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In the early 20th century the chromatic polynomial was introduced as a way to

count the proper colorings of a graph. It was generalized to signed graphs, graphs

consisting of an unsigned graph and a signing function that labels each edge with

a positive or negative sign. In 2009 Babson and Beck developed a two-variable

chromatic polynomial for unsigned graphs by requiring colors of adjacent nodes in a

graph to be a minimal-color apart. We extend this idea to signed graphs for integral

and modular coloring values, showing in both cases that the counting function is

a piecewise-defined quasipolynomial of period 1 or 2. Furthermore, we establish a

reciprocity relationship that mirrors Stanley’s reciprocity theorem on the chromatic

polynomial for an unsigned graph.
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Chapter 1

Introduction

In 1912 George Birkhoff introduced a counting function for planar graphs in an ef-

fort to solve the four-color map problem [5]. In 1932 Whitney generalized Birkhoff’s

idea to the case of general graphs [9]. This famous function is referred to as the

chromatic polynomial of a graph. Let G = (V,E) be a graph with edge set E and

node set V where we allow multiple edges, but typically not loops, so that E is a

multi-set consisting of 2-element subsets of V . A proper coloring is one that colors

adjacent nodes in G differently, thus a proper k-coloring of G is a vector x ∈ [k]|V |

with xi 6= xj if {i, j} ∈ E. The chromatic polynomial χG(k) is now a classic counting

function in graph theory which counts the number of proper colorings of a graph

given a color set [k] := {1, 2, ..., k} and a graph G.

After Whitney first established that χG(k) was indeed a polynomial in 1932, χG(k)

1



2

has been the subject of much research. It has been generalized several times, in

particular in 2009 by Babson and Beck to allow for the notion of minimal distance

between colors of adjacent nodes [1]. That is, if two nodes of a graph are adja-

cent then they are required to be some minimal distance m apart in color. Thus,

m becomes a second parameter of the coloring function. We say that a k-coloring

x ∈ [k]|V | has minimal distance m if |xi−xj| ≥ m whenever {i, j} ∈ E. Babson and

Beck showed in [1] that this new counting function is a piecewise-defined polynomial

in k and m.

This paper generalizes the above ideas to signed graphs. A signed graph Σ = (G, σ)

consists of a graph G = (V,E) (multiple edges and loops allowed) and a signature

σ that labels each edge with + or −. A k-coloring of a signed graph is a vector

x ∈ [−k, k]|V | where [−k, k] := {−k,−(k − 1), ..., 0, ..., k − 1, k}. We say x is proper

if whenever there is an edge ij with sign ε then xi 6= εxj. The function

χΣ(2k + 1) := the number of proper k-colorings of Σ

was proved to be a polynomial in 1982 by Thomas Zaslavsky [10]. If ij is an edge of

Σ with sign ε, an m-minimal k-coloring will satisfy −m < xi − εxj < m. The first

main result of this paper is that the function that counts the number of k-colorings

of a signed graph with minimal distance m is a piecewise-defined quasipolynomial

(which we define in Equation (2.2)).
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Theorem 1.1. Let Σ be a signed graph and cΣ(m, k) := # of k-colorings of Σ with

minimal distance m. Then cΣ(m, k) is a piecewise-defined quasipolynomial in m and

k of period 1 or 2.

Letting Zk denote a cyclic group of order k we can define a modular k-coloring with

minimal distance m of a signed graph (see Equation (4.2)) and extend the above

theorem.

Theorem 1.2. Let Σ be a signed graph with ηΣ(m, k) := # of modular k-colorings

of Σ with minimal distance m. Then ηΣ(m, k) is a piecewise-defined quasipolynomial

in m and k of period 1 or 2.

Our second main result is that cΣ and ηΣ satisfy a reciprocity relationship similar to

Stanley’s Theorem on the evaluation of chromatic polynomials at negative integers

[8] and the Beck-Babson extension of Stanley’s Theorem [1].

Theorem 1.3. The piecewise-defined quasipolynomials cΣ(m, k) and ηΣ(m, k)

satisfy

(−1)|V |cΣ(−m,−k) = cΣ(m+ 1, k − 1)

and

(−1)|V |ηΣ(−m,−k) = ηΣ(m+ 1, k).



Chapter 2

Methodology

2.1 Geometry

The main idea is to change our problem of counting the ways to color a signed

graph into the problem of counting the integral points contained within rational

convex polytopes. Given the unsigned complete graph K2, we can easily visualize

this in two dimensions. The possible k-colorings are the integer lattice points in the

positive orthant that are within the k × k square with the proper colors avoiding

the x1 = x2 line. See Figure 2.1.

If we wish our graph coloring to have a minimal distance m, using the graph K2

we see that proper colors now need to avoid a strip symmetric about the x1 = x2

line where any point within the strip has coordinates satisfying |x1 − x2| < m, see

Figure 2.2.

4
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Figure 2.1: Proper k-colorings of G = K2.

Figure 2.2: Minimal distance colorings (G = K2,m = 2).

If m = 1 we recover the classical chromatic polynomial. The proper colorings of

the signed graph ±K2, two adjacent nodes with a double edge one with ε = + and

the other with ε = −, can also be visualized in two dimensions. Now our proper
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colorings need to avoid the lines x1 = x2 and x1 = −x2, see Figure 2.3.

Figure 2.3: Proper k-colorings of the signed graph ±K2.

We wish need to extend these geometric ideas to that of m-minimal k-colorings for

signed graphs. To accomplish this we will need some ideas from Ehrhart theory

which were also used in [1] and [4].

2.2 Ehrhart Theory

Given any finite point set {v1,v2, ...,vn} ⊂ Rd let the convex polytope P =

{λ1v1 + λ2v2 + ... + λnvn : all λk > 0 and
∑n

i=1 λi = 1} be the smallest con-

vex set containing these points. For convenience we say P = conv{v1,v2, ...,vn}.

The dimension of a polytope P is the dimension of the affine space
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spanP := {x + λ(y − x) : x,y ∈ P , λ ∈ R}

spanned by P . If P has dimension d we say P is a d-polytope. The hyperplane

h = {x ∈ Rd : a · x = b} is a supporting hyperplane of P if P ⊂ {x ∈ Rd :

a · x ≤ b} or P ⊂ {x ∈ Rd : a · x ≥ b}, i.e., P lies entirely on one side of h. If

h is a supporting hyperplane of P , we say P ∩ h is a face of P . By tradition the

(d − 1)-dimensional faces are called facets, the 1-dimensional faces edges, and the

0-dimensional faces vertices of P .

A rational polytope is one with vertices in Qd. An integral polytope is one with

vertices in Zd. Ehrhart theory tells us that under certain conditions the function

that counts integral lattice points inside a polytope is well behaved and takes on

the form of a quasipolynomial.

A quasipolynomial is a function q(t) = cd(t)t
d + cd−1(t)td−1 + · · · + c0(t), where

the ci(t) are periodic functions with integral period p. If cd(t) is not identically

zero then we say that q(t) has degree d. Equivalently, the function Q : N 7→ N is

a quasipolynomial if there exists polynomials q0, q1, ..., qk−1 such that Q(n) = qi(n)

whenever n ≡ i mod k. The qi are called the constituents of Q.
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Proposition 2.1. Let {Q1, Q2, ..., Qn} be quasipolynomials in the indeterminant t

with periods k1, k2, ..., kn respectively. Then

P =
n∑
i=1

Qi

is a quasipolynomial with period d | lcm[k1, k2, ..., kn]. �

Remark. Notice that Proposition 2.1 implies if we sum a finite number of quasipoly-

nomials all with the same prime period p, the resulting quasipolynomial will have

period p or 1. We will use this fact in our results with p = 2.

Theorem 2.2. (Ehrhart’s Theorem on Rational Polytopes [3].) If P is a

rational convex d-polytope, then the function that counts the integral points contained

in integral dilates of P, LP(t) := #(tP ∩ Zd), is a quasipolynomial in t of degree d.

Its period divides the least common multiple of of the denominators of the coordinates

of the vertices of P.

Theorem 2.3. If P is an integral convex d-polytope, then the constant term of the

Ehrhart polynomial LP is 1. (For a proof see [3, pp. 65− 68] .)
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Example 2.1. To see Ehrhart theory in action consider the triangular polytope in

two dimensions P = 4 = conv{v1 = (0, 0),v2 = (0, 1),v3 = (1, 0)}. Any dilation

of P by the positive integer t is t4 = conv{tv1 = (0, 0), tv2 = (0, t), tv3 = (t, 0)}.

(See Figure 2.4.)

Figure 2.4: 4 = conv{tv1 = (0, 0), tv2 = (0, t), tv3 = (t, 0)}, t = 1, 2, 3, ..., 6.

Ehrhart theory tells us that L4(t) = c2(t)t2 + c1(t)t1 + c0(t). Since the vertices of 4

are all integral, the ci all have period 1, i.e., they are all constants. Thus we have

L4(t) = c2t
2 + c1t + c0. By Theorem 2.3, L4(0) = 1. Checking Figure 2.4 we see

that L4(1) = 3 and L4(2) = 6. This gives



10

c0 = 1

c2 + c1 + 1 = 3

4c2 + 2c1 + 1 = 6.

Solving this system yields L4(t) = 1
2
t2 + 3

2
t+ 1.

Example 2.2. Suppose our polytope is not integral. What does this do to the poly-

nomiality of LP? Let P = 4 = conv{v1 = (0, 0),v2 = (0, 1
2
),v3 = (1

2
, 0)}. By

Theorem 2.2 L4(t) = c2(t)t2 + c1(t)t + c0(t). When t = 2k, 4 is integral and

we recover the same geometric interpretation as in Figure 2.4. By Theorem 2.3

L4(0) = 1. Using interpolation once more we get L4(2) = 3 and L4(4) = 6. Thus

for t = 0, 2, 4, 6, ... we have L4(t) = 1
8
t2 + 3

4
t + 1. Theorem 2.2 tells us that when

t is odd, our second constituent is of the form c2t
2 + c1t + c0 where the ci are con-

stants. Relying on Figure 2.5 we get L4(1) = 1, L4(3) = 3, L4(5) = 6. Hence

c2 + c1 + c0 = 1, 9c2 + 3c1 + c0 = 3, and 25c2 + 5c1 + c0 = 6. Solving this system

yields c2 = 1
8
, c1 = 1

2
and c0 = 3

8
. Therefore we may write
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L4(t) =


1
8
t2 + 3

4
t+ 1 if t ≡ 0 mod 2,

1
8
t2 + 1

2
t+ 3

8
if t ≡ 1 mod 2.

�

Figure 2.5: 4 = conv{tv1 = (0, 0), tv2 = (0, t
2
), tv3 = ( t

2
, 0)},

t = 1, 3, 5.

2.3 Signed Graphs

Returning to our underlying graph G, fix an orientation on G, called the initial

orientation. This assigns to each edge e ∈ E a head h(e) ∈ V and a tail t(e) ∈ V .
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Thus, h(e) and t(e) are the nodes incident to e.

The adjacency matrix of a signed graph [7] is defined as the matrixAΣ = (aij)n×m , Σ =

(G, σ), where G = (V,E) with V = {v1, v2, ..., vn} and E = {e1, e2, ..., em} with en-

tries

aij =


1 if h(ej) = vi,

−ε if t(ej) = vi,

0 otherwise.

Example 2.3. Consider the graph Σ = −K3, the complete graph on three nodes

and ε = − for each edge. We have V = {v1, v2, v3} and E = {e1, e2, e3}. Fix an

initial orientaion v1 7→ v2 7→ v3 7→ v1. The associated adjacency matrix is:

AΣ =


1 1 0

0 1 1

1 0 1


.
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The reader should take note that | det (AΣ) | = 2. This shows that the adjacency

matrix of a signed graph is in general not totally unimodular. In fact it is not difficult

to show that the determinant of such a matrix can grow without bound. This means

that we will be unable to use similar methods as in [1]. Therefore develop a new

argument in Chapter 4.

A real affine hyperplane of Rn is an (n− 1)-dimensional affine subspace of the form

{x ∈ Rn : anxn + an−1xn−1 + · · · + a1x1 = b} with at least one of the ai 6= 0. We

will just say hyperplane when there is no confusion possible. A hyperplane therefore

separates Rn into two affine half spaces described by anxn+an−1xn−1+· · ·+a1x1 < b

and anxn + an−1xn−1 + · · ·+ a1x1 > b.

A hyperplane arrangement H is a set of finitely many affine hyperplanes h ∈ Rn.

This arrangement divides the space into regions. An open region is a connected

component of Rn\H and a closed region is the topological closure of an open region.

The hyperplane arrangement of a signed graph [4] Σ is

H[Σ] = {hεij : Σ has an edge ij with sign ε}

∪{xi = 0 : Σ has a half edge at node vi}

∪{0 = 0 : Σ has a loose edge}
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where the hyperplane hεij := (xi = εxj). A half edge is one which is incident to one

vertex with multiplicity 1. A loose edge is one that is not incident to any vertices.

Since a k-coloring of Σ is a vector x ∈ [−k, k]|V | and a proper k-coloring must

avoid hεij for all ij ∈ E, a proper k-coloring of a signed graph is a vector x ∈

[−k, k]|V |\H[Σ]. Notice thatH(Σ) is central and divides [−k, k]|V | into finitely many,

say n, bounded regions in R|V |, i.e., polytopes. We have [−k, k]|V |\H[Σ] =
⋃n
j=1Pj,

where the Pj are half open polytopes. Thus, a proper k-coloring of the signed graph

Σ is an integral vector x ∈ Pj for some j, while the lattice points on the boundaries

that are on H(Σ) are the non-proper colorings of Σ.

In order to know the number of proper k-colorings of Σ we need only count the

number of lattice points in
⋃n
j=1Pj. Since the Pj are disjoint,

#

[(
n⋃
j=1

Pj

)
∩ Z|V |

]
=

n∑
j=1

#
(
Pj ∩ Z|V |

)
(2.1)

This was done by Beck and Zaslavsky in [4] by constructing the Ehrhart polynomial

associated to each Pj and then summing the individual polynomials.

Now we wish to consider a minimal coloring distance between nodes of our signed

graph Σ. If ij is an edge of Σ with sign ε, a k-coloring with minimal distance m will
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avoid −m < xi − εxj < m.

Example 2.4. Let Σ = ±K2 be the graph on two nodes with a double edge, one with

ε = + and the other with ε = − and set m = 3 and k = 8. Now our proper colorings

need to avoid two strips symmetric about the lines x1 = x2 and x1 = −x2. From

a hyperplane point of view we have an arrangement H(Σ) = {(x1 = x2 + 3), (x1 =

x2 − 3), (x1 = −x2 + 3), (x1 = −x2 − 3)}. See Figure 2.6.

Figure 2.6: Minimal distance k-colorings of ±K2 with m = 3, k = 8.

Before we develop our two-variable counting function for signed graphs we need to

lay some ground work using generating functions.



Chapter 3

Generating Functions

3.1 The Integer-Point Transform

A pointed cone Kv ⊆ Rd is a set of the form

Kv = {v + λ1w1 + λ2w2 + ...+ λmwm : λi ≥ 0}

where v,w1,w2, ...,wm ∈ Rn are such that there exists a hyperplane h for which

h∩Kv = {v}; that is, Kv \ {v} lies strictly on one side of h. The vector v is called

the apex of Kv, and the w
,
k s are the generators of Kv. The cone Kv is rational if

v,w1,w2, ...,wm ∈ Qd. The dimension of Kv is the dimension of the affine space

16
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spanned by Kv; if Kv is of dimension d, we call it a d-cone. Notice that any cone

with rational generators can be written as a cone with integral generators by clear-

ing denominators.

Let S be a rational cone or polytope in Rd. Define the multivariate generating

function

σS(z) = σS(z1, z2, . . . , zd) :=
∑

m ∈ S∩ Zd
zm

with zm := zm1
1 zm2

2 · · · z
md
d for the integer vector m = (m1,m2, ...,md). We call σS

the integer-point transform of S or simply the generating function of S.

Example 3.1. Let K = [0,∞) be a 1-dimensional cone. Then

σK(z) =
∑

m∈ [0,∞)∩ Z

zm =
∑
m≥0

zm =
1

1− z
.

Example 3.2. Let K(0,0) := {λ1(1, 1) + λ2(−1, 1), λi ≥ 0}. Set Π = {λ1(1, 1) +

λ2(−1, 1), 0 ≤ λi < 1} ⊂ R2. We refer to the half-open parallelogram Π as the

fundamental region of K(0,0). We wish to tile all of K(0,0) with Π. First list all

non-negative integer transforms of the vertices (1, 1), (−1, 1) of Π, which are the
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generators of K(0,0). That is,

∑
m=j(1,1)+k(−1,1);j,k,≥0

zm =
∑
j≥0

∑
k≥0

zj(1,1)+k(−1,1) =
∑
j≥0

∑
k≥0

zj(1,1)zk(−1,1)

=
∑
j≥0

zj(1,1)
∑
k≥0

zk(−1,1) =
∑
j≥0

zj1z
j
2

∑
k≥0

z−k1 zk2

=
1

(1− z1z2)(1− z−1z2)
.

Next, take all integer points in Π and add to them non-negative, linear, integer

combinations of the generators (1, 1) and (−1, 1). Let L(m,n) := {(m,n) + j(1, 1) +

k(−1, 1) : j, k ∈ Z≥0}. Thus, K(0,0) is the disjoint union of the subsets of L(m,n) as

(m,n) ranges over each lattice point in Π ∩ Z2 = {(0, 0), (0, 1)}. Hence,

σK(0,0)
(z) =

(
(z1z2)(0,0) + (z1z2)(0,1)

) ∑
m=j(1,1)+k(−1,1);j,k,≥0

zm

=
1 + z2

(1− z1z2)(1− z−1z2)
=

σΠ(z)

(1− z1z2)(1− z−1
1 z2)

.

�

Let S = w + T , w an integer vector. Then
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Figure 3.1: The simplicial cone K(0,0) and its fundamental parallelogram.

σS(z) =
∑

m ∈S∩Zd
zm =

∑
t∈T ∩Zd

zw+t = zw
∑

t∈T ∩Zd
zt = zwσT (z). (3.1)

Theorem 3.1. Let K := {λ1w1 +λ2w2 + · · ·+λdwd : λi ≥ 0} be a simplicial d-cone

(i.e., the wi are independent), with w1,w2, . . . ,wd ∈ Zd. Then for v ∈ Rd, the

integer-point transform σv+K of the shifted cone v +K is the rational function

σv+K(z) =
σv+Π(z)

(1− zw1)(1− zw2) · · · (1− zwd)

where Π is the half open parallelepiped
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Π := {λ1w2 + λ2w1 + · · ·+ λdwd : 0 ≤ λi < 1}.

For a complete proof see [3, p.60] .

Example 3.3. Let Let K(1,1) := {(1, 1) + λ1(1, 1) + λ2(−1, 1), λi ≥ 0}. Notice that

K(1,1) = (1, 1) +K(0,0). For t an integer we have tK(1,1) = t(1, 1) +K(0,0). Therefore

σtK(1,1)
(z) =

σt(1,1)+Π(z)

(1− z1z2)(1− z−1
1 z2)

=
z(t,t)σΠ(z)

(1− z1z2)(1− z−1
1 z2)

=
(zt1z

t
2)(1 + z2)

(1− z1z2)(1− z−1
1 z2)

(Refer to Figure 3.2.)

�

If K is simplicial with v integral, Theorem 3.1 together with (3.1) says

σv+K(z) =
σv+Π(z)

(1− zw1)(1− zw2) · · · (1− zwd)
=

zvσΠ(z)

(1− zw1)(1− zw2) · · · (1− zwd)
.

Moreover, since every pointed cone can be triangulated into simplicial cones, Theo-

rem 3.1 also tells us for any pointed cone
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Figure 3.2: The simplicial cone tK(1,1) and its dilates for t = 1, 2, 3, 4.

Kv = {v + λ1w1 + λ2w2 + ...+ λmwm : λi ≥ 0}

with v ∈ Rd,wi ∈ Zd, σKv(z) is a rational function in the coordinates of z.

3.2 Brion’s Theorem

Let P be a rational convex polytope with vertices {v1,v2, ...,vm}. The vertex

cone Kvi is the smallest pointed cone with apex vi such that P ⊂ Kvi . The next

beautiful and surprising theorem was discovered by Michel Brion in 1988. It tells
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us that to understand the generating function of a rational polytope, it is enough

to understand the generating functions of its vertex cones.

Theorem 3.2. (Brion’s theorem [6]) Suppose P is a rational convex polytope.

Then we have the following identity of rational functions:

σP(z) =
∑

v a vertex of P

σKv(z). (3.2)

For a proof see [3, pp.157− 160] .

Notice that since σP(z) =
∑

m ∈ P∩ Zd z
m by definition, if we evaluate σP at z =

(1, 1, ..., 1) = 1 we have

σP(1) =
∑

m ∈ P∩ Zd
1m

which is the lattice-point count of P . Now consider the generating function of P

and all its dilates by the integer-valued parameter t:

σtP(z) =
∑

m ∈ tP∩ Zd
zm.

Evaluating at z = 1 we get the lattice-point count of tP . If we use Brion’s theorem,
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expanding the right hand side and evaluating at z = 1 would create singularities in

the generating functions. These singularities can be dealt with in a simple way as

is outlined in the proof of the next theorem. By definition the Ehrhart polynomial

LP(t) = σtP(1). Thus, we can reprove Ehrhart’s theorem on rational polytopes

using Brion’s theorem in straightforward manner. We outline a proof here, but for

a complete proof see [3, p.161] .

Since every polytope can be triangulated, it is enough to only consider simplices.

Let 4 be a rational d-simplex whose vertices have coordinates with denominator

dividing p. Thus, p4 is integral which implies L4(pt) = Lp4(t) is a polynomial in

t. Let 0 ≤ r < p. Then Brion’s theorem implies

L4(r + pt) =
∑

m ∈ (r+tp)4∩ Zd
1

= lim
z 7→1

σ(r+tp)4(z)

= lim
z 7→1

∑
v vertex of 4

σ(r+pt)Kv(z)

Since 4 is a simplex, each of the vertex cones Kv are simplicial. We have
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Kv = {v + λ1w1 + λ2w2 + ...+ λdwd : λi ≥ 0} and

(r + pt)Kv = {(r + pt)(v + λ1w1 + λ2w2 + ...+ λdwd) : λi ≥ 0}

= {(r + pt)v + λ1w1 + λ2w2 + ...+ λdwd : λi ≥ 0}

= {tpv + rv + λ1w1 + λ2w2 + ...+ λdwd : λi ≥ 0}

= tpv + {rv + λ1w1 + λ2w2 + ...+ λdwd : λi ≥ 0}

= tpv + rKv

where the wi are the generators of Kv. Since p4 is integral, pv is an integer vector.

Hence

σ(r+tp)Kv(z) = ztpvσrKv(z) which implies

L4(r + pt) = lim
z 7→1

∑
v vertex of 4

ztpvσrKv(z).

Note that the rational functions σrKv(z) do not depend on t. Thus to compute

L4(r + pt) we use L’Hôsptial’s rule (repetitively if needed) to remove the singu-

larities of the rational functions σrKv as we take the limit for z 7→ 1. Since t only

appears in the monomials ztpv we obtain linear factors of t each time we differentiate.

Once we remove all of the singularities, when we evaluate the remaining rational
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function at z = 1 we obtain a polynomial in t, one polynomial for each r. Thus,

our counting function is a quasipolynomial in t. Therefore Brion’s theorem implies

Ehrhart’s theorem for rational polytopes. �

The polytopes that we will be interested in are described by two different types of

hyperplanes. While one set of hyperplanes is controlled by the parameter k, the

number of colors, the other set of hyperplanes is controlled by m, the minimal dis-

tance between colors. Because of this, a unique situation arises where there are

different rates of dilation on different facets of our polytope. Thus, we will need a

slight generalization of the above ideas.

3.3 Multivariate Dilation

Let P be any rational convex d-polytope, i.e., P = {x ∈ Rd : Mx ≤ c}, with

M ∈ Zn×d and c ∈ Zn. Let γ = (γ1, γ2, . . . , γn) be an integer valued vector. Let

Pγ := {x ∈ Rd : Mx ≤ c + γ}. For the moment, we will only be interested

in those γ that preserve the combinatorial equivalence of P . The face lattice of

a polytope P , denoted FL(P), is a poset ordered by inclusion of the faces of P .

We say P and Pγ are combinatorially equivalent if FL(P) = FL(Pγ). Let w be a

vertex of Pγ. Since Pγ is d-dimensional, we only need d hyperplanes to describe

w. Thus, there exists a full dimensional, invertible, sub-matrix A of M such that
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Aw = b + γ, where after suitable renumbering γ = {γ1, γ2, . . . , γd} with corre-

sponding entries b from c. Therefore, whenever we select an arbitrary vertex of Pγ

it will suffice to refer to it as vγ. Since A is an invertible linear operator, we have

vγ = A−1(b + γ) = A−1b +A−1γ = v +A−1γ. By FL(P) = FL(Pγ) we have v is a

vertex of P . For our purposes it will be more convenient to write

vγ = v +
d∑
i=1

γiui

where ui is the ith column of A−1. Let γj = m for all j ∈ W and γi = 0 otherwise,

where W ⊆ {1, 2, . . . , (d− 1), d} and m ∈ Z. That is, we want to take an arbitrary

vertex v of P and move some subset of facets that v is on by the same integer value

m. Thus,

vγ = v +m

(∑
i∈W

ui

)
(3.3)

where v is a vertex of P . Let pv be the lcm of the denominators of the entries of ui

for all i ∈ W . Set
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p∗ = lcm[pv : v a vertex of P ]. (3.4)

Consider the rational vertex cone Kvγ = {vγ + λ1w1 + λ2w2 + · · ·+ λnwn : λi ≥ 0}.

Let vγ be as in (3.3) where we write m = r + lp∗, r = 0, 1, 2, . . . , (p∗ − 1). Here we

are considering l to be the variable. Finally, set
∑

i∈W ui = u(v). Then

Kvγ = {vγ + λ1w1 + λ2w2 + · · ·+ λnwn : λi ≥ 0}

= {(mu(v) + v) + λ1w1 + λ2w2 + · · ·+ λnwn : λi ≥ 0}

= {lp∗u(v) + (ru(v) + v) + λ1w1 + λ2w2 + · · ·+ λnwn : λi ≥ 0}.

Since lp∗u(v) is integral by definition of p∗ and (ru(v) + v) is just shifting Kv by

ru(v) and does not contain the variable l, we have

σKvγ
(z) = zlp∗u(v)σKru(v)+v

(z). (3.5)

Theorem 3.3. Let P = {x : Ax ≤ b} and Pm,W = {x : Ax ≤ b +m
∑

j∈W ej}, ej

the jth standard basis vector, be convex rational d-polytopes. Set cW (m) = #(Zd ∩

Pm,W ) for all m such that P and Pm,W are combinatorially equivalent. Then cW (m)
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is a quasipolynomial in m of period q|p∗, with p∗ as defined in (3.4).

Proof. By Brion’s Theorem we have

σPm,W (z) =
∑

v a vertex of Pm,W

σKv (z).

Take any vertex v of Pm,W and compute A−1 and u(v) as before. By (3.3) and (3.5)

σKv (z) = zlp∗u(v)σKru(v)+v
(z) which implies

c(r + lp∗) = lim
z 7→1

∑
v a vertex of Pm,W

zlp∗u(v)σKru(v)+v
(z).

The rational functions σKru(v)+v
(z) do not depend on l. Thus to compute c(r + lp∗)

we use L’Hôsptial’s rule (repetitively if needed) to remove the singularities of the

rational functions σKru(v)+v
as we take the limit for z 7→ 1. As we have already seen,

once we remove all of the singularities, when we evaluate the remaining rational

function at z = 1 we obtain a polynomial in l.



Chapter 4

Quasipolynomiality of cΣ(m, k)

Recall cΣ(m, k):=# of k-colorings of a signed graph Σ with minimal coloring dis-

tance m. We may assume for our purposes that Σ is connected. Also recall that

a proper k-coloring of a signed graph Σ is an integral vector x ∈ Pj for some j,

where Pj is as in (2.1). We now shift every hyperplane hεij ∈ H(Σ) by ±m, m an

integer. Thus, if hεij = xi + εxj = 0 is a member of H(Σ) then the hyperplanes

xi + εxj = ±m are a member of Hm(Σ), the shifted hyperplane arrangement of Σ.

Now we wish to impose a minimal coloring distance between nodes of our signed

graph Σ. An m-minimal k-coloring of Σ will avoid −m < xi − εxj < m, whenever

(xi − εxj = 0) ∈ H(Σ), i.e., ij ∈ E with sign ε where E is the edge set of Σ.

The m-minimal k-colorings are are contained in

29
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[−k, k]|V |\ ∪ {x ∈ R|V | : −m < xi − εxj < m, ij ∈ E with sign ε} =
n⋃
j=1

Mj

where Mj are pairwise disjoint polytopes. Referring to Figure 4.1,
⋃
Mj is the

union of the white regions.

Figure 4.1: Minimal distance k-colorings of a signed graph with m = 3, k = 8.

cΣ(m, k) = #
[(⋃n

j=1Mj

)
∩ Z|V |

]
=
∑n

j=1 #
(
Mj ∩ Z|V |

)
since theMj are disjoint.

What remains to be done is prove cΣ(m, k) is a piecewise-defined quasipolynomial.

To do this we will need to determine the integrality of an arbitrary Mj, but first

we construct an example polynomial.
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4.1 Computation of c±K2(m, k)

Recall that the sum of the first N positive odd integers is N2. With this in mind

we refer to the geometry in Figure 4.1. Each Mj for j = 1, 2, 3, 4 (white regions)

contains our m-minimal k-colorings of ±K2. The Mj are isomorphic as lattice-

polytopes, i.e., they each contain an equal number of lattice points. The lattice-

point count for any Mj is the sum of odd integers. The exact number of odd

integers being summed is dependent upon the relationship of m and k in so far as

we sum k − (m + 1) consecutive, odd positive integers. Also notice that if m = k

the lattice-point count is 1 while for all m > k the lattice-point count is 0. Thus

letting N = (k −m+ 1) we have

c±K2(m, k) =


4(k −m+ 1)2 if k ≥ m,

0 if k < m.

Thus
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(−1)2c±K2(−m,−k) = 4(−k +m+ 1)2

= 4(k −m− 1)2

= 4((k − 1)− (m+ 1) + 1)2

= c±K2(m+ 1, k − 1) as guaranteed by Theorem 1.3.

4.2 Half Integrality

Lemma 4.1. The vertices of each Mj are half integral.

Proof. Let Σ be a connected component on d nodes {w1, w2, ..., wd} of a signed

graph. Let AΣ be the n × d adjacency matrix of Σ. Let BΣ = AΣ|Id×d, where we

stack the d× d identity matrix with AΣ. ThenMj = {x ∈ Rd : BΦx ≤ c}, Φ ⊆ Σ a

sub-graph on d nodes. From the definition ofMj we know the entries of c are from

{±m,±k}, however for the remainder of this proof we will only need to assume

that the entries of c are integral. Let v be a vertex of Mj. Then for some full

dimensional sub-matrix Bτ ⊆ BΦ and some sub-graph τ ⊆ Φ, v satisfies Bτv = b,

with b containing the associated entries of c. Notice this implies that τ is still on d

nodes, else v would not be a vertex ofMj. τ must contain a cycle, since if not then

τ is a connected graph without a cycle on d nodes, i.e., a tree graph on d nodes.
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This in turn would imply Bτ has one more column than rows, hence Bτv = b has

infinitely many solutions, a contradiction.

Choose any adjacent nodes wi, wj of τ with edge sign ε. This yields the equation

vi− εvj = n, n ∈ Z, with vi a coordinate of v, the solution vector to Aτv = b. Then

vj = ±vi ± n. Similarly, if wr is adjacent to wj then ±vi ± n − εvr = ±l, l ∈ Z,

which implies vr = ±vi ± t, t ∈ Z.

Let π ⊂ τ be any cycle of length k with nodes {w1, w2, . . . , wk}, and let {v1, v2, . . . , vk}

be the corresponding coordinates of v (after suitable reordering). Let wi, wi+1

and w1, wk be adjacent. From the above we have vi = ±v1 ± ni, ni an integer,

i = 1, 2, ..., k. Since w1, wk are adjacent we have:

v1 ± v1 ± (n1 + nk) = ±l, l an integer, which implies

v1 ± v1 = n, n an integer

If 2v1 = n then v1 = n
2

so that v1 is integral or half integral depending on the parity

of n. If 0 = n then v1 could have been any value, contradicting our assumption

that Aτv = b had a unique solution. Since τ is connected, there exists a path from

w1 ∈ π to any other wi ∈ τ . Hence, vi = ±v1 ± rn1 for some integer r for all vi.

Therefore, vi = ±n
2

+ rn1 = q
2

for some integer q, vi an entry of v. Since v was an
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arbitrary vertex of Mj, we see that every Mj is half integral as desired.

4.3 Proof of Theorem 1.1

Let cj(m, k) := #
(
Mj ∩ Z|V |

)
. Hence

cΣ(m, k) =
n∑
j=1

#
(
Mj ∩ Z|V |

)
=

n∑
j=1

cj(m, k). (4.1)

Lemma 4.2. For a fixed k, cj(m, k) is a piecewise-defined quasipolynomial in m of

period 1 or 2.

Proof. If m ≥ k then cj(m, k) = 0, thus we may assume m < k. By Lemma 4.1, the

vertices of Mj are half integral, therefore p∗ = 1 or 2 as defined in (3.4). By the

definition of Mj, there exists a finite number of combinatorial classes as m varies.

For each class, Theorem 3.3 says that cj(m, k) is a quasipolynomial of period 1 or

2. By Proposition 2.1, the function obtained by summing each cj(m, k) over all

combinatorial classes is a piecewise-defined quasipolynomial of period 1 or 2.

Notice that if we fix m and let k vary, using a similar proof we obtain a piecewise-

defined quasipolynomial in k of period 1 or 2.
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Proof of Theroem 1.1. By (4.1) and Lemma 4.2 the result follows. �

4.4 Modular Colorings

Let Zk denote a cyclic group of order k and let ϕ : Zk 7→ {0, 1, . . . , k − 1} be the

canonical map that lets us realize n ∈ Zk as a nonnegative integer ϕ(n). We say a

modular k-coloring x ∈ ZVk of a signed graph Σ has minimal distance m if

m ≤ ϕ(xi − εxj) ≤ k −m (4.2)

whenever ij ∈ E with sign ε. Thus, we may think of a modular k-coloring with

minimal distance m as a lattice point x in [0, k−1]V ∩ZV whenever x satisfies (4.2).

Let ηΣ(m, k) denote the number of modular k-colorings with minimal distance m

of a signed graph Σ. If we follow a similar setup and proof as used in the case

of cΣ(m, k) we see there is one main difference for ηΣ(m, k). The colorings we are

after that lie in x ∈ [0, k − 1]V ∩ ZV are now contained in polytopes in the positive

orthant. The proof of Theorem 1.1 relied most heavily on Lemma 4.1. Recall we

proved Aτv = b had half-integral solutions and our assumption on b was integrality
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of the entries. Hence, our proof is still valid in the modular case. Thus, substituting

[0, k−1]V for [−k, k]V and m ≤ ϕ(xi− εxj) ≤ k−m for −m ≤ xi− εxj ≤ m, each of

the proofs for the integral case still hold in the modular case and Theorem 1.2 follows.

There is one subtlety that should be addressed. Geometrically we are now counting

lattice points in polytopes in the positive orthant. We gain a few new combinatorial

classes as there is now “wrapping” of the non-coloring regions created by modular

arithmetic (see Figure 4.2). However, there are still finitely many combinatorial

classes, therefore the new regions pose no new problems.

Figure 4.2: Modular coloring of the signed graph +K2, k = 20 and m = 5
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4.5 Computation of η+K2(m, k)

Recall that the sum of the first consecutive n positive integers is n(n+1)
2

. With this

is mind we refer to the geometry in Figure 4.2. Each Mj, for j = 1, 2 contains

our m-minimal modular k-colorings of +K2. EachMj contains a number of lattice

points equal to the sum of n = k −m consecutive positive integers minus the first

m − 1 consecutive positive integers. Geometrically this is one of the large white

triangles with a smaller grey triangle removed.

Thus, counting the lattice points in any white region gives

Mj ∩ Z2 =
(k −m+ 1)(k −m)

2
− m(m− 1)

2

=
k(k − 2m+ 1)

2

=
k(k − (2m− 1))

2
.

The last equality tells us that the lattice point count is zero if k < 2m, therefore

η+K2(m, k) =


k2 − 2km+ k if k ≥ 2m,

0 if k < 2m.
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Thus

(−1)2η+K2(−m,−k) = k2 − 2km− k

= k2 − 2km− 2k + k

= k2 − 2k(m+ 1) + k

= η+K2(m+ 1, k) as guaranteed by Theorem 1.3.



Chapter 5

Reciprocity

A common theme in combinatorics is to evaluate counting functions, such as chro-

matic polynomials, at negative integers and show these evaluations have an inter-

pretation as mathematical objects. Eugene Ehrhart first conjectured the following

theorem which was proved about a decade later by I.G. Macdonald in 1971 [3].

Theorem 5.1. (Ehrhart–Macdonald). Suppose P is a convex rational d-polytope

with P◦ its relative interior. Define LP(t) = #(tP ∩ Zd). Then the evaluation of

the quasipolynomial LP at negative integers yields

LP(−t) = (−1)dLP◦(t).

39
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We will need the following multi-variant version of Ehrhart reciprocity proved by

Matthias Beck in 2002 [2].

Theorem 5.2. (Beck). Let P = {x ∈ Rd : Ax ≤ b} be a rational d-polytope. Let

LA(b) := #{x ∈ Zd : Ax ≤ b} denote the number of lattice points in P. Then the

evaluation of the piecewise-defined quasipolynomial LA at −b yields

(−1)dLA(−b) = #
{
x ∈ Zd : Ax < b

}
.

Recall from the proof of Lemma 4.1 thatMj = {x ∈ Rd : BΦx ≤ c} is a half-integral

d-polytope, where c has integral entries from {±m,±k}. By (4.1) we have

cΣ(m, k) =
n∑
j=1

#
(
Mj ∩ Z|V |

)
=

n∑
j=1

cj(m, k).

Therefore

cΣ(−m,−k) =
n∑
j=1

cj(−m,−k),
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and Theorem 5.2 tells us

(−1)dcj(−m,−k) = #
{
x ∈ Zd : BΦx < c

}
= #

(
M◦

j ∩ Zd
)

whereM◦
j is the relative interior of the polytopeMj. Referring to Figure 5.1. each

M◦
j is a grey shaded triangle.

Figure 5.1: M◦
j interiors of ±K2 with m = 3 and k = 8.

The M◦
j are bounded by constraints of the form ±xi < k and ±xi ± xl > m. Be-

cause these are integral conditions, the lattice points in
(
M◦

j ∩ Zd
)

have constraints
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±xi ≤ k − 1 and ±xi ± xl ≥ m+ 1. Therefore we have

(−1)dcj(−m,−k) = cj(m+ 1, k − 1).

This proves part one of Theorem 1.3.

We will need a generalization of Theorem 5.2 also due to Matthias Beck [2]. Collect

a subset of the rows of the matrix A in the matrix A1 and the corresponding entries

in b in the vector b1. The remaining rows of A will be collected in the matrix A2

and the corresponding entries of b in the vector b2. Let

LA1,A2(b) = #

x ∈ Zd :
A1 x ≤ b1

A2 x < b2

 .

If the union of the facets of P(b) :=
{
x ∈ Rd : Ax ≤ b

}
whose normal vectors are

the rows of A1 is a manifold (possibly with boundary), then

(−1)nLA1,A2(−b) = #

x ∈ Zd :
A1 x < b1

A2 x ≤ b2

 . (5.1)
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Remark. Theorem 5.2 follows as a special case with A1 = A.

For the second part of Theorem 1.3 we use a geometric construction similar to that

of cΣ(m, k). We would like to express ηΣ(m, k) = #
(
∪Mj ∩ Z|V |

)
where the Mj

are described by inequalities whose right-hand sides are now in {0, k,m, k − m}.

Since we are working mod k, we are only using the colors from {0, 1, 2 . . . , k − 1}.

This means the lattice points on the hyperplanes xi = k need to be excluded. Thus,

the Mj are half open polytopes. Collect all the rows of BΦ that correspond to

hyperplanes of the form xi = k and place them into the matrix BΦ1 and the corre-

sponding entries of c in the vector c1. Collect the remaining rows of BΦ and place

them in the matrix BΦ2 and the corresponding entries of c in the vector c2. We have

cj(m, k) = #
(
Mj ∩ Zd

)
= #

x ∈ Zd :
BΦ1 x < c1

BΦ2 x ≤ c2

 and

ηΣ(m, k) =
n∑
j=1

cj(m, k).

By (5.1) we have
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(−1)dcj(−m,−k) = #

x ∈ Zd :
BΦ1 x ≤ c1

BΦ2 x < c2


= #

(
M′

j ∩ Zd
)
.

The rows of BΦ2 correspond to hyperplanes of the form {±xi = 0,±xi ± xj =

m,±xi±xj = k−m}. Notice that by changing the inequalities from weak to strong

and strong to weak, we have altered Mj by closing all open facets and opening

closed facets which we call M′
j above. Thus, our color set is now in {1, 2, . . . , k}

(which still make up k colors) and our parameter m changes to m + 1 (See Figure

5.2). This tells us that #
(
M′

j ∩ Zd
)

= cj(m+ 1, k). Therefore

(−1)dηΣ(−m,−k) = (−1)d
n∑
j=1

cj(−m,−k)

=
n∑
j=1

cj(m+ 1, k)

= ηΣ(m+ 1, k),

which proves part two of Theorem 1.3.
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Figure 5.2: Modular Reciprocity of +K2 with m = 2 and k = 10.
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