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Abstract

The descent and inversion statistics are two well-studied statistics in combinatorics that are defined

for the permutation group Sn. P.A. MacMahon introduced the major index majπ =
n−1
∑

i=1
iχ(πi > πi+1)

on Sn (more generally on words of a totally ordered alphabet), and proved that the inversion and

major index statistics of Sn are equidistributed. Foata and Zeilberger (1995) generalized these

statistics to directed graphs. In 2023, Celano et al studied the evaluations of the Eulerian polynomials

(for digraphs) at -1 and found that the inversion statistic can be viewed as the descent statistic on a

complete graph. Therefore, the Eulerian and Mahonian polynomials are captured as just Eulerian

polynomials on the path and the complete graph, respectively. We generalize the descent and

inversion statistics on signed permutations to bidirected graphs, and extend properties of Eulerian

polynomials on digraphs to bidirected graphs.
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Introduction

We generalize Eulerian polynomials to the structure of bidirected graphs (Definition 3 below).

We present basic properties and results of this generalization. Previous work by [2, 3] generalized

the Eulerian polynomials to digraphs and we capture these as a special case.

The Eulerian polynomial is a well-studied topic in combinatorics that encodes information about

the descent permutation statistic, and a historical motivation for studying them is presented in Chap-

ter 2. Permutation statistics refer to numerical quantities of interest associated with permutations.

We are interested in two permutation statistics: the descent statistic and inversion statistic. There

are two versions of each statistic: type-A (Definition 7) corresponding to unsigned permutations,

and type-B (Definition 1) corresponding to signed permutations.

We introduce the matrix representation of a bidirected graph in Section 4 and the signed graph

structure (Definition 2). Signed graphs and bidirected graphs have different origins and were

constructed independently. However, every bidirected graph is associated with a signed graph

which can be viewed as its underlying structure. Signed graphs have a one-to-many relationship

to bidirected graphs. The bidirected graph is our main object of study and we define the descent

permutation statistic for it (Definiton 4) along with its matrix representation (Corollary 1.0.1).

We generalize the Eulerian polynomial to bidirected graphs (Definition 6) and present properties

relating the Eulerian polynomials to the graph structure (Theorem 1.0.2). For example, given a

bidirected graph, we present an expression for its Eulerian polynomial in terms of its disjoint-

subgraph’s Eulerian polynomials. We prove that the Eulerian polynomial is preserved under a
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switching operation (Theorem 1.0.4). We prove that the absolute evaluation at -1 is preserved for all

orientations of the same signed graph.

In Chapter 7, we derive the classical type-B generating function for an Eulerian polynomial and

identify it with the Eulerian polynomial for the path graph.
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Chapter 1

Main Results

Signed Permutations and the Hyperoctahedral Group Bn We define signed permutations as per-

mutations on [−n,n]\{0} := {±1, . . . ,±n}, writing them as a set of pairs {(π,ε) : π ∈ Sn,ε ∈ {±1}n}

with

(π,ε)k = εk ·π(k) =: εk ·πk

[1, pg. 928]. Each pair (π,ε) is characterized by its mapping of elements k ∈ [n], (π,ε) : [n]→

[−n,n]\{0}. Then (π,ε)(−k) is defined to be −(π,ε)k so that (π,ε)(−k) := −πkεk. Therefore,

the mapping (π,ε) : [−n,n]\{0}→ [−n,n]\{0} becomes a bijection. Under composition, this set

becomes a group known as the hyperoctahedral group Bn. Signed permutations are also known as

type-B permutations, and we define its descent set as the classical type-B descent.

Definition 1. The classical type-B descent set is defined to be DesB(π,ε)= {i ∈ [0,n−1] : εiπi > εi+1πi+1},

where π0ε0 := 0.
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(Note that if ε1π1 < 0, then we have a descent in the zeroth position).

Graph Structures Next, we introduce signed graphs and bidirected graphs [8]. The bidirected

graph is our main object of study, where we extend the signed permutations to act on its vertices. A

signed graph comes about as an underlying layer that can be interpreted as classifying bidirected

graphs.

Definition 2. A signed graph is a graph (V,E) with a map γ : E → {±}. The map γ makes each

edge into what we can call a (+) positive edge or (-) negative edge. We can denote a signed graph

by (V,E,γ).

Definition 3. A bidirected graph is a graph D = (V,E) along with a mapping τ : V ×E →{0,±1},

such that

τ(v,e) =


0 if v /∈ e,

±1 if v ∈ e.

τ is interpreted as assigning a direction to e at v (if e contains v). τ(v,e) = −1 is interpreted as

assigning a direction away from v, and τ(v,e) = +1 as assigning a direction towards v. We denote

a bidirected graph by D̃ = (V, Ẽ) = ((V,E),τ) = (V,E,τ).

Although these structures are constructed independently from a graph, there is a relationship

between them: a bidirected graph is equivalent to an oriented signed graph [9, pg. 6]. This

relationship is captured in the following diagram:
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Graph Signed Graph

Bidirected Graph

γ

τ
orientproject

Figure 1.1: Relationship between graphs

The possible orientations of a signed graph are determined by the signs of its edges described

in Section 3.3. Conversely, a bidirected graph corresponds to some signed graph. We distinguish

between the terms biorient and orient as acting on graphs and signed graphs, respectively [7, 9, 10].

We define a projection mapping from the bidirected edge its underlying signed edge also in Section

3.3.

Matrix Representation In Section 4, we define an appended incidence matrix for a bidirected

graph D̃. This allows us to have a matrix representation for computation, and we denote this by ΣD̃.

The matrix is defined to be 0-indexed. For i, j ≥ 0, its entries are given by

(ΣD̃)i j = τ(i,e j)

(note that we need to enumerate the edges before having a matrix representation). We define the

signed permutation’s matrix representation as a column vector and denote this by σ . Its entries are

given by σi = πiεi.

The Descent Set With the signed permutation group Bn generalized to act on the vertices of a

graph, the classical type-B descent is generalized to the context of a bidirected graph, denoted by
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DesD̃(π,ε). A descent between two vertices is determined by the bidirected edge connecting them.

Definition 4. The descent set of a signed permutation with respect to a given bidirected graph D̃ is

defined to be

DesD̃ (π,ε) =
{

e ∈ Ẽ : εiπi · τ(i,e)+ ε jπ j · τ( j,e)< 0 and i, j ∈ e
}
.

Theorem 1.0.1. The matrix representation of a descent set of a signed permutation with is given by

DesD̃ (π,ε) =
{

i :
(
σ

T ·ΣD̃
)

i < 0
}
=

{
i : ∑

k
σk (ΣD̃)ki < 0

}
=

{
i : ∑

k
εkπk (ΣD̃)ki < 0

}
.

Definition 5. desD̃ (π,ε) = #DesD̃ (π,ε) .

The Eulerian Polynomial The generalizations of Bn and descent lay the foundation for introduc-

ing the Eulerian polynomial for bidirected graphs.

Definition 6. The Eulerian polynomial for the bidirected graph D̃ is AD̃(t) = ∑
(π,ε)∈Bn

tdesD̃(π,ε).

This is our object of interest, and we will refer to it as “the Eulerian polynomial”, while

refering to the classical type-B Eulerian polynomial explicitly as “the classical Eulerian polynomial”

(Equation 2.2). We can compare this to the Eulerian polynomial generalized to digraphs (Equation

2) which are defined for the permutation group Sn [2, 3].

Our definition captures the classical Eulerian polynomial as a special case when D̃ is a path

graph (Section 5.0.1). Moreover, the classical type-B inversion (Equation 11) is a captured as a

special case when D̃ is a complete graph (Lemma 5.0.1).
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Basic Properties of the Eulerian Polynomial We observe some basic properties of the Eulerian

polynomial and prove these in Section 6.

Theorem 1.0.2. Let D̃ = (D,τ) be a bidirected graph with n vertices and m edges. We use the

notation (τ(e, i) · i,τ(e, j) · j) for a bidirected edge.

1. The polynomial AD̃(t) is palindromic with center m
2 .

2. Suppose (−i, j) ,(i,− j) ∈ Ẽ. Let Ẽ ′ = Ẽ −{(−i, j),(i,− j)}, and D̃′ =
(
V, Ẽ ′) be the bidi-

rected graph with edges (−i, j) and (i,− j) removed. Then

AD̃(t) = t ·AD̃′(t).

3. Similarly, if (i, j) ,(−i,− j) ∈ Ẽ, let D̃′ be the bidirected graph D̃ with edges (i, j) ,(−i,− j)

removed. Then

AD̃(t) = t ·AD̃′(t).

4. If D̃ =
r⊔

i=1
D̃i is a disjoint union of bidirected graphs of orders n1,n2, . . . ,nr, then

AD̃(t) =
(

n
n1, . . . ,nr

)
·

r

∏
i=1

AD̃i
(t).

These properties are extensions of Proposition 2.1(a)-(c) of [2] for digraphs (Section 2). Our analog

to Proposition 2.1(b) of [2] is true only if the pairs of edges had the same underlying signed edge

(Section 3.3).
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Changing the Biorientation of an Edge Changing the biorientation of a bidirected edge generally

changes the graph’s associated Eulerian polynomial. But if we do so while maintaining the

underlying signed graph, this is called a reorientation of the edge [7] and we have the following

invariance:

Theorem 1.0.3. If D̃= (V, Ẽ) and D̃′ = (V, Ẽ ′) are orientations of the same signed graph D= (V,E),

then |AD̃(−1)|= |AD̃′(−1)|.

The absolute value of the evaluation of the Eulerian polynomial at −1 is preserved under another

operation of switching at a vertex.

Switching We introduce the operation of switching a given bidirected graph at a vertex v′ in

Section 6.1. The switching operation modifies the edges connected to v′ by reversing the signs of

all edges adjacent to v′. Consider the bidirected graph ((D,E),τ) undergoing a switch at v′, the

resulting graph is denoted ((D,E),τ ′) and τ ′ is given by

τ
′(v,e) =


−τ(v,e) if v = v′

τ(v,e) if v ̸= v′.

(1.1)

In terms of the incidence matrix, the entries of the row corresponding to v′ changes signs (see

Example 8). We found that switching leaves the Eulerian polynomial preserved.

Theorem 1.0.4. Let D and D′ be bidirected graphs before and after performing a switching

operation. The Eulerian polynomial is preserved under switching: AD̃(t) = AD̃′(t).

Corollary 1.0.5. Performing a switch keeps |AD̃(−1)| preserved.
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Finally, in Section 7, we present an exponential generating function for the classical type-B

Eulerian polynomial. This also serves as a generating function for the path graph’s Eulerian

polynomial. The exponential generating function for the classical type-A Eulerian polynomial is [6]

∑
n≥0

An(q)
xn

n!
=

q−1
q− e(q−1)x

.

Theorem 1.0.6. Let bn(q) be the classical type-B Eulerian polynomial. Then

∑
n≥0

bn(q)
xn

n!
=

1−q
e−(1−q)x −qe(1−q)x

.

Corollary 1.0.7. ∑
n≥0

bn(q)xn

n! =
1−q

e−(1−q)x−qe(1−q)x is the exponential generating function of the path

graph Eulerian polynomial.

The evaluation at −1 for the exponential generating function has a closed form identity.

Corollary 1.0.8.

∑
n≥0

bn(−1)
xn

n!
=

2
e−2x + e2x = sech(2x).
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Chapter 2

Historical Background

Definition 7. The classical type-A descent set is defined to be DesA(π) = {i ∈ [n−1] : πi > πi+1},

where π ∈ Sn.

The corresponding descent statistic is desA(π) = #DesA(π) = #{i ∈ [n−1] : πi > πi+1} .

Definition 8. The classical type-A Eulerian polynomial is defined as ∑
σ∈Sn

tdesA σ .

The type-A Eulerian polynomial is at the center of finding a closed-form identity to the al-

ternating series and its reciprocal analog. In Remarques sur un beau rapport entre les series des

puissances tant directes que reciproques in Memoires de l’Academie des Sciences de Berlin 17

(1768), Leonard Euler develops a relationship between the alternating series

ζ (s) = 1s −2s +3s − . . . and ϕ(s) =
1
1s −

1
2s +

1
3s − . . .

as ϕ(s) = (1− 21−s)ζ (s). The terms of ζ (s) are embedded as coefficients in the power series

expansions
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1− s+ s2 − s3 + . . .=
1

1+ s

1−2s+3s2 −4s3 + . . .=
1

(1+ s)2

1−22s+32s2 −42s3 + . . .=
1− s

(1+ s)3

1−23s+33s2 −43s3 + . . .=
1−4s+ s2

(1+ s)4

1−24s+34s2 −44s3 + . . .=
1−11s+11s2 − s3

(1+ s)5

...

The numerator has a pattern that is not obvious, and are called the classical Eulerian polynomials.

The expansions above are a few expansions of the identity [1] with t =−s

∑
k≥0

(k+1)ntk =

∑
π∈Sn

tdesA(π)

(1− t)n+1 . (2.1)

We have a corresponding definition for the (classical) type-B Eulerian polynomial

Definition 9. The classical type-B Eulerian polynomial is defined as ∑
(π,ε)∈Bn

tdesB(π,ε).

The corresponding identity for the type-B Eulerian polynomial can be derived from Theorem 6.6 of

[1, pg. 948]

∑
m≥0

(2m+1)nqm =

∑
(π,ε)∈Bn

tdesB(π,ε)

(1−q)n+1 . (2.2)

Another well-studied statistic that comes up when dealing with permutations is the inversion statistic.
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Definition 10. The classical inversion statistic for a type-A permutation is defined to be

InvA(π) =
{
(i, j) : πi > π j and i < j

}
.

Definition 11. The classical inversion statistic for a type-B permutation is defined to be

InvB(π,ε) =
{
(i, j) : εiπi > ε jπ j and i < j

}
.

Graph Generalization In 1995, Foata and Zeilberger [3] characterized direct graphs as possessing

the Mahonian property of the inversion statistic and major index statistic having the same distribution.

MacMahon introduced the major index statistic and further generalized both to arbitrary words

(with repeats) [5, pg 135 of Vol 1]. To introduce these statistics, let X be a total ordered alphabet

and a w = x1x2 . . .xm, then

majw =
m−1

∑
i=1

iχ(xi > xi+1) (2.3)

invw = ∑
1≤i< j≤m

χ(xi > x j), (2.4)

and the rearrangement class of w is the class containing all permutations of the letters of w.

MacMahon proved that for each k ∈ Z, the number of words such that majw = k is the same as

the number of words such that invw = k. I.e., maj and inv have the same distribution over the

rearrangement class. In terms of the generating functions, inv and maj have the same generating

function : ∑
w

qmajw = ∑
w

qinvw. Foata and Zeilberger extended these statistics to directed graphs [3,
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pg. 81] (let U be a directed graph):

maj’U w =
m−1

∑
i=1

iχ((xi,xi+1) ∈U) (2.5)

inv’
U w = ∑

1≤i< j≤m
χ((xi,x j) ∈U). (2.6)

Note that a directed graph U has the structure of a relation. They proved that (2.5) and (2.6) are

equidistributed if and only if the relation U is bipartitional [3, pg 82]. [3] notes five types of bipartite

relationships and it seems that these corresponds to edges of a directed graph, where type (1) at the

bottom of [3, pg. 1] corresponds to directed graphs with regular edges, e.g., no loops.

The generating functions for the descent and inversion statistic are called the Eulerian and

Mahonian polynomials (respectively) and given by:

An(t) = ∑
σ∈Sn

tdes(σ) and Mn(t) = ∑
σ∈Sn

t inv(σ).

The generalized descent set and descent statistic for a digraph (V,E) are given by

DesD(π) =
{
(i, j) ∈ E : πi > π j

}
and desD(π) = #DesD(π),

respectively. In 2023, [2] presented the Eulerian polynomial for digraphs:

AD(t) = ∑
σ∈GD

tdesD(σ),

where D = (V,E) and σ is a permutation on the vertices. They found that the descent statistic

is captured as the (digraph) descent statistic of the path of [n]: des(σ) = desPn(σ), and that

the inversion statistic is captured as the (digraph) descent statistic of the complete graph of [n]:
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des(σ) = desKn(σ) [2, pg. 2 Remark 1.1]. It follows that the Eulerian and Mahonian polynomials

were captured as the (diagraph) Eulerian polynomial for Pn and Kn, respectively:

An(t) = APn(t) and Mn(t) = AKn(t).

We extend these results of the to bidirected graphs.
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Chapter 3

Graphs

3.1 Signed Graphs

Signed graphs are graphs with edges labeled either (+) or (−). They originated in social

psychology, being first introduced by Harary [4] in 1953. Psychologists employed square matrices

with entries {−1,0,1} to represent individuals’ feelings towards on another to be negative, indif-

ferent, and positive, respectively. Symmetric matrices were then able to be represented by signed

graphs. Since their introduction, signed graphs have arisen in numerous areas in pure and applied

mathematics [8].

Example 1. (Fig 3.1) V = {1,2,3,4}, E = {{1,2} ,{1,3} ,{1,4}}, γ ({1,2}) = +, γ ({1,3}) =−,

γ ({1,4}) = −.
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2 3

4

1

+e3

− e1 −e2

Figure 3.1: A signed graph with four vertices.

3.2 Bidirected Graphs

A graph is turned into a bidirected graph via a bidirection mapping we denote by τ : E ×V →

{0,±1}. Each edge is independently oriented, and we adopt the interpretation of −1 representing

an end pointing away from its incident vertex and +1 as pointing towards its incident vertex.

Example 2. (Fig. 3.2) V = {1,2}, E = {e1 = {1,2}}, τ (e1,1) =−1, τ (e1,2) = +1.

1 2
e1

Figure 3.2: Example of a bidirected graph with two nodes.

Example 3. (Fig. 3.3) V = {1,2,3,4}, E = {e1,e2,e3}, where e1 = {1,2} ,e2 = {1,3} ,e3 = {1,4}.

The mapping τ is given by

τ (e1,1) = +1,τ (e1,2) = +1,τ (e2,1) =−1,τ (e2,3) = +1,τ (e3,1) =−1,τ (e3,4) = +1.
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2 3

4

1

ẽ3

ẽ1 ẽ2

Figure 3.3: Example of a bidirected graph with four nodes.

Example 4. We denote the bidirected graph Figure 4.1 by D̃ = (D,τ) = ((V,E),τ), where the

underlying graph is given by V = {1,2,3,4} and E = {e1,e2,e3,e4,e5}. The map τ is given

by τ(e1,1) = −1, τ(e1,2) = −1, τ(e2,1) = −1, τ(e2,3) = +1, τ(e3,1) = −1, τ(e3,4) = +1,

τ(e4,2) =−1, τ(e4,4) = +1, τ(e5,3) = +1, τ(e5,4) = +1.

3.3 Relationships between a Signed Graph and a Bidirected

Graph

Signed edges can be oriented as depicted in Figure 3.4. Negative edges are mapped to bidirected

edges that have both ends being +1 or both −1, and positive edges are mapped to bidirected edges

with each end being opposite signs [8].

Given a bidirected graph (V,E,τ), if a sign mapping on (V,E) satisfies (Eqn 2.2 of [10])

γ(e) =−τ(e, i) · τ(e, j) ∀ e = {i, j} ∈ E, (3.1)



CHAPTER 3. GRAPHS 18

then (V,E,γ) is said to be its underlying signed graph. Conversely, we call (V,E,τ) an orientation

of (V,E,γ) if Eqn 3.1 is satisfied.

Denote the bidirected graph (V,E,τ) as (V, Ẽ) so that Ẽ is a set of bidirected edges, we can

define a projection mapping proj : Ẽ →{±} with the right side of Eqn 3.1 as

proj(ẽ) = proj({e,τ}) =−τ(e, i) · τ(e, j).

+ 7→ { , } ,
− 7→ { , } .

Figure 3.4: Orienting Signed Edges

Example 5. The projection of ẽ3 from Figure 3.3 is proj(ẽ3) =−.
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Chapter 4

Matrix Representations

The Appended Incidence Matrix Let D̃ =
(
V, Ẽ

)
be a bidirected graph with n vertices. We

identify the set of vertices with the set [n] and write V = [n]. Then D̃ can be represented by a matrix

(ΣD̃) of dimension (n+1)× (
∣∣Ẽ∣∣+1) called an appended incidence matrix.

Definition 12. The appended incidence matrix ΣD̃ for a bidirected graph D̃ is defined via

(ΣD̃)i j =



0 if i ̸= 1, j = 0,

+1 if i = 1, j = 0,

τ(e j, i) otherwise.

We index the matrix from 0 and set the top row to 0 to be consistent with the convention

ε0π0 = 0. We associate columns 1 to |E| of the matrix with the edges of a graph in lexicographic

order, and associate rows 1 to n of the matrix with the vertices. The bottom right n×
∣∣Ẽ∣∣ submatrix



CHAPTER 4. MATRIX REPRESENTATIONS 20

has entries determined by τ:

ΣD̃ =



0 0 0 0 0 0

1 τ(e1,1) . . . τ(e|E|,1)

0
... . . . ...

0
... . . . ...

0 τ(e1,n) . . . τ(e|E|,n)


.

Example 6. The appended incidence matrix for D̃ in Figure 4.1 is

ΣD̃ =



0 0 0 0 0 0

1 +1 −1 −1 0 0

0 +1 0 0 −1 0

0 0 +1 0 0 +1

0 0 0 +1 +1 +1


.

1

2 3

4e1 e2

e3

e4 e5

Figure 4.1: Bidirected graph D̃.
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The Signed Permutation Vector A signed permutation (ε,π) ∈ Bn is represented by a column

vector σ with

σi = εiπi,

where the first index is σ0 = ε0π0 := 0, yielding

σ =


0

ε1π1
...

εnπn

.
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Chapter 5

The Descent and Inversion for Bidirected

Graphs

The Classical Descent Statistic Consider the bidirected path graph, Pn = (V, Ẽ), illustrated in

Figure 5.1. This consists of n vertices that we identify with [n], the n− 1 underlying edges are

E = {ei}= {{i, i+1} : i ∈ [n−1]}, and the associated mapping τ is

τ (ei, j) =



0 if ei /∈ E,

−1 if ei ∈ E, j = min(ei),

+1 if ei ∈ E, j = max(ei).
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1 2 . . . n-1 n

Figure 5.1: The path Pn of length n.

The resulting appended incidence matrix is

ΣP̃n
=



0 0 0 . . . 0

1 −1 0 . . . 0

0 +1 −1 0

0 0 +1 . . . ...

...
... −1

0 0 0 0 +1



.

If we multiply the vector representation σ of some (ε,π) ∈ Bn with the path’s incidence matrix, we

obtain a vector

σ
T ·ΣP̃n

,

with entries in the form of −εiπi + εi+1πi+1. Negative entries then imply that εi+1πi+1 < εiπi.

Therefore, we can identify the classical type-B descent set DesB(π,ε) of section 1 with the product

σT ·ΣPn associated with the path. This discussion motivates and yields the following result:

Lemma 5.0.1. For (π,ε) ∈ Bn,

DesP̃n
(π,ε) =

{
i ∈ [0,n−1] :

(
σ

T ·ΣP̃n

)
i < 0

}
= Des(π,ε).
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The Classical Inversion Statistic Consider the bidirected complete graph Kn = (([n],E),τ) with

n vertices illustrated in Figure 5.2. The edges are given by

E = {{i, j}|1 ≤ i < j ≤ n} .

There is an edge connecting every pair of vertices, and the edge at the smaller vertex is directed away

from that vertex, and the edge at the larger vertex is directed towards that vertex. The associated

mapping τ is given by

τ (e,k) =



−1 k = min(e),

+1 k = max(e),

0 otherwise.

(5.1)

1 2 3 n-2 n-1 n...

Figure 5.2: The bidirected complete graph Kn with n vertices.

Example 7. The appended incidence matrix of K4 illustrated in Figure 5.3 is given by
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ΣK̃4
=



0 0 0 0 0 0 0

1 −1 −1 −1 0 0 0

0 1 0 0 −1 −1 0

0 0 1 0 1 0 −1

0 0 0 1 0 1 1


.

1 2 3 4

Figure 5.3: The complete graph of length 4.

Lemma 5.0.2. The descent set for the complete graph is equal to the classical (type-B) inversion

set, i.e., DesK̃n
(π,ε) = InvB(π,ε).

Proof.

DesK̃n
(π,ε) =

{
k :

(
σ

T ·ΣK̃n

)
k < 0

}
=

{
k : ∑

m
σm ·

(
ΣK̃n

)
mk < 0

}
=
{
(i, j) : σi · (−1)+σ j · (+1)< 0 where i < j

}
=
{
(i, j) : εiπi > ε jπ j where i < j

}
= InvB(π,ε).
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Chapter 6

The Eulerian Polynomial of a Bidirected

Graph

Structural Properties

Proof of Thm 1.0.2.

1. We identify (π,ε) ∈ Bn with a column vector σ (as in Section 3) and identify (π,−ε) with

−σ . Now consider an entry i in the matrix product σT ·ΣD̃ that counts as a descent in

Des(π,ε), (
σ

T ·ΣD̃
)

i < 0.

This is equivalent to the expression

τiεiπi + τ jε jπ j < 0 ⇐⇒ τi(−εi)πi + τ j(−ε j)π j > 0.
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Then

k = des(π,ε) = #Des
{

i :
(
σ

T ·ΣD̃
)

i < 0
}
= #Des

{
i :

(
−σ

T ·ΣD̃
)

i > 0
}

= m−#Des
{

i :
(
−σ

T ·ΣD̃
)

i < 0
}
= m−des(π,−ε),

so that

des(π,−ε) = m− k.

This implies that, in AD̃(t), the coefficient of tk is the same as the coefficient of tm−k.

2. For all (π,ε) ∈ Bn, either

εiπi < ε jπ j or εiπi > ε jπ j.

i.e.,

εiπi − ε jπ j < 0 or − εiπi + ε jπ j < 0.

This implies that exactly one of (i,− j) and (−i, j) is a descent. With both edges removed, it

follows that for all (π,ε) ∈ Bn,

desD̃′(π,ε) = desD̃(π,ε)−1.

Then

AD̃′(t) = ∑
(π,ε)∈Bn

tdesD̃′(π,ε) = ∑
(π,ε)∈Bn

tdesD̃(π,ε)−1 = t−1AD̃(t).

3. For all (π,ε) ∈ Bn, either

εiπi + ε jπ j < 0 or εiπi + ε jπ j > 0,
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i.e.,

εiπi + ε jπ j < 0 or − εiπi − ε jπ j < 0.

This implies that either (i, j) or (−i,− j) is a descent. The proof is the same as in part (2).

4. Let V and Vi denote the set of vertices of D̃ and D̃i, respectively. Enumerate the vertices of D̃

by [n] in a way that

V1 = {1, . . . ,n1} ,V2 = {n1 +1, . . . ,n2} , . . . ,Vr = {nr−1 +1, . . . ,nr} .

We can express a signed permutation on V in terms of Vi by first choosing an ordered set

partition (P1,P2, . . . ,Pr) of [n] of order (n1,n2, . . . ,nr) and defining a map

σi : Vi → Pi ×{±1}ni ,

where σi assigns to a vertex in Vi a unique number in Pi. Then for σ ∈ Bn,

σ(V ) =
r⋃

i=1

σi(Vi)

so that

desD̃(σ) =
r

∑
i=1

desD̃i
(σi).

Since there are
( n

n1,n2,...,nr

)
ways to partition [n] into type (n1,n2, . . . ,nr) partitions,

AD̃(t) = ∑
σ∈Bn

tdesD̃(σ) = ∑
(P1,P2,...,Pr)

r

∏
i=1

 ∑
σi∈Bni

tdesD̃i
(σi)

=

(
n

n1,n2, . . . ,nr

) r

∏
i=1

AD̃i
(t).
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Preservation of the Absolute Evaluation at −1 We provide a proof for Proposition 1.0.3, which

states that the absolute evaluation at −1 is the same for bidirected graphs with the same underlying

signed graph.

Proof. It suffices to consider the case where Ẽ and Ẽ ′ differ by only one oriented edge. Let D̃

and D̃′ be bidirected graphs with their edge sets differing only in the kth edge, Ẽ = {..,ek, ...} and

Ẽ ′ =
{
...,e′k, ...

}
, where ek is negated to become e′k.

We want to see what happens to the parity of the descent number of each signed permutation

when negating ek. We organize the signed permutations into two subsets: the set of all permutations

with a descent at ek and the set of all permutations without a descent at ek.

Let η = (π,ε) be a permutation with a descent at ek, and η ′ = (π,−ε) (which does not have a

descent at ek). It follows that η does not have a descent at the inverted edge ek, therefore

desD̃′(η) = desD̃(η)−1.

Similarly, η ′ has a descent at the inverted edge ek and therefore

desD̃′(η
′) = desD̃(η

′)+1.

We see that the parity of a signed-permutation’s descent number changes when inverting the single
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edge: desD̃(σ) is even if and only if desD̃′(σ) is odd.

|AD̃(−1)|=

∣∣∣∣∣∣
 ∑

desD̃(σ) odd
(−1)

+

 ∑
desD̃(σ) even

(1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 ∑

desD̃′(σ) even
(1)

+

 ∑
desD̃′(σ) odd

(−1)

∣∣∣∣∣∣
=
∣∣AD̃′(−1)

∣∣
Finally, two orientations of a the same signed graph differ by successions of inverting single edges

and so|AD̃(−1)|= |AD̃′(−1)| holds for all orientations of the same underlying signed graph.

6.1 Switching at a Vertex

The switching operation is performed on a vertex of a bidirected graph by changing the direction

of an edge incident at that vertex. We define switching on a bidirected graph by extending this

notion on signed graphs described on pg. 51 of [11]. Consider a bidirected graph (V,E,τ) and let

ν : V →{±} be a sign function that identifies the vertices to be switched:

ν(i) =


− switch at i

+ do not switch at i.

Then switching means forming the bidirected graph (V,E,τν), where τν is defined by

τ
ν(e, i) = ν(i)τ(e, i).

It follows that row i of the incidence matrix is negated by switching. We show in Example 8 and

example of switching at a vertex and it’s resulting incidence matrix.
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12

3 4

5

(a) Bidirected graph D̃.

12

3 4

5

(b) Bidirected graph D̃.

Figure 6.1: Swtiching at a vertex

Example 8. A switch is performed on vertex 5 on the graph represented by, shown in Figure 6.1a.

The graph after the switch is represented by and shown in Figure 6.1b. The switch changes the sign

of all entries in the 5th row.

Σ =



0 0 0 0 −1 1 0 0 0

1 −1 0 0 −1 1 0 0 0

0 −1 −1 0 0 0 −1 0 0

0 0 1 −1 0 0 0 −1 0

0 0 0 −1 −1 0 0 0 1

0 0 0 0 0 1 −1 1 −1


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Σ
′ =



0 0 0 0 −1 1 0 0 0

1 −1 0 0 −1 1 0 0 0

0 −1 −1 0 0 0 −1 0 0

0 0 1 −1 0 0 0 −1 0

0 0 0 −1 −1 0 0 0 1

0 0 0 0 0 −1 1 −1 1


Preservation under Switching We provide a proof which states that a switch operation at a vertex

of a bidirected graph leaves its corresponding Eulerian polynomial preserved.

Proof of Proposition 1.0.4. Let D̃= (V, Ẽ) be a bidirected graph with {eα} being the set of all edges

of Ẽ connected to vertex k. Let η = (π,ε) ∈ Bn and η ′ = (π,(. . . ,−εk, . . .)) ∈ Bn (η and η ′ differ

only by the kth sign). Using the notation of τ from Eqn 5.1, we write eα = (τ(eα ,α) ·α,τ(eα ,k) ·k)

and note that the condition for eα being in the descent set DesD̃(η) is

τ(eα ,α) · εα ·πα + τ(eα ,k) · εk ·πk < 0.

Now, let D̃′ be D̃ switched at k. Note τ ′(eα ,k) =−τ(eα ,k), and the condition for eα being in

the descent set DesD̃′(η ′) is

τ
′(eα ,α) · ε ′α ·π ′

α + τ
′(eα ,k) · ε ′k ·π ′

k < 0.
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But

τ
′(eα ,α) · ε ′α ·π ′

α + τ
′(eα ,k) · ε ′k ·π ′

k < 0 ⇐⇒

τ(eα ,α) · ε ′α ·π ′
α − τ(eα ,k) · ε ′k ·π ′

k < 0 ⇐⇒

τ(eα ,α) · εα ·πα − τ(eα ,k) · (−εk) ·πk < 0 ⇐⇒

τ(eα ,α) · εα ·πα + τ(eα ,k) · εk ·πk < 0.

This shows us that

DesD̃(η) = DesD̃′(η
′), (6.1)

and tdesD̃(η) = tdesD̃′(η ′). Since we are summing over all signed permutations,

AD̃(t) = ∑
η∈Bn

tdesD̃(η) = ∑
η ′∈Bn

tdesD̃(η
′) = ∑

η ′∈Bn

tdesD̃′(η ′) = AD̃′(t).
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Chapter 7

An Exponential Generating Function for

Hyperoctahedral Eulerian Polynomial

We present a proof of Theorem 1.0.6, the generating function for the classical Eulerian polyno-

mial of the hyperoctahedral group.

Proof of Thm 1.0.6. Recall that the Eulerian polynomial is and defined to be

bn(q) = ∑
(π,ε)∈Bn

qdes(π,ε).

We use it to expand the identity

bn(q)
(1−q)n+1 = ∑

m≥0
(2m+1)nqm.

This yields the exponential generating function

1
1−q ∑

n≥0
bn(q)

xn

n!
= ∑

n≥0
∑

m≥0
(2m+1)n(1−q)n xnqm

n!
.
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The right-hand side becomes

∑
m≥0

qm
∑
n≥0

[(2m+1)(1−q)x]n

n!
= ∑

m≥0
qme(2m+1)(1−q)x = ∑

m≥0
qme2m(1−q)xe(1−q)x

= e(1−q)x
∑

m≥0

[
q · e2(1−q)x

]m
= e(1−q)x · 1

1−qe2(1−q)x
.

Thus,

∑
n≥0

bn(q)
xn

n!
=

(1−q)e(1−q)x

1−qe2(1−q)x
=

1−q
e−(1−q)x −qe(1−q)x

.

Recall that from Section 5.0.1, the path graph descent set is the same set as the classical type-

B descent set. This implies that Bn(q) = ∑
(π,ε)∈Bn

qdesP̃n(π,ε), and therefore, 1−q
e−(1−q)x−qe(1−q)x is the

exponential generating function for APn(t).

Example 9. We compare Corollary 1.0.8 with n = 4 against AP̃4
(−1) to illustrate a case of the

generating function agreeing with the evaluation of the Eulerian polynomial at −1. We have that

AP̃4
(t) = 1+76t +230t2 +76t3 + t4,

so that AP̃4
(−1) = 80. On the other hand,

B4(−1)= sech(4)(2x)|x=0 = 16sech(2x)(5sech4(2x)−18sech2(2x) tanh2(2x)+tanh4(2x))|x=0 = 80.
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