(e) = L(e) ≥ 3. So there exist magic [0, k]-labelings LiS of index 2, such that 2LS =

∑
LiS.

We extend each LiS to a labeling Li over G as follows, for i = 1, 2 we define

Li(e) :=

{
LiS(e) if e is incident to vertices of S or e is incident to vertices of S and V \ S,

L(e) if e is not incident to S.

For i ≥ 3, we extend the labeling LiS to Li over G as follows:

Li(e) :=

{
LiS(e) if e is incident to vertices of S or e is incident to vertices of S and V \ S,

0 if e is not incident to S.

By definition, 2L =
∑
Li where each Li is a partially magic [0, k]-labeling over S and has

labels 0, 1, or 2. Therefore, L is not a completely fundamental partially magic [0, k]-labeling
of G over S.
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Proof of Theorem 3.1.7. By (4.2) and (3.4), the function

F (1, z) =
∑
k≥0

MS(k) zk

is a rational function with denominator

D(1, z) =
∏

(L,k)∈CF(Φ)

(
1− 1Lzk

)
(3.5)

where CF(Φ) is the set of completely fundamental elements of Φ. According to Lemma 3.2.4,
every completely fundamental element of Φ has labels 1 or 2. Therefore∑

k≥0

MS(k) zk =
h(z)

(1− z)a(1− z2)b
(3.6)

for some nonnegative integers a and b, and some polynomial h(z). Basic results on rational
generating functions (see, e.g., [52]) imply that MS(k) is a quasi-polynomial in k with period
at most 2.

Remark 3.2.5. Let G be a bipartite graph and k ∈ Z≥0. Then every completely fundamen-
tal partially magic [0, k]-labeling of G over S has labels 0 or 1.

Proof. If S = V , then every completely fundamental partially magic [0, k]-labeling over S is
a completely fundamental magic [0, k]-labeling over G. By Lemma 3.2.3, it has index 1 and
so the labels are 0 or 1.

Suppose that S ( V and let L be a partially magic [0, k]-labeling of G over S that has a
label ≥ 2 on the edge e incident to vertices u and v. We will show that L is not completely
fundamental. There are three cases:

2u v
0 0

1 00

1S

1u v
0 0

0
00

0S

1u v
0 0

1
00

1S

= +

Figure 3.6: A non-completely fundamental partially magic [0, k]-labeling in Case 1.

C ase 1: u, v /∈ S, that is, e is not incident to any vertex in S. We can write L as the sum
of L′ and L′′, where all the labels of L′ are zero except for e with L′(e) = 1 and all the
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labels of L′′ are the same as L except e with L′′(e) = L(e)− 1; see Figure 3.6. Since L′ and
L′′ are both partially magic [0, k]-labelings over S, then by definition L is not a completely
fundamental partially magic [0, k]-labeling over S.

C ase 2: u /∈ S and v ∈ S. Let GS be the graph with vertex set S obtained from G by
removing all the edges of G that are not incident to some vertex of S and making loops out
of those edges that are incident to both S and V \S. Now define a labeling LS over GS such
that all the edges that are incident to S get the same labels as L and all the new loops get
the labels of L that were on the original edges, as in Figure 3.7.

2 uv

1

1

1 00

1

S

1

0
2

0

1 1

Figure 3.7: A graph GS and magic [0, k]-labeling LS in Case 2.

Since L is partially magic over S, LS is a magic [0, k]-labeling of GS. However, LS(e) =
L(e) ≥ 2 and so S has a vertex with sum ≥ 2. Therefore, by Lemma 3.2.3, LS is not a
completely fundamental magic [0, k]-labeling of GS and so there exist magic [0, k]-labelings
LiS of index 1 such that 2LS =

∑
LiS, as in Figure 3.8. Now we extend each magic [0, k]-
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Figure 3.8: A graph GS and the magic [0, k]-labelings LiS where 2LS =
∑4

i=0 L
i
S .

labeling LiS to a partially magic [0, k]-labeling Li over G as follows, for i = 1, 2 we define

Li(e) :=

{
LiS(e) if e is incident to vertices of S or e is incident to vertices of S and V \ S,

L(e) if e is not incident to S.

For i ≥ 3, the extensions are

Li(e) :=

{
LiS(e) if e is incident to vertices of S or e is incident to vertices of S and V \ S,

0 if e is not incident to S.
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Therefore 2L(e) =
∑
Li(e) for all e ∈ E; see Figure 3.9. By definition, Li is nonzero partially

magic [0, k]-labeling of G over S with labels among 0, 1, for every i > 1. This proves that L
is not a completely fundamental partially magic [0, k]-labeling.
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Figure 3.9: A non-completely fundamental partially magic [0, k]-labeling L with 2L =∑4
i=0 L

i .

C ase 3: u, v ∈ S. The argument is similar to Case 2, by constructing the graph GS with
the labeling LS. Since L is partially magic [0, k]-labeling over S, LS is a magic [0, k]-labeling
of GS. However, it is not completely fundamental because it has an edge e with label
LS(e) = L(e) ≥ 2. So there exist magic [0, k]-labelings LiS of index 1, such that 2LS =

∑
LiS.

We extend each LiS to a labeling Li over G as follows, for i = 1, 2 we define

Li(e) :=

{
LiS(e) if e is incident to vertices of S or e is incident to vertices of S and V \ S,

L(e) if e is not incident to S.

For i ≥ 3, we extend the labeling LiS to Li over G as follows:

Li(e) :=

{
LiS(e) if e is incident to vertices of S or e is incident to vertices of S and V \ S,

0 if e is not incident to S.

By definition, 2L =
∑
Li where each Li is a partially magic [0, k]-labeling over S and has

labels 0 or 1. Therefore, L is not a completely fundamental partially magic [0, k]-labeling of
G over S.

The equations in (3.1) together with xe ≥ 0 describe a pointed rational cone, and adding
the inequalities xe ≤ 1 gives a rational polytope PS. Our reason for considering PS is the
structural results of Ehrhart and Macdonald described in Section 2.5. A partially magic
[0, k]-labeling of a graph G with labels among {0, 1, . . . , k} (which is a solution of (3.1)) is
therefore an integer lattice point in the k-dilation of PS, i.e.,

MS(k) = EPS
(k) .

Let M◦
S(k) be the number of partially magic [1, k]-labelings of a graph G over a subset S of

vertices of G. Thus M◦
S(k) = EP◦

S
(k+1), where P◦S is the relative interior of the polytope PS.
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Ehrhart’s theorem (Theorem 2.5.3) implies that EPS
(t) is a quasi-polynomial in t of degree

dimPS, and the Ehrhart–Macdonald reciprocity theorem for rational polytopes (Theorem
2.5.5) gives the algebraic relation (−1)dimPEP(−t) = EP◦(t), which implies for us:

Corollary 3.2.6. Let G = (V,E) be a graph and S ⊆ V . Then M◦
S(k) = ±MS(−k− 1). In

particular, MS(k) and M◦
S(k) are quasi-polynomials with the same period.

3.3 Enumerating Antimagic Labeling

By definition of a partially magic labeling of a graph G over a subset S ⊆ V , all the vertices
of S have the same vertex sum. By letting S range over all subsets of V of size ≥ 2, we can
write the number AG(k) of antimagic [1, k]-labelings as an inclusion-exclusion combination
of the number of partially magic [1, k]-labelings:

AG(k) = k|E| −
∑
S⊆V
|S|≥2

cSM
◦
S(k) (3.7)

for some cS ∈ Z. Thus Theorem 3.1.7 and Corollary 3.2.6 imply Theorem 3.1.4.

Example 3.3.1. The number of antimagic [1, k]-labelings for the bipartite graph K3,1 is
AK3,1(k) = k3 − 3k2 + k.

In preparation for our proof of Theorem 3.1.5, we give a few basic properties of AG(k).

Lemma 3.3.2. The constant term of the quasi-polynomial AG(k) equals AG(0) = 0.

Proof. By definition PS ⊆ [0, 1]E, and so M◦
S(0) = EP◦

S
(1) = 0. The statement follows now

from (3.7).

Lemma 3.3.3. The quasi-polynomial AG(k) is constant zero if and only if G has a K2

component or more than one isolated vertex.

Proof. If G has a K2 component or more than one isolated vertex, then clearly there is no
antimagic labeling and so AG(k) = 0.

Conversely, suppose G has no K2 component and at most one isolated vertex. Then assign-
ing the edges with distinct powers of 2 yields an antimagic labeling (by the uniqueness of
binary expansions), and so AG(k) is not constant zero.

We label the edges by e0, . . . , eq−1 and assign 2i to the edge ei for 0 ≤ i ≤ q − 1. Then the
vertex sum of each vertex can be express in the binary form (aq−1, aq−2 . . . , a0) where ai = 1
if the edge ei is incident to v, and ai = 0 otherwise. Then the vertex sums are distinct since
no two vertices are adjacent to the same set of edges and binary expansion of every integer
is unique. Therefore, we found an injective antimagic [1, 2q−1]-labeling and so AG(k) is not
constant zero. [15]
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Proof of Theorem 3.1.5. By Theorem 3.1.4 and Lemma 3.3.3, we know that AG(k) is a
nonzero quasi-polynomial in k of period ≤ 2. By definition and Lemma 3.3.2, AG(k + 1) ≥
AG(k) for k ≥ 0. So both even and odd constituents of AG(k) are polynomials in k with
degree at most |E|, which can have at most |E| integer roots. By Lemma 3.3.2, one of the
roots is 0, and consequently AG(2|E|) > 0.

The second statement can be proven similarly to the first statement. Namely, AG(k) is a
weakly increasing polynomial in k with maximum degree |E| (by Theorem 3.1.4 and def-
inition) and AG(0) = 0 (by Lemma 3.3.2). Thus AG(|E|) > 0, i.e., G has an antimagic
[1, |E|]-labeling.

3.4 Directed Graphs

Among the more recent results on antimagic graphs are some for directed graphs (for
which one of the endpoints of each edge e is designated to be the head, the other the tail
of e); given an edge labeling of a directed graph, we denote the oriented sum s(v) at the
vertex v to be the sum of the labels of all edges oriented away from v minus the sum of
the labels of all edges oriented towards v. Such a labeling is antimagic if each label is a
distinct element of {1, 2, . . . , |E|} and the oriented sums s(v) are pairwise distinct.

It is known that every directed graph whose underlying undirected graph is dense (in the
sense that the minimum degree at least C log |V | for some absolute constant C > 0) is an-
timagic, and that almost every regular graph admits an orientation that is antimagic [32].

Hefetz, Mütze, and Schwartz suggest in [32] a directed version of the Antimagic Graph
Conjecture; the two natural exceptions are the complete graph K3 on three vertices with an
edge orientation that makes an oriented cycle, and K1,2, the bipartite graph on the vertex
partition {v1} and {v2, v3} where the orientations are from v2 to v1 and v1 to v3.

Conjecture 3.4.1 (Directed Antimagic Graph Conjecture [32]). Every connected di-
rected graph except for the directed graphs K3 and K1,2 admits an antimagic labeling.

It is tempting to adjust our techniques to the directed settings, but there seem to be road
blocks. For starters, no directed graph has a magic labeling , i.e., all sums s(v) are equal.
To see this, let A be the square matrix with Aij the oriented sum of the vertex vi using the
labels of all edges between vi and vj. Now if L is a magic labeling with index r, the sum
of each row of A equals r, and so r is an eigenvalue of A (with eigenvector [1, 1, . . . , 1]).
However, A is by construction a skew matrix, and so it cannot have a real eigenvalue.

At any rate, a directed graph will have partially magic labelings, defined analogously to
the undirected case, and so we can enumerate antimagic labelings according to the di-
rected analogue of (3.7). To assert the existence of an antimagic labeling, one would
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like to bound the period of the antimagic quasi-polynomial, as in Theorem 3.1.7. How-
ever, this does not seem possible. Namely, if the subset S ⊂ V includes a directed path
· · · → v1 → v2 → · · · → vs → · · · such that the vertices v2, . . . , vs−1 are not adjacent to any
other vertices, then a completely fundamental partially magic labeling LS with index ≥ 1
implies that the label on each edge of the path is greater than that on the previous one.
Thus, contrary to the situation in Lemma 3.2.4, the upper bound for the labels in LS can
be arbitrarily large. Consequently, the periods of the partial-magic quasi-polynomials, and
thus those of the antimagic quasi-polynomials, can be arbitrarily large.

The papers [8, 32] give several further open problems on antimagic graphs, some of which
could be tackled with the methods presented here. We close with an open problem about a
natural extension of our antimagic counting function. Namely, it follows from [8] that the
number of antimagic labelings of a given graph G with distinct labels between 1 and k is a
quasi-polynomial in k. Can anything substantial be said about its period? It is unclear to
us whether the methods presented here are of any help, however, any positive result would
open the door to applying these ideas once more towards the Antimagic Graph Conjecture.
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Chapter 4

Super Edge-Magic Labeling

4.1 Introduction

In this chapter, we will study harmonious labelings which were described in section 2.1. Our
ultimate goal is to attack the Harmonious Tree Conjecture (Conjecture 2.1.3) for which we
will use results from super edge-magic labelings which were also described in section 2.1. We
begin by introducing our terminology.

Definition 4.1.1. We call an assignment L : V ∪ E → Z≥0 an (a, b)-total labeling of the
graph G when L(V ∪ E) ⊆ {a, . . . , b}.

The term total labeling was introduced by Wallis in [60]. Now let us define our terminology
for super edge-magic labeling.

Definition 4.1.2. An (a, b)-total labeling is called edge-magic if there exists a constant
c ∈ Z≥0, which we call the magic invariant , such that L(u) + L(v) + L(e) = c for every
e = {u, v} ∈ E. In addition, if L is an edge-magic (a, b + c)-total labeling (a < b ≤ c) such
that L(V ) ⊆ {a, . . . , b} and L(E) ⊆ {b+ 1, . . . , b+ c}, then L is called super edge-magic
(a, b, c)-total labeling .

Graphs are commonly called edge-magic (as defined in section 2.1) if they admit an injective
edge-magic (1, p+ q)-total labeling. Moreover, they are called super edge-magic labeling (as
defined in section 2.1) if they admit an injective super edge-magic (1, p, q)-total labeling.

The connection between super edge-magic labelings and harmonious labelings is coming from
the following theorem:

Theorem 4.1.3. [23] If a tree T admits a super edge-magic labeling, then it admits a harmo-
nious labeling. More generally, if a graph G with q ≥ p admits a super edge-magic labeling,
then G admits a harmonious labeling.
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Based on this theorem, we can use super edge-magic labelings on trees to approach the
Harmonious Tree Conjecture (Conjecture 2.1.3). Our main results in this chapter are as
follows.

Theorem 4.1.4. Suppose T is a tree. Then T admits a super edge-magic (1, p, p)-total
labeling.

Theorem 4.1.5. Suppose Tc is a tree with one extra edge that makes a unique even cycle,
then it admits a super edge-magic (1, p, p)-total labeling.

The Super Edge-Magic Tree Conjecture (Conjecture 2.1.4) asserts that every tree admits a
super edge-magic labeling. Therefore, by Theorem 4.1.4, we show that every tree satisfies a
relaxed version (where repetition of labels are allowed) of this conjecture.

Borrowing a leaf from the notion of relaxed graceful labelings [47, 58], we call a graph relaxed
harmonious if it admits a harmonious labeling where repetition of labels are allowed.

Corollary 4.1.6. Every tree admits a relaxed harmonious labeling in which one more label
2p is allowed. Furthermore, every tree with an extra edge that makes a unique even cycle
admits relaxed harmonious labeling.

Proof. The result follows from Theorem 4.1.3, Theorem 4.1.4, and Theorem 4.1.5

Corollary 4.1.6 indicates that two classes of graphs, i.e., trees and tress with an extra edge
that makes a unique even cycle, satisfy the relaxed version of the Harmonious Tree Conjec-
ture (Conjecture 2.1.3).

In Section 4.2, we use the language of generating functions and [52, Theorem 4.5.11] to prove
Theorem 4.1.4 and Theorem 4.1.5. Moreover, we employ Theorem 4.1.3 to show that trees
and trees with an extra edge that makes a unique even cycle admits relaxed version of the
Harmonious Tree Conjecture (Conjecture 2.1.3).

4.2 Enumerating Super Edge-Magic Labeling

Define Φ to be the set of all tuples (L, k) where L is an edge-magic (0, k)-total labeling. If
L ∈ Φ is an edge-magic (0, k)-total labeling and L′ ∈ Φ is an edge-magic (0, k′)-total labeling,
then L+L′ is an edge-magic (0, k+k′)-total labeling. Thus Φ is a semigroup with identity 0.

For the next step, we will use the language of generating functions over the monoid Φ.
We write every edge-magic (0, k)-total labeling as a monomial to encode the information
contained by the labelings. Define the generation function

F (X, Y, z) = F (x1, . . . , xp, y1, . . . , yq, z) =
∑

(L,k)∈Φ

x
L(v1)
1 · · · xL(vp)

p y
L(e1)
1 · · · yL(eq)

q zk, (4.1)
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where the sum ranges over all edge-magic (0, k)-total labelings L of G.

Let MG(k) be the number of all edge-magic (0, k)-total labelings. Note that if we plug in
1 = (1, . . . , 1) for (x1, . . . , xp, y1, . . . , yq) in the generating function F , we can count all the
edge-magic (0, k)-total labelings:

F (1, z) =
∑

(L,k)∈Φ

1L(v1) · · · 1L(vp) 1L(e1) · · · 1L(eq) zk =
∑
k≥0

MG(k) zk. (4.2)

Similar to the procedure described in Section 3.2, we now employ [52, Theorem 4.5.11] to
analyze the structure of our generating function.
Therefore, we need to know some information about completely fundamental elements of Φ.
As we will discuss later in this section, for a tree T the set of all super edge-magic (1, p, p)-
total labelings and the set of all edge-magic (1, p)-total labelings are in bijection. Therefore,
we focus on trees and we try to find a description of the generating function F (1, z) for a
tree T . The next lemma describes the fundamental elements of Φ for bipartite graphs. Note
that a tree is a bipartite graph.

Lemma 4.2.1. Let G be a bipartite graph. Every completely fundamental edge-magic (0, k)-
total labeling of G has k = 1.

Proof. We will prove the lemma by induction on the magic invariant. Let L be an edge-
magic (0, k)-total labeling with the magic invariant c. If c = 0, then all the labels of L are
0. If c = 1, then for every edge {u, v} ∈ E, one of the labels L(u), L(v), or L(e) is 1 and
the others are 0. L can not be decomposed further and so it is a completely fundamental
edge-magic (0, 1)-total labeling.

Assume that we can decompose every edge-magic (0, k)-total labeling with magic invariant
≤ n as linear combination of edge-magic (0, 1)-total labelings. Now let L be an edge-magic
(0, k)-total labeling with magic invariant n + 1. We will show that we can write L as the
linear combination of edge-magic (0, 1)-total labelings.

Take the minimum vertex label mv of L. If mv ≥ 1, subtract it from all the vertex labels
and so the magic invariant reduces by 2mv. Similarly, take the minimum edge label me of L.
If me ≥ 1, subtract it from all the edge labels and so the magic invariant reduces by me. By
induction, we can decompose the resulting labeling into completely fundamental edge-magic
(0, 1)-total labelings. Therefore, we may assume that minimum vertex and edge labels of L
are 0. Now assume that the vertices w1, . . . , wn ⊆ V have maximum vertex label m > 0.
There are two cases:

C ase 1: If none of w1, . . . , wn are adjacent to each other, subtract 1 from w1, . . . , wn and
all the edges that are not incident with w1, . . . , wn. The labels of the other vertices and
edges remain the same. Note that since the magic invariant is fixed, the labels of the
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edges incident with w1, . . . , wn have smaller values than edges not incident with w1, . . . , wn.
Since the magic invariant of L is n+ 1, the new edge-magic labeling L′ has magic invariant
< n+ 1. By induction, we can decompose L′ into completely fundamental edge-magic (0, 1)-
total labelings L1, . . . , Lr. Let L′′ be an edge labeling on G with 1 on the vertices w1, . . . , wn
and 1 on the edges not incident with w1, . . . , wn. So we have:

L = L′′ +
i=r∑
i=0

aiLi.

C ase 2: If the graph induced by w1, . . . , wn forms a forest F that contains at least one
edge, let W1, . . . ,Ws be the connected components of F that are not isolated vertices. By
definition, each Wi is bipartite. Therefore for every 1 ≤ i ≤ s, there exist nonempty disjoint
sets Ai and Bi such that Wi = Ai ∪ Bi and every edge of Wi connects a vertex of Ai to a
vertex of Bi. Now subtract 1 from all the isolated vertices of F , all the vertices of Ai for
every 1 ≤ i ≤ s, and all the edges of G that are not incident with the vertices whose labels
were reduced. The labels of the other vertices and edges remain the same. Note that there
are three kinds of edges in G:

1. The edge e1 is adjacent with two vertices of F, so the label of e1 is L(e1) = c−m−m.

2. The edge e2 is adjacent with a vertex in F and a vertex v /∈ F, so the label of e2 is
L(e2) = c−m− L(v).

3. The edge e3 is adjacent with the vertices u, v /∈ F , so the label of e3 is L(e3) =
c− L(u)− L(v).

Clearly, L(e1), L(e2) < L(e3). Therefore, L(e) 6= 0 for any edge e that is not incident with
vertices of F , that is, we can safely subtract 1 from these edges. Thus, the new edge-magic
labeling L′ has magic invariant < n+1. The induction would be similar to the Case 1, where
can decompose L′ into completely fundamental edge-magic (0, 1)-total labelings.

In both cases, take L′′ to be a labeling on G with 1 on the vertices and edges whose labels
were reduced, and 0 on other vertices and edges. Therefore, L = L′ + L′′. Based on the
induction step, L is a linear combination of completely fundamental edge-magic (0, 1)-total
labelings.

Theorem 4.2.2. Let G be a bipartite graph. The number MG(k) of edge-magic (0, k)-total
labelings is a polynomial in k with degree p.

Proof. By (4.2) and [52, Theorem 4.5.11], the function

F (1, z) =
∑
k≥0

MG(k) zk
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is a rational function with denominator

D(z) =
∏

(L,k)∈CF(Φ)

(
1− zk

)
, (4.3)

where CF(Φ) is the set of completely fundamental elements of Φ. According to Lemma 4.2.1,
every completely fundamental element of Φ has k = 1. Therefore,∑

k≥0

MG(k) zk =
h(z)

(1− z)a
(4.4)

for some nonnegative integer a and some polynomial h(z). Basic results on rational generat-
ing functions (see, e.g., [52]) imply that MG(k) is a polynomial in k. For the degree of this
polynomial, we consider the system of equations coming from the definition of edge-magic
(0, k)-total labelings. More specifically, we introduce a variable 0 ≤ xe ≤ k for each edge
e ∈ E and a variable 0 ≤ xv ≤ k for each v ∈ V . By definition, there is a homogeneous
system of equations. The matrix of coefficients, [ Iq×q |Aq×p ] where Aq×p is an integer matrix,
has rank q. Therefore, the degree of the polynomial MG(k) is p+ q − q.

We now consider the edge-magic (0, k)-total labelings of a graph G geometrically. That
is, every edge-magic (0, k)-total labeling with magic invariant c corresponds to an integer
solution of the system of equations and inequalities

xei + xu + xv = xei+1
+ xz + xw and 0 ≤ xu, xv, xz, xw, xei , xei+1

≤ 1, (4.5)

for every 1 ≤ i ≤ q − 1, where ei = {u, v} and ei+1 = {z, w} are in E. These equations
describe a rational polytope P . Similar to Section 3.2, an edge-magic (0, k)-total labelings
of G is an integer lattice point in the k-dilation of P , i.e.,

MG(k) = EP(k).

Let M◦
G(k) be the number of edge-magic (1, k)-total labelings on G. Thus M◦

G(k) = EP◦(k+
1), where P◦ is the relative interior of the polytope P . By Ehrhart’s theorem, EP(t) is a
quasi-polynomial in t of degree dimP [5]. Also, the Ehrhart–Macdonald reciprocity theorem
for rational polytopes [5] implies that:

Corollary 4.2.3. Let G be a graph. Then M◦
G(k) = ± MG(−k − 1). In particular, If G is

a bipartite graph MG(k) and M◦
G(k) are both polynomials in k with the same degree.

Let T = (V,E) be a tree; so here p = q+ 1. We remark that there is a bijection between the
set of all super edge-magic (1, p, p)-total labelings and the set of all edge-magic (1, p)-total
labelings of T . Namely, given a super edge-magic labeling f : V ∪ E → {1, . . . , 2p} with
magic invariant c, define g : V ∪ E → Z≥0 by g(v) = f(v) for all v ∈ V and g(e) = f(e)− p
for all e ∈ E. The magic invariant of g is g(u) + g(v) + g(e) = c− p, then g is an edge-magic
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(1, p)-total labeling.

Conversely, let g : V ∪E → Z≥0 be an edge-magic (1, p)-total labeling with magic invariant
c. For every v ∈ V and e ∈ E define f(v) = g(v) and f(e) = g(e) + p. Then the magic
invariant of f is f(v) + f(u) + f(e) = c + p. This proves that f is a super edge-magic
(1, p, p)-labeling. Through this bijection we can extend our results for edge-magic labeling
to super edge-magic labelings in trees.

Proof of Theorem 4.1.4. By Theorem 4.2.2, the number of edge-magic (1, k)-total labelings
M◦

T (k) is a polynomial of degree p which can have at most p integer roots. By definition
P ⊆ [0, 1]V and so M◦

T (0) = LP◦(1) = 0. Therefore one of the roots is 0. On the other
hand, by definition M◦

T (k) ≤M◦
T (k + 1) for k ≥ 0 and consequently M◦

T (p) > 0. Since there
is a bijection between the set of all super edge-magic (1, p, p)-total labelings and the set of
all edge-magic (1, p)-total labelings, M◦

T (p) > 0 implies that T admits a super edge-magic
(1, p, p)-total labeling. The second part of the statement follows similarly.

Now let Tc be a tree with one extra edge that makes a unique even cycle, then p = q. We have
the same bijection as for trees between the set for all super edge-magic (1, p, p)-total labelings
and the set of all edge-magic (1, p)-total labelings. Moreover, the completely fundamental
elements of the semigroup Φ have the same property as trees.

Lemma 4.2.4. If Tc is a tree with one unique even cycle such that p = q, then every
completely fundamental edge-magic (0, k)-total labeling of Tc has k = 1.

Proof. This is similar to the proof of Lemma 4.2.1, since every even cycle is bipartite.

Theorem 4.2.5. Let Tc be a tree with one unique even cycle such that p = q. The number
MTc(k) of edge-magic (0, k)-total labelings of Tc is a polynomial in k with degree p.

Proof. This is similar to the proof of Theorem 4.2.2.

Theorem 4.2.5 implies that for a tree with one unique cycle Tc we have a chance of using
the polynomial structure of MTc(k) to say something about the edge-magic character of Tc,
in a non-injective sense. Specifically, the proof of Theorem 4.1.5 is similar to the proof of
Theorem 4.1.4.
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Chapter 5

Bivariate Order and Chromatic
Polynomials

5.1 Background

The chromatic polynomial was introduced by George David Birkhoff in 1912 [12], for pla-
nar graphs, in an attempt to prove the Four Color Theorem. The chromatic polynomial
counts the number of vertex colorings of a graph using at most a given number of colors such
that adjacent vertices receive different colors. Birkhoff was hoping that by studying roots
of polynomials and applying tools from analysis and algebra, he can say something about
the chromatic number, the minimum number of colors required to color vertices of a graph
properly.

In 1932, the chromatic polynomial was generalized from planar graphs to general graphs by
Hassler Whitney [61]. Later in 1967, Reed [43] studied the polynomials that can be chro-
matic polynomial of some graph and the concept of chromatically equivalent graphs, i.e.,
graphs that have the same chromatic polynomials, was introduced [43].

Tutte [57, 56] generalized the chromatic polynomial to the Tutte polynomial, which is a two
variable function that contains information on how the graph is connected. By setting one
of the variables equals to zero we get the chromatic polynomial or the flow polynomial. In
2003, Dohmen et.al. [20] proposed a different generalization and introduced a two-variable
version of the classic chromatic polynomial by adding improper colors.

Let G = (V,E) be a graph and y ≤ x. A vertex (x, y)-coloring of G is a map ϕ : V → [x].
The map is called proper if for all {u, v} ∈ E with ϕ(u) ≤ y and ϕ(v) ≤ y the relation
ϕ(u) 6= ϕ(v) holds. Consequently, adjacent vertices can be colored with the same color only
if the color is ≥ y + 1. The colors ≤ y are called proper and the colors ≥ y + 1 are called
improper. Dohmen et.al. [20] introduced the bivariate chromatic polynomial which is a gen-
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eralization of classic chromatic polynomial into two variables by weakening the requirements
and allowing improper colors.

By the following theorem, the function PG(x, y) that counts the number of proper vertex
(x, y)-coloring of G is in fact a polynomial and thus is called the bivariate chromatic
polynomial or generalized chromatic polynomial of G.

Theorem 5.1.1. [20] Let G be a finite graph and y ≤ x positive integers. Then PG(x, y) is
a polynomial in y and x with integral coefficients.

Dohmen et.al. showed that PG(x, y) is closely related to Stanley’s chromatic symmetric
function and it generalizes the matching polynomial [20].

Let us go over some interesting properties of the two-variable chromatic polynomial. When
the set of proper colors is empty, we get PG(x, 0) = xp, where p = |V |. Also, note that
if the set of improper colors is empty, we get the one-variable chromatic polynomial, that
is PG(y, y) = PG(y). Therefore, the bivariate chromatic polynomial generalizes the classic
chromatic polynomial. The following theorem shows that the PG(x, y) can be expressed in
terms of bivariate chromatic polynomials of subgraphs of G:

Theorem 5.1.2. [20] Let G be a graph and y ≤ x. Then

PG(x, y) =
∑
X⊆V

(x− y)|X| PG−X(x, y)

where G−X is a subgraph of G obtained from G by removing all vertices of a subset X ⊆ V .

An independent vertex set of G is a subset of the vertices such that no two vertices in
the subset represent an edge of G. Let ai denote the number of independence vertex sets of
cardinality p−i, where p is the number vertices of G. Then the independence polynomial
of G is defined by IG(x) =

∑n
i=0 aix

i. Using Theorem 5.1.2, we can show that the bivariate
chromatic polynomial generalizes the independence polynomial:

Corollary 5.1.3. [20]
IG(x) = PG(x+ 1, 1).

In particular, PG(2, 1) is the number of independent vertex sets of G.

The next theorem gives us a recursive formula via deletion-contraction for bivariate chromatic
polynomial.

Theorem 5.1.4. [20] Let e be an edge in G, and let v be the vertex to which e contracts in
G/e. Then

PG(x, y) = PG−e(x, y)− PG/e(x, y) + xPG/e−v(x, y).
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Note that the bivariate chromatic polynomial is not an evaluation of Tutte polynomial [57,
56]. Namely, the Tutte polynomial for every tree with n vertices is TG(x, y) = xn−1. How-
ever, the bivariate chromatic polynomial of a path with 4 vertices is PT4(x, y) = x4− 3x2y+
y2 + 2xy − y. For more details and properties of bivariate chromatic polynomials, we refer
to [20].

In this chapter, we propose generalizations of two fundamental results on classic chromatic
polynomial to bivariate chromatic polynomial. The first one is the Chromatic Polynomial
Decomposition Theorem (Theorem 2.3.4) which connecting the graph coloring to posets.

The second result gives a combinatorial interpretation to the evaluation of chromatic polyno-
mial at negative integers, which involves acyclic orientations of the graph defined in Section
2.3. Let α be an acyclic orientation and ϕ : V → {1, . . . , x} be a (not necessarily proper)
vertex x-coloring of G. ϕ is said to be compatible with α if u → v in the orientaion α
implies ϕ(u) ≥ ϕ(v).

Theorem 5.1.5 (Chromatic Polynomial Reciprocity Theorem [50]). Let G be a graph
with p vertices. Then (−1)pPG(−x) equals the number of pairs (α, ϕ) consisting of an acyclic
orientation α of G and a compatible x-coloring ϕ. In particular, (−1)pPG(−1) equals the
number of acyclic orientations of G.

In section 5.2, we introduce bicolored posets and we generalize order polynomials to two
variables. Also, we will find a direct formula for computing bivariate order polynomials
(which is, in fact, a generalization of Theorem 2.3.2). In section 5.3, we use our results for
bivariate order polynomials to generalize the Chromatic Polynomial Decomposition Theorem
(Theorem 2.3.4). Lastly, in section 5.4, we generalize the Chromatic Polynomial Reciprocity
Theorem (Theorem 5.1.5).

5.2 Bivariate Order Polynomials

We begin this section by introducing bicolored posets. Bivariate order polynomials will be
defined on bicolored posets.

Definition 5.2.1. The triple (P,C,�) is called a bicolored poset if (P,�) is a poset and
P is a disjoint union of C and S, where we think of C as the set of celeste elements and S
as the set of silver elements. A bicolored chain is a bicolored poset that is a chain. We
will simply use the notation P for bicolored poset (P,C,�).

Definition 5.2.2. Let P be a bicolored poset and y ≤ x be positive integers. A map
ϕ : P → [x] is a (weakly) order preserving (x, y)-map if for all the celeste elements
c ∈ C, the relation ϕ(c) ≥ y holds and for all a, b ∈ P,

a � b −→ ϕ(a) ≤ ϕ(b).
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Similarly, a map ϕ is an strictly order preserving (x, y)-map if for all the celeste elements
c ∈ C, the relation ϕ(c) > y holds and for a, b ∈ P,

a ≺ b −→ ϕ(a) < ϕ(b).

The functions ΩP (x, y) and Ω◦P (x, y) count the number of order preserving (x, y)-maps and
strictly order preserving (x, y)-maps, respectively. If y = x, then ΩP (x, y) and Ω◦P (x, y) are
the usual order polynomials defined in Section 2.3.

Example 5.2.3. Consider the bicolored chain P : {a1, a2}, a1 � a2, where a2 is the celeste
element. We would like to find all possible strictly order preserving (x, y)-maps ϕ : P → [x]
such that ϕ(a2) > y. The first case is

1 ≤ ϕ(a1) ≤ y < ϕ(a2) ≤ x.

This gives us y choices for ϕ(a1) and x− y choices for ϕ(a2). The second case is

1 ≤ y < ϕ(a1) < ϕ(a2) ≤ x

which gives us
(
x−y

2

)
choices for ϕ(a1) and ϕ(a2). Therefore the bivariate order polynomial

of P is Ω◦P (x, y) = y(x− y) +
(
x−y

2

)
= 1

2
(x2 − x− y2 − y) which is indeed a polynomial.

Like for one-variable order polynomials, we want to show that the bivariate order polynomi-
als, ΩP (x, y) and Ω◦P (x, y), are in fact polynomials. We will prove this in three steps:

1. we show polynomiality of bivariate order functions for a bicolored chain (Theorem
5.2.5),

2. we prove polynomiality of bivariate order polynomials for linear extensions of a bicol-
ored poset (Theorem 5.2.8),

3. and finally, we show that the bivariate order polynomials of a bicolored poset can be
decomposed into that of linear extensions (Theorem 5.2.10).

As a result of each of these steps, we will discover a reciprocity between bivariate order
polynomials ΩP (x, y) and Ω◦P (x, y). We start with a practical lemma which we will be using
in our proofs later.

Lemma 5.2.4. [52] Consider the sets A = {x ∈ Zd : a ≤ x1 < · · · < xd ≤ b} and
B = {x ∈ Zd : a ≤ x1 ≤ · · · ≤ xd ≤ b}. The cardinality of these sets are

(
b−a+1
d

)
and(

b−a+d
d

)
, respectively.

Theorem 5.2.5. If P = {a1 < · · · < ak < ak+1 < · · · < an} is a bicolored chain of length n
and ak+1 ∈ C is the minimal celeste element in P , then

Ω◦P (x, y) =
k∑
i=0

(
y

i

)(
x− y
n− i

)
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and

ΩP (x, y) =
k∑
i=0

(
y − 2 + i

i

)(
x− y + n− i

n− i

)
.

Proof. First, we count the number of strictly order preserving maps ϕ : P → [x] with
ϕ(ak+1) > y. This gives us a set of inequalities for ϕ with k + 1 cases for which the number
of possible maps follow by Lemma 5.2.4. The first case is

1 ≤ ϕ(a1) < · · · < ϕ(ak) ≤ y < ϕ(ak+1) < · · · < ϕ(an) ≤ x.

There are
(
y
k

)(
x−y
n−k

)
possible maps ϕ. For the second case

1 ≤ ϕ(a1) < · · · < ϕ(ak−1) ≤ y < ϕ(ak) < · · · < ϕ(an) ≤ x,

there are
(
y
k−1

)(
x−y

n−k+1

)
possible maps ϕ. We repeat this process as above. In the last case

1 ≤ y < ϕ(a1) < · · · < ϕ(an) ≤ x,

there are
(
y
0

)(
x−y
n

)
possible maps ϕ. The result will follow by adding up all the possible maps.

Now we count the number of weakly order preserving maps ϕ : P → [x] with ϕ(ak+1) ≥ y.
There are k+1 cases. To avoid over counting, we set one inequality strict. For the first case,

1 ≤ ϕ(a1) ≤ · · · ≤ ϕ(ak) < y ≤ ϕ(ak+1) ≤ · · · ≤ ϕ(an) ≤ x,

there are
(
y−1−1+k

k

)(
x−y+n−k

n−k

)
possible maps. For the second case,

1 ≤ ϕ(a1) ≤ · · · ≤ ϕ(ak−1) < y ≤ ϕ(ak) ≤ · · · ≤ ϕ(an) ≤ x,

There are
(
y−1−1+k−1

k−1

)(
x−y+n−k+1

n−k+1

)
possible maps. We proceed until the last case

1 ≤ y ≤ ϕ(a1) ≤ · · · ≤ ϕ(an) ≤ x,

with
(
y−1+0

0

)(
x−y+n

n

)
possible maps ϕ. The result will follow by adding up all the possible

maps.

The following corollary gives us reciprocity between Ω◦P (x, y) and ΩP (x, y) for bicolored
chains which will be generalized to bicolored posets in Theorem 5.2.12.

Corollary 5.2.6. Let P = {a1 < · · · < ak < ak+1 < · · · < an} be a bicolored chain of length
n where ak+1 ∈ C is the minimal celeste element in P . Then

Ω◦P (−x,−y) = (−1)n ΩP (x, y + 1).
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Proof. We will be using the identity (−1)d
(−n
d

)
=
(
n+d−1

d

)
. By Theorem 5.2.5, we have

Ω◦P (−x,−y) =
k∑
i=0

(
−y
i

)(
−x+ y

n− i

)

=
k∑
i=0

(−1)i
(
y + i− 1

i

)
(−1)n−i

(
x− y + n− i− 1

n− i

)
= (−1)nΩP (x, y + 1).

The natural and reverse labelings and also linear extensions on the bicolored posets will be
defined similar to those of posets in Section 2.3. For any given linear extension L = {a1 <
a2 < . . . < an} on the bicolored poset P and the labeling ω : P → [n], we associate the word
ωL = ω1 · · ·ωn where ωi = ω(ai). An order preserving (x, y)-map ϕ of L is of type-ωL if for
i ∈ Asc(ωL) we have ϕ(ai) ≤ ϕ(ai+1), and for i ∈ Des(ωL) we have ϕ(ai) < ϕ(ai+1).

Let ΩωL
(x, y) count the number of type-ωL order preserving (x, y)-maps where ϕ(c) ≥ y

for the minimal celeste element c ∈ L. Similarly, Ω◦ωL
(x, y) counts the number of type-ωL

strictly order preserving (x, y)-maps where ϕ(c) > y.

Example 5.2.7. Consider the poset on P and labeling ω in the Figure 5.3. For the linear ex-
tension L1, L2, and L3 the associated words are ωL1 = 12345, ωL2 = 12435, and ωL3 = 14235,
respectively.

a

b

c
d

e

c

a

b

c

d

e

a

b

d

c

e

a

d

b

c

e

!" !# !$%

2
4

1

3

5

Figure 5.1: A bicolored poset P with labeling ω and its linear extensions L1, L2, and L3.

We will compute a type-ωL3 order preserving (x, y)-map ϕ and the rest can be computed
similarly. The word ωL3 = 14235 has a descent at i = 2. Thus, a type-14235 order preserving
(x, y)-map satisfies the set of inequalities

1 ≤ ϕ(a) ≤ ϕ(d) < ϕ(b) ≤ ϕ(c) ≤ ϕ(e) ≤ x (5.1)
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and ϕ(c), ϕ(e) > y. We are able to remove equalities by defining a bijection ϕ → ϕ̄ as
following:

ϕ̄(a) = ϕ(a),

ϕ̄(d) = ϕ(d) + asc(14) = ϕ(d) + 1,

ϕ̄(b) = ϕ(b) + asc(142) = ϕ(b) + 1,

ϕ̄(c) = ϕ(c) + asc(1423) = ϕ(c) + 2,

ϕ̄(e) = ϕ(e) + asc(14235) = ϕ(e) + 3.

Therefore, (5.1) becomes

1 ≤ ϕ̄(a) < ϕ̄(d) < ϕ̄(b) < ϕ̄(c) < ϕ̄(e) ≤ x+ 3.

By definition ϕ(c) > y, so ϕ̄(c) > y + 2. By Theorem 5.2.5 with x− 3 and y − 2,

Ω◦L3
(x, y) =

2∑
i=0

(
y − 2

i

)(
x− 3− y + 2

5− i

)
.

The proof of the next theorem is coming from the idea of this example.

Theorem 5.2.8. Consider the linear extension L = {a1 < · · · < an} of a bicolored poset
P with the fixed labeling ω and the associated word ωL = ω(a1) · · ·ω(an). Let ak+1 be the
minimal celeste element in L and let w̃L = ω(a1) · · ·ω(ak+1). Then

Ω◦ωL
(x, y) =

k∑
i=0

(
y − asc(ω̃L)

i

)(
x− y + asc(ω̃L)− asc(ωL)

n− i

)
and

ΩωL
(x, y) =

k∑
i=0

(
y − des(ω̃L)− 2 + i

i

)(
x− y + des(ω̃L)− des(ωL) + n− i

n− i

)
.

Proof. We want to count the number of (x, y) order preserving maps ϕ : L→ [x] of type-ωL.
The map ϕ gives the set of inequalities ϕ(ak+1) > y, ϕ(ai) ≤ ϕ(ai+1) if i is an ascent of ωL,
and ϕ(ai) < ϕ(ai+1) if i is a descent of ωL. We eliminate weak inequalities by creating a
bijection ϕ→ ϕ̄ defined by ϕ̄(a1) = ϕ(a1) and

ϕ̄(ai) = ϕ(ai) + asc (ω(a1) · · ·ω(aj) ) for 2 ≤ i ≤ n.

If i ∈ Des(ωL), then asc (ω(a1) · · ·ω(ai+1) )− asc (ω(a1) · · ·ω(ai) ) = 0. Thus,

ϕ(ai) < ϕ(ai+1) −→ ϕ̄(ai) < ϕ̄(ai+1).

If i ∈ Asc(ωL), then asc (ω(a1) · · ·ω(ai+1) )− asc (ω(a1) · · ·ω(ai) ) = 1. Thus,

ϕ(ai) ≤ ϕ(ai+1) −→ ϕ̄(ai) < ϕ̄(ai+1).
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Hence, ϕ̄ is a strictly increasing function with ϕ̄(ak+1) > y + asc(ω̃L) and

1 ≤ ϕ̄(a1) < · · · < ϕ̄(an) ≤ x+ asc(ωL).

Let X = x + asc(ωL) and Y = y + asc(ω̃L). Therefore, by Theorem 5.2.5 with X − asc(ωL)
and Y − asc(ω̃L), the total number of type-ωL order preserving (x, y)-maps follows.

The second part is similar to the first part except we need to replace all ascents by descents
and again use Theorem 5.2.5.

The inverse of ω = ω1 · · ·ωn is the word ω̄ defined by ω̄j → ωn+1−j. This changes all
ascents to descents and vice versa in the original word ω. In particular, asc(ωL) = des(ω̄L)
and des(ωL) = asc(ω̄L).

Corollary 5.2.9. Consider the linear extension L = {a1 < · · · < an} of a bicolored poset P
with a fixed labeling ω and associated word ωL = ω(a1) · · ·ω(an). Then

Ω◦ωL
(−x,−y) = (−1)n Ωω̄L

(x, y + 1).

Proof. Let ak+1 be the minimal celeste element in L and let ω̃L = ω(a1) · · ·ω(ak+1). Since
asc(ω̃L) = des(¯̃ωL), we see that

Ω◦ωL
(−x,−y) =

k∑
i=0

(
−y + asc(ω̃L)

i

)(
−x+ y + asc(ω̃L)− asc(ωL)

n− i

)

=
k∑
i=0

(−1)n
(
y − asc(ω̃L) + i− 1

i

)(
x− y − asc(ω̃L) + asc(ωL) + n− i− 1

n− i

)

= (−1)n
k∑
i=0

(
y − des(¯̃ωL) + i− 1

i

)(
x− y − 1− des(¯̃ωL) + des(ω̄L) + n− i

n− i

)
= (−1)n Ωω̄L

(x, y + 1).

The following theorem shows that we can decompose bivariate order functions of a poset
into those of its linear extensions.

Theorem 5.2.10. Let P be a bicolored poset with a fixed reverse natural labeling ω. Then

Ω◦P (x, y) =
∑
L

Ω◦ωL
(x, y).

If τ is a fixed natural labeling, then

ΩP (x, y) =
∑
L

ΩτL (x, y)

where both sums are over all possible linear extensions L of P .
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Proof. We will show that there is a bijection between the set of strictly order preserving
(x, y)-maps ϕ and the set of all the pairs of (L, ϕ̂), where L is a linear extension and ϕ̂ is a
type-ωL map on the bicolored poset P . Suppose ϕ is a strictly order preserving (x, y)-map.
We will build a linear extension L as following. Let ai, aj ∈ P .

• If ϕ(ai) < ϕ(aj), then let ai ≺ aj in L. Note that ω(ai) > ω(aj) due to the natural
reverse labeling.

• If ϕ(ai) = ϕ(aj) with ω(ai) < ω(aj), then let ai ≺ aj in L.

• If ϕ(ai) = ϕ(aj) with ω(ai) > ω(aj), then let ai � aj in L.

This gives us the linear extension L with associated word ωL. By construction, our strictly
order preserving map ϕ is of type-ωL.

Conversely, let L be a linear extension of P and let ϕ̂ be a type-ωL map. Type-ωL maps agree
with strictly order preserving maps between comparable elements in a poset by definition.
The map ϕ̂ may give us weak or strict inequalities between incomparable elements in P .
Strictly order preserving maps place no restrictions on what happens between incomparable
elements in the poset. Thus, ϕ̂ is also a strictly order preserving map on P . Let L1 and
L2 be two different linear extensions of P . Then there must be at least one pair ai, aj ∈ P
where ai ≺ aj in L1 and ai � aj in L2. This means we have an ascent in one of the associated
words from the linear extensions and a descent in the same spot in the other word. Hence,
the type-ωL maps are distinct.

The proof of the second part is similar to that of the first part with one major difference.
Here we have τ(ai) < τ(aj) when ai ≺ aj in the linear extension L due to the natural
labeling.

Based on Theorem 5.2.10, we can write the bivariate order polynomial of a bicolored poset
as the combination of bivariate order polynomials of its linear extensions. Since by Theorem
5.2.8, the counting functions ΩωL

(x, y) and Ω◦ωL
(x, y) are the sums of polynomials (product

of binomial coefficients are polynomial), we have:

Theorem 5.2.11. Let P be a bicolored poset. Then ΩP (x, y) and Ω◦P (x, y) are polynomials
in x and y.

Proof. Follows by Theorem 5.2.8 and 5.2.10.

The following theorem is a generalization of the Order Polynomial Reciprocity Theorem
(Theorem 2.3.3) to the bivariate version.

Theorem 5.2.12 (Bivariate Order Polynomial Reciprocity Theorem). Let P be a
bicolored poset with n elements. Then

Ω◦P (−x,−y) = (−1)n ΩP (x, y + 1).
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Proof. Fix a natural reverse labeling ω of P . Then ω̄ is a natural labeling. Using Theorem
5.2.10 and Corollary 5.2.9,

Ω◦P (−x,−y) =
∑
L

Ω◦ωL
(−x,−y)

= (−1)n
∑
L

Ωω̄L
(x, y + 1)

= (−1)n ΩP (x, y + 1).

5.3 Bivariate Chromatic Polynomials

One of our goals is to find a relation between bivariate chromatic polynomials and order
polynomials. More specifically, we would like to generalize the Chromatic Polynomial De-
composition Theorem (Theorem 5.1.5) to a bivariate version.

Given a graph G and a vertex (x, y)-coloring ϕ : V → [x] with y ≤ x, let H be the graph
obtaining from contracting all edges that are adjacent with vertices of the same colors ≥ y+1.
For any edge e = (u, v) in H, we orient u → v if ϕ(u) > ϕ(v). Therefore, ϕ induces an
acyclic orientation σ on H. As described in Section 2.3, σ gives rise to a poset P . We color
the contracted vertices of H celeste and the others silver. Therefore, P is a bicolored poset.
Then, we compute bivariate order polynomial of P . Let us note that if we do not contract
any vertices, then we have the one variable case of the chromatic polynomials. Therefore,
we have the following theorem:

Theorem 5.3.1 (Bivariate Chromatic Polynomial Decomposition Theorem). Let
G be a finite graph and y ≤ x be positive integers. Let C(H) be the set of celeste elements
that come from the contracted vertices of H. Then,

PG(x, y) =
∑
flat

H of G

∑
acyclic

orientation
σ of H

Ω◦P (σ), C(H)(x, y)

where P (σ) is the poset corresponding to the acyclic orientation σ of H and Ω◦P (σ),C(H)(x, y)

counts the number of order preserving (x, y)-map of P (σ) in which for all c ∈ C(H), the
relation ϕ(c) > y holds.

Proof. Let ϕ be a proper (x, y)-coloring of G. Let H = (V (H), E(H)) be the graph obtained
by contracting every edge whose endpoints have the same color. The coloring ϕ induces an
acyclic orientation σ of H as following. For every {u, v} ∈ E(H), if ϕ(u) < ϕ(v) then we
orient v → u. We regard σ as a poset P (as we described in Section 2.3) and the contracted
vertices of H as the celeste elements C(H) of P . Therefore P is a bicolored poset and the
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(x, y)-coloring ϕ can be thought as an order preserving (x, y)-map on P such that for all
c ∈ C(H), the relation ϕ(c) > y holds.

Conversely, let H be a contracted subgraph of G with acyclic orientation σ and a strictly
order preserving map ϕ of H. The strict order preserving (x, y)-map ϕ has an order on H
and so the vertices of H gets different colors. We color the vertices of G corresponding to the
contracted edges by the same color. Therefore, this coloring of G will become a generalized
proper coloring of G. Thus, the result follows.

Example below illustrates the proof of Theorem 5.3.1.

Example 5.3.2. Consider the complete graph K3 and decompose it into possible contrac-
tions. We denote vij as the resulting vertex after contracting the edge vivj. We color the
contracted vertices celeste and the others silver, Figure 5.3.2.
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Figure 5.2: Contractions of K3.
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Figure 5.3: Acyclic orientations of contractions of K3.

Then we find all the possible acyclic orientations of the contracted graphs, Figure 5.3.2. We
regard each acyclic orientation as a bicolored poset. Then we compute the bivariate order
polynomial of each poset as following:

No contractions : we have the one variable case, PK3(x) = x3 − 3x2 + 2x.
Contract one edge: we have two acyclic orientations that lead to two posets, P1 and P2.

Ω◦P1,v12
(x, y) =

(
x− y

2

)
+ (x− y)y Ω◦P2,v12

(x, y) =

(
x− y

2

)
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Contract two edges : Ω◦P,v123(x, y) = x− y.
Thus,

PK3(x, y) = PK3(x) + 3Ω◦P1,v12
(x, y) + 3Ω◦P2,v12

(x, y) + Ω◦P,v123(x, y) = x3 − 3xy + y.

5.4 Bivariate Graph Coloring Reciprocity

In this section, we will prove a generalization of the reciprocity theorem for chromatic poly-
nomials (Theorem 5.1.5) to bivariate chromatic polynomials.

We recall that for a given acyclic orientation σ on a graph G and a map ϕ : V → [x], we say
that σ is compatible with ϕ if u→ v in the orientation σ implies ϕ(u) ≥ ϕ(v).

Theorem 5.4.1 (Bivariate Chromatic Polynomial Reciprocity Theorem). Let G =
(V,E) be a graph. Then

PG(−x,−y) =
∑
flat

H of G

(−1)|V (H)|MH(σ, ϕ),

where MH(σ, ϕ) is the number of pairs (σ, ϕ) consisting of an acyclic orientation σ of H and
a proper coloring ϕ : V (H)→ [x] compatible to σ, where V (H) is the vertex set of H.

Proof. By Theorem 5.3.1,

PG(−x,−y) =
∑
flat

H of G

∑
acyclic

orientation
σ of H

Ω◦P (σ), C(H)(−x,−y).

Now by the Bivariate Order Polynomial Reciprocity Theorem (Theorem 5.2.12),

PG(−x,−y) =
∑
flat

H of G

∑
acyclic

orientation
σ of H

(−1)|V (H)|ΩP (σ), C(H)(x, y + 1),

where ΩP (σ), C(H)(x, y + 1) counts the number of order preserving maps ϕ : P (σ) → [x],
subject to two conditions:

1. For any celeste element c ∈ C(H), the relation ϕ(c) ≥ y + 1 holds,

2. ϕ is compatible with the acyclic orientation σ.

The second condition is because P (σ) is the poset corresponding to the acyclic orientation
σ of H. Let

MH(σ, ϕ) :=
∑

acyclic
orientation
σ of H

ΩP (σ),C(H)(x, y + 1).
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Thus, MH(σ, ϕ) counts the number of pairs (σ, ϕ) where σ is an acyclic orientation of H and
ϕ : V (H) → [x] is a proper coloring compatible to σ such that for c ∈ C(H), the relation
ϕ(c) ≥ y + 1 holds.

Let us note that when there are no improper colors, we do not need to contract any edges of
the graph. Therefore, the one-variable Chromatic Polynomial Reciprocity Theorem (Theo-
rem 5.1.5) follows as a special case.
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Acad. Sci. Paris 254 (1962), pp. 616–618.

[23] R. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle. “The place of super edge-
magic labelings among other classes of labelings”. In: Discrete Math. 231.1-3 (2001).
17th British Combinatorial Conference (Canterbury, 1999), pp. 153–168.

[24] R. Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle. “The place of super
edge-magic labelings among other classes of labelings”. In: Discrete Mathematics 231.1-
3 (2001), pp. 153–168.

[25] R. M. Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle. “Labeling the vertex
amalgamation of graphs”. In: Discuss. Math. Graph Theory 23.1 (2003), pp. 129–139.

[26] R. M. Figueroa-Centeno et al. “A magical approach to some labeling conjectures”. In:
Discuss. Math. Graph Theory 31.1 (2011), pp. 79–113.

[27] Y. Fukuchi and A. Oshima. “Super-edge-magic labeling of trees with large diameter”.
In: Far East J. Math. Sci. (FJMS) 28.3 (2008), pp. 497–571.

[28] J. A. Gallian. “A dynamic survey of graph labeling”. In: Electronic Journal of Combi-
natorics 20 (2017), Dynamic Survey 6, 408 pp.

[29] C. Godsil and G. Royle. Algebraic graph theory. Vol. 207. Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 2001, pp. xx+439.

[30] R. L. Graham and N. J. A. Sloane. “On additive bases and harmonious graphs”. In:
SIAM J. Algebraic Discrete Methods 1.4 (1980), pp. 382–404.

[31] N. Hartsfield and G. Ringel. Pearls in Graph Theory: A Comprehensive Introduction.
Dover Publications, Inc., Mineola, NY, 2003, pp. x+249.



BIBLIOGRAPHY 47

[32] D. Hefetz, T. Mütze, and J. Schwartz. “On antimagic directed graphs”. In: Journal of
Graph Theory 64.3 (2010), pp. 219–232.

[33] M. Henk, J. Richter-Gebert, and G. Ziegler. “Basic properties of convex polytopes”.
In: Handbook of discrete and computational geometry. CRC Press Ser. Discrete Math.
Appl. CRC, Boca Raton, FL, 1997, pp. 243–270.

[34] R. Ichishima, F. A. Muntaner-Batle, and M. Rius-Font. “Embedding trees into super
edge-magic trees”. In: Bull. Inst. Combin. Appl. 52 (2008), pp. 51–60.

[35] G. Kaplan, A. Lev, and Y. Roditty. “On zero-sum partitions and anti-magic trees”.
In: Discrete Math. 309.8 (2009), pp. 2010–2014.

[36] A. Kotzig and A. Rosa. “Magic valuations of finite graphs”. In: Canad. Math. Bull. 13
(1970), pp. 451–461.

[37] A.K. Krishnaa, M.S. Dulawat, and G.S. Rathore. “Computational complexity in deci-
sion problems, presented in Conf. of Raj”. In: Parishad (2001), pp. 14–15.

[38] X.K. Liu B.and Zhang. “On harmonious labelings of graphs”. In: Ars Combinatoria.
36 (1993), pp. 315–326.
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