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Summary

This dissertation presents recent contributions to Ehrhart theory and its applications
in Combinatorics. It investigates the enumeration and structure of integer points
subject to linear inequalities from a geometric perspective.

We give an introduction in Chapter 1 and background on polyhedral geometry
and combinatorial structures used in this work in Chapter 2.

In Chapter 3, published in [Reh22], we use Ehrhart polynomials to count combi-
natorial and geometric data in generalized permutahedra and hypergraphs. Gener-
alized permutahedra are a class of polytopes with many interesting combinatorial
subclasses. We introduce pruned inside-out polytopes, a generalization of inside-out
polytopes introduced by Beck–Zaslavsky [BZ06b], which have many applications
such as recovering the famous reciprocity result for graph colorings by Stanley. We
study the integer point count of pruned inside-out polytopes by applying classical
Ehrhart polynomials and Ehrhart–Macdonald reciprocity. This yields a geometric
perspective on and a generalization of a combinatorial reciprocity theorem for gen-
eralized permutahedra by Aguiar–Ardila [AA23], Billera–Jia–Reiner [BJR09], and
Karaboghossian [Kar22]. Applying this reciprocity theorem to hypergraphic poly-
topes allows us to give a geometric proof of a combinatorial reciprocity theorem for
hypergraph colorings by Aval–Karaboghossian–Tanasa [AKT20]. Aside from the reci-
procity for generalized permutahedra, this proof relies only on elementary geometric
and combinatorial properties of hypergraphs and their associated polytopes.

In Chapter 4, which is joint work with Eleon Bach and Matthias Beck [BBR24],
we investigate the coefficients of the Ehrhart polynomial for special classes of zono-
topes associated with signed graphs. There is a well-established dictionary between
zonotopes, hyperplane arrangements, and (oriented) matroids. Arguably one of the
most famous examples is the class of graphical zonotopes, also called acyclotopes,
which encode subzonotopes of the type-A root polytope, the permutahedron. Stanley
[Sta91] gave a general interpretation of the coefficients of the Ehrhart polynomial
(integer-point counting function for a polytope) of a zonotope via linearly indepen-
dent subsets of its generators. Applying this to the graphical case shows that Ehrhart
coefficients count (labeled) forests of the graph of fixed sizes. Our first goal is to ex-
tend and popularize this story to other root systems, which on the combinatorial side
is encoded by signed graphs analogously to the work by Greene–Zaslavsky [GZ83].
We compute the Ehrhart polynomial of the acyclotope in the signed case, and we
give a matroid-dual construction. This gives rise to tocyclotopes and we compute
their Ehrhart polynomials. Applying the same duality construction to a general in-
tegral matrix leads to a lattice Gale zonotope, whose face structure was studied by
McMullen [McM71]. We describe the Ehrhart polynomials of lattice Gale zonotopes
in terms of the given matrix.

Chapter 5 is joint work with Matthias Beck and Sophia Elia [BER23]. Here, we ex-
tend Ehrhart theory to consider rational dilates of polytopes. The Ehrhart quasipoly-
nomial of a rational polytope P encodes fundamental arithmetic data of P, namely,
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the number of integer lattice points in positive integral dilates of P. The enumerative
theory of lattice points in rational (equivalently, real) dilates of rational polytopes is
much younger, starting with work by Linke [Lin11], Baldoni–Berline–Köppe–Vergne
[Bal+13], and Stapledon [Sta17]. We introduce a generating-function ansatz for ra-
tional Ehrhart quasipolynomials, which unifies several known results in classical and
rational Ehrhart theory. In particular, we define γ-rational Gorenstein polytopes,
which extend the classical notion to the rational setting and encompass the gen-
eralized reflexive polytopes studied by Fiset–Kasprzyk [FK08] and Kasprzyk–Nill
[KN12].

In Chapter 6, which is joint work with Alexander E. Black and Raman Sanyal
[ASR] we study poset permutahedra, an interesting class of polytopes arising as
monotone path polytopes of order polytopes. Poset permutahedra are an amalgama-
tion of order polytopes and permutahedra. We show that poset permutahedra give
a unifying perspective on several recent classes of polytopes that occurred, for exam-
ple, in connection with colorful subdivisions of polygons and Hessenberg varieties.
As with order polytopes, the geometry and the combinatorics of poset permutahe-
dra can be completely described in terms of the underlying poset. As applications
of our results, we give a combinatorial description of the h-vectors of the parti-
tioned permutahedra of Horiguchi–Masuda–Shareshian–Song [Hor+24b] and poset
generalizations of Landau’s score sequences of tournaments. To prove our results,
we show that poset permutahedra arise from order polytopes via the fiber polytope
construction of Billera–Sturmfels [BS92].
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Zusammenfassung

Diese Dissertation präsentiert neue Beiträge zur Ehrhart-Theorie und deren Anwen-
dung in der Kombinatorik. Sie untersucht die Struktur und Aufzählung von Gitter-
punkten gegeben durch lineare Ungleichungen aus einer geometrischen Perspektive.

In Kapitel 1 befindet sich eine Einleitung und in Kapitel 2 erläutern wir das
nötige Vorwissen aus der polyedrischen Geometrie und der Kombinatorik, das in
dieser Arbeit verwendet wird.

In Kapitel 3, das in [Reh22] veröffentlicht wurde, nutzen wir Ehrhart-Polynome
um kombinatorische und geometrische Daten von Verallgemeinerten Permutaedern
und Hypergraphen zu zählen. Verallgemeinerte Permutaeder sind eine Klasse von
Polytopen mit vielen interessanten kombinatorischen Unterklassen. Wir führen aus-
geästete innen-außen Polytope (engl. “pruned inside-out polytopes”) ein. Wir stu-
dieren die Gitterpunktzählfunktion von ausgeästete innen-außen Polytopen, in dem
wir klassische Ehrhart-Polynome und Ehrhart–Macdonald-Reziprozität anwenden.
Das ermöglicht nicht nur eine geometrische Perspektive auf ein kombinatorisches
Reziprozitätsresultat für verallgemeinerte Permutaeder von Aguiar–Ardila [AA23],
Billera–Jia–Reiner [BJR09], und Karaboghossian [Kar22], sonder auch dessen Ver-
allgmeinerung.

In Kapitel 4, welches gemeinsame Arbeit mit Eleon Bach und Matthias Beck
[BBR24] ist, untersuchen wir die Koeffizienten des Ehrhart-Polynoms für spezielle
Klassen von Zonotopen, die zu vorzeichenbehafteten Graphen (engl. “signed graphs”)
gehören. Wir führen eine Dualitäts-Konstruktion für Gitter-Zonotope ein. Das führt
zu der Definition von Tozyklotopen und wir berechnen auch deren Ehrhart-Polynom.
Wenden wir dieselbe Dualitäts-Konstruktion auf allgemeine ganzzahlige Matrizen
an, so erhalten wir die Definition von Gitter-Gale-Zonotopen, deren Seitenstruktur
bereits von McMullen [McM71] untersucht wurde. Wir beschreiben deren Ehrhart-
Polynome in Abhängigkeit von der gegebenen Matrix.

Kapitel 5 ist gemeinsame Arbeit mit Matthias Beck und Sophia Elia [BER23].
Wir erweitern die klassische Ehrhart-Theorie um rational Streckungen von Polyto-
pen zu betrachten. Die abzählende Theorie für Gitterpunkte in rationalen (und reel-
len) Streckungen von rationalen Polytopen begann mit Arbeiten von Linke [Lin11],
Baldoni–Berline–Köppe–Vergne [Bal+13], und Stapledon [Sta17]. Wir führen einen
Ansatz über erzeugende Funktionen für rational Ehrhart-Quasipolynome ein, dieser
vereinigt mehrere bekannte Resultate in klassischer und rationaler Ehrhart-Theorie.

In Kapitel 6, das gemeinsame Arbeit mit Alexander E. Black und Raman Sanyal
ist, studieren wir Ordnungs-Permutaeder (engl. “poset permutahedra”). Diese bilden
eine spannende Klasse von Polytopen, unter anderem da sie eine Fusion von Ord-
nungspolytopen und Permutaedern sind und als Monotone-Pfade-Polytope entste-
hen. Ordnungs-Permutaeder geben eine vereinheitlichende Perspektive auf mehrere
neue Klassen von Polytopen und deren Gitterpunkte ergeben eine Verallgemeinerung
von Punkte-Folgen von Turniergraphen mit Hilfe von Halbordnungen.
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1
Introduction

One common theme in this thesis is the study of the combinatorics, enumeration and
structure of integer points subject to linear inequalities from a geometric perspec-
tive. The core of this is Ehrhart theory, which studies integer point enumeration in
polyhedra. Integer point structures have applications in and connections to various
mathematical areas such as Algebraic Combinatorics, Commutative Algebra, Repre-
sentation Theory, Algebraic and Toric Geometry, as well as real world applications.

A polytope Q ⊆ Rd is a bounded intersection of finitely many affine half-spaces.
We can consider integer points in a polytope as integral solutions to a certain set
of linear inequalities. Ehrhart theory is the study of the number of integer points in
polytopes and their dilates. More concretely, let Q ⊆ Rd be a rational polytope, i.e.,
one with rational coordinates in the vertices. The denominator of Q is the smallest
integer k such that kQ has only integral coordinates in the vertices. For positive
integers n ∈ Z>0 we define the Ehrhart counting function

ehrZ(Q;n) := |nQ ∩ Zd| .

Ehrhart [Ehr62] showed that for a rational polytope Q ⊆ Rd and n ∈ Z>0 the
Ehrhart counting function ehrZ(Q;n) agrees with a quasipolynomial of degree equal
to the dimension of Q and period dividing the denominator of Q. We define the
Ehrhart series of a rational polytope as the generating series of its Ehrhart quasipoly-
nomial:

EhrZ(P; t) := 1 +
∑

n∈Z>0

ehrZ(P;n) tn

The Ehrhart series can be written as a rational function of the form

EhrZ(P; t) = h∗
Z(P; t)

(1 − tk)d+1 .

Stanley [Sta80] showed that h∗
Z(P; t) ∈ Z≥0[t] has non-negative coefficients.

Typical research questions in Ehrhart theory include:

(i) What is the relation between special structures on the coefficients of the
Ehrhart (quasi-)polynomials or h∗

Z-coefficients and properties of the corre-
sponding polytopes?

(ii) Is there combinatorial meaning for coefficients in Ehrhart polynomials for spe-
cial classes of polytopes?

(iii) Can Ehrhart polynomials be used to count integer valued functions related to
combinatorial objects such as graphs, hypergraphs and matroids?

After introducing some background on Polyhedral Geometry, Ehrhart theory, and
special classes of polytopes, often associated with combinatorial structures such as



2 Introduction

graphs, matroids, and hypergraphs in Chapter 2, we will address these research
questions. We will now outline the following chapters and our main results.

Chapter 3: Pruned inside-out plytopes

For lattice polytopes, we know that the Ehrhart counting function ehrZ agrees with
a polynomial for positive integers. This means that there exists a polynomial that we
can evaluate at positive integers and the result is the value of the Ehrhart counting
function. Even though we can plug in negative integers into that polynomial, a
priori, there is no reason to believe that this would yield meaningful results. Eugéne
Ehrhart conjectured (and proved for various special cases) that the following holds
for rational polytopes Q ⊆ Rd:

(−1)dim Q ehrZ(Q; −n) = ehrZ(Q◦;n) := #
(

Zd ∩ nQ◦
)

for n ∈ Z>0 ,

where Q◦ is the (relative) interior of the polytope Q. This was proved by Ian G.
Macdonald [Mac71]. There are numerous instances of combinatorial reciprocity
results, i.e., counting functions that agree with a polynomial for positive integers
and where evaluating the same polynomial at negative integers agrees with a different
but related counting function, see, e.g., [BS18].

Beck and Zaslavsky [BZ06b] developed the notion of inside-out polytopes, that
is, polytopes dissected by hyperplanes. Counting integer points in a polytope but
off certain hyperplanes turns out to be a useful tool to derive (quasi-)polynomiality
results and reciprocity laws for counting functions coming from graph colorings and
signed graph colorings, composition of integers, nowhere-zero flows on graphs and
signed graphs, antimagic labellings, as well as magic, semimagic, and magic latin
squares [BZ06a; BZ06c; BZ10].

In Chapter 3, based on [Reh22], we generalize this idea: A pruned inside out
polytope Q \

⋃
N co 1 consists of the points that lie inside a polytope Q but not in

the codimension-one cones N co 1 of a complete polyhedral fan N , see Figure 3.2(a)
below. We think of the codimension-one cones N co 1 defining a pruned inside-out
polytope as pruned hyperplanes, hence the name. For a positive integer n ∈ Z>0,
we define the inner pruned Ehrhart function as

inQ,N co 1(n) := #
(

Zd ∩ n ·
(

Q \
(⋃

N co 1
)))

.

Furthermore, we define a second counting function for pruned inside-out polytopes,
the cumulative pruned Ehrhart function cuQ,N co 1(n), for a positive integer
n ∈ Z>0 as

cuQ,N co 1(n) :=
∑

y∈Zd

1nQ(y) · # (closed full-dim. cones in N containing y) .

Theorem 3.5. Let Q \
(⋃

N co 1) ⊆ Rd be a rational pruned inside-out polytope.
Then the inner pruned Ehrhart function inQ◦,N co 1(n) and the cumulative pruned



Ehrhart function cuQ,N co 1(n) agree with quasipolynomials of degree d in n ∈ Z>0
and are related by reciprocity:

(−1)d inQ◦,N co 1(−n) = cuQ,N co 1(n).

Applying Theorem 3.5 to dilations of the unit cube [0, 1]d and the normal fan of
a generalized permutahedron (see Figure 3.3) results in the following combinatorial
reciprocity theorem.

Theorem 3.10. For a generalized permutahedron P ⊆ Rd and k = 0, . . . , d− 1,

χd,k(P)(m) := #
{

y ∈ [m]d : y-maximum face Py is a k-face
}

agrees with a polynomial of degree d− k, and

(−1)d−kχd,k(P)(−m) =
∑

y∈[m]d

# (k-faces of Py) .

Theorem 3.10 can be applied to subclasses of generalized permutahedra (see
[AA23, Section 18]) to retrieve already known combinatorial reciprocity theorems
for, e.g., matroid polynomials [BJR09], Bergmann polynomials of matroids, and
Stanley’s famous reciprocity theorem for graph colorings [Sta73]. We show how a
combinatorial reciprocity theorem for hypergraph colorings in [AKT20] is a conse-
quence of the combinatorial reciprocity for generalized permutahedra. The main tool
is a vertex description of hypergraphic polytopes in terms of acyclic orientations of
hypergraphs.

While special cases of Theorem 3.10 were previously obtained in [BJR09; AA23;
Kar22] using Hopf algebraic methods, our geometric approach offers more flexibility
in terms of weighted versions and easy generalizations, e.g., for deformed permuta-
hedra in types B, C, or D [Ard+20].

Chapter 4: Acyclotopes and Tocyclotopes

Not only do the integer points in polyhedral complexes carry combinatorial data, in
some cases the coefficients of Ehrhart polynomials do so too. Few general properties
of Ehrhart coefficients are known: the leading coefficient is the volume, the second
coefficient encodes facet volumina, and the constant term is the Euler characteristic.

For zonotopes, i.e., projections of cubes, we know a bit more: A matrix A =

[a1, . . . , am] ∈ Rd×m generates the zonotope Z(A) := A [0, 1]m. Stanley [Sta91]
showed that if a1, . . . , am ∈ Zd, then the Ehrhart polynomial of Z(A) is

ehrZ(Z(A);n) =
∑
F
g(F)n|F| ,

where F ranges over all linearly independent subsets of {a1, . . . , am} and g(F) is the
greatest common divisor of all maximal minors of the matrix whose columns are the
elements of F.

There is a well-developed dictionary between three combinatorial objects: the zono-
tope Z(A) generated by A, the (central) hyperplane arrangement H(A) with
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normal vectors a1, a2, . . . , am, and the representable matroid M(A) generated by
(the columns of) A capturing combinatorial data of linear independence. This can be
applied to subsets of simple roots in type A, B, C, and D, where the combinatorics
can be nicely explained by (signed) graphs.

Matroids have a notion of duality, and if M(A) is a matroid represented by a full
rank matrix A ∈ Rd×m, then its dual M△(A) has a representation given by Gale
duality: choose a basis d1, . . . , dm−d ∈ Rm for the kernel of A, write d1, . . . , dm−d

as the columns in the matrix D ∈ Rn×(m−d). Then the matroid dual to M(A) is rep-
resented by the columns in the transposed matrix DT , i.e., M△(A) =M(DT ). The
combinatorial structure of the zonotope Z(DT ) was studied by McMullen [McM71]
under the name derived zonotopes.

In Chapter 4, based on joint work with Eleon Bach and Matthias Beck [BBR24],
we study the Ehrhart polynomial of Z(DT ). In order to ensure that the Ehrhart
polynomial of the dual zonotope is well defined, we specialize the above construction:
choose a lattice basis d1, . . . , dm−d ∈ Zm for the kern(A) ∩ Zm. We call D the
lattice Gale dual. This is an instance of arithmetic matroids [DM13; DM12].

Theorem 4.6. Let A ∈ Zd×m be of rank d, with lattice Gale dual D ∈ Zm×(m−d).
Then we can compute the Ehrhart polynomial of the associated lattice Gale zonotope
Z(DT ) as

ehrZ(Z(DT );n) =
∑
S

g(AS)

g(A)
nm−|S|

where the sum is over all spanning sets S ⊆ [m] in the matroid represented by A.

A prime example of the above dictionary between zonotopes, hyperplane arrange-
ments and matroids is given by subsets of simple roots of types A, B, C, and D. Here,
we have a combinatorial model given by signed graphs Σ adding yet another class
of objects to the dictionary [Zas81]. Let AΣ denote the incidence matrix of a signed
graph Σ, i.e., its columns are simple roots of type A, B, C, and D. If we only consider
roots of type A (and the combinatorial model is a classical graph G), Greene and
Zaslavsky [GZ83] showed that the vertices of Z(AG) (equivalently, the regions of
H(AG)) are in one-to-one correspondence with the acyclic orientations of G, and
they gave analogous interpretations for all faces of Z(AG). Zaslavsky [Zas91] showed
the parallel result for signed graphs and thus coined the charming term acyclotope
for Z(AΣ).

The general formula for Ehrhart coefficients of zonotopes and the fact that the
incidence matrix AG of a graph G is totally unimodular imply that the kth coefficient
of the Ehrhart polynomial of the acyclotope Z(AG) counts the number of forests
with k edges in G [Sta91].

We derive a similar theorem for zonotopes generated by subsets of roots in type B,
C, and D. Here, the incidence matrix AΣ is not totally unimodular, but its minors
are powers of two. Extending results by [ABM20] we give an analogous combinatorial
interpretation for Ehrhart coefficients in terms of pseudo-forests of the signed graph
encoding the subset of simple roots, see Theorem 4.4.

It follows from [GZ83; Zas91] that the regions in the hyperplane arrangement
dual to the one induced by AΣ correspond to totally cyclic orientations of the signed



graph Σ. Hence the vertices of the dual zonotope Z(DT
Σ) are in bijection with totally

cyclic orientations and we call this zonotope tocyclotope. We give a combinatorial
interpretation for the Ehrhart coefficients in terms of the signed graph Σ: The coef-
ficients are again powers of two weighted according to circle and loop structures in
spanning sets of the signed graph.

Theorem 4.14. Let Σ be a connected signed graph whose incidence matrix has
full rank. Choose a connected basis T ⊆ E that contains a halfedge if Σ contains an
halfedge. Then the Ehrhart polynomial of the tocyclotope Z([I | − (T−1R)T ]) ⊆ Rm−d

is

ehrZ(Z([I | − BT ]);n) =


∑

S 2pc(S)+lc(S)nm−|S| if Σ contains a halfedge,∑
S 2pc(S)+lc(S)−1nm−|S| otherwise,

where the sums run over all sets S ⊆ E that contain a basis of Σ, i.e., Σ(S) contains
a maximal pseudo-forest of Σ, and pc(S) + lc(S) is the smallest number of pseudo-
tree components plus loop-tree components that a maximal pseudo-forest contained
in S can have.

There seem to be connections to applications in scheduling periodic time tables
[LM07] and tropical geometry for the type A case. In [BLM24], the tocyclotope of a
graph is the cycle offset zonotopes and integer points correspond to cycle offsets of
an periodic event scheduling problem.

Chapter 5: Rational Ehrhart theory

In some contexts, it is beneficial to express the Ehrhart polynomial in a binomial
basis. This leads to the definition of h∗-coefficients. Understanding the connection
between properties of h∗-coefficients (or similar ones) and the polytopes is an over-
arching research question. The h∗-coefficients of a polytope form a palindromic se-
quence if and only if the polytope belongs to a special class called Gorenstein.
In Chapter 5, based on joint work with Matthias Beck and Sophia Elia [BER23],
we extend classical Ehrhart theory by considering rational dilation factors for the
polytope. Among other things, we extended structural results from classical Ehrhart
theory to rational Ehrhart theory.

The rational Ehrhart counting function is defined as

ehrQ(P;λ) :=
∣∣∣λP ∩ Zd

∣∣∣ ,

where λ ∈ Q. This counting function has more subtle properties than the classical
Ehrhart counting function. For example, it is not invariant under lattice translations
and might not be monotone in λ. To the best of our knowledge, Linke [Lin11] initiated
the study of the rational (and real) counting Ehrhart function. She proved several
fundamental results starting with the fact that ehrQ(P;λ) is a quasipolynomial in
the rational (equivalently, real) variable λ, that is,

ehrQ(P;λ) = cd(λ) λ
d + cd−1(λ) λ

d−1 + · · · + c0(λ)
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where c0, c1, . . . , cd : Q → Q are periodic functions. The period of the quasipolyno-
mial ehrQ(P;λ) is defined as the least common period of c0(λ), . . . , cd(λ).

We add a generating-function point of view to rational Ehrhart functions as in
[Bal+13; Lin11], one that is inspired by [Sta08; Sta17]. To set it up, we need to make
a definition. Suppose the rational d-polytope P ⊆ Rd is given by the irredundant
half-space description P =

{
x ∈ Rd : A x ≤ b

}
, where A ∈ Zf×d and b ∈ Zf such

that the greatest common divisor of bi and the entries in the ith row of A equals 1, for
every i ∈ {1, . . . ,n}. We define the codenominator r of P to be the least common
multiple of the nonzero entries of the right hand side b, i.e., r := lcm(b1, . . . , bf ).
As we assume that P is full dimensional, the codenominator is well-defined. We
show that ehrQ(P;λ) is fully determined by evaluations at rational numbers with
denominator 2r; if 0 ∈ P then we actually need to know only evaluations at rational
numbers with denominator r. For this exposition, we restrict to the case when 0 ∈ P.

We associate a generating series to the rational Ehrhart counting function of a
full-dimensional rational polytope P with codenominator r, the rational Ehrhart
series:

EhrQ(P; t) := 1 +
∑

n∈Z>0

ehrQ

(
P; n
r

)
t

n
r .

Theorem 5.7. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let
m ∈ Z>0 such that m

r P is a lattice polytope. Then

EhrQ(P; t) =
h∗

Q(P; t;m)(
1 − t

m
r

)d+1

where h∗
Q(P; t;m) is a polynomial in Z[t

1
r ] with nonnegative integral coefficients.

Consequently, the counting function ehrQ(P;λ) agrees with a quasipolynomial and
the period of ehrQ(P;λ) divides m

r , i.e., this period is of the form j
r with j | m.

From this theorem we recover Linke’s result [Lin11, Corollary 1.4] that ehrQ(P;λ)
is a quasipolynomial with period dividing q, where q is the smallest positive ratio-
nal number such that qP is a lattice polytope. We give structural theorems about
these generating functions: rationality and its consequences for the quasipolynomial
ehrQ(P;λ) (Theorem 5.7 and Theorem 5.13), nonnegativity of the coefficients in
h∗

Q (Corollary 5.12), connections to the h∗
Z-polynomial in classical Ehrhart theory

(Corollary 5.15), and combinatorial reciprocity theorems (Corollary 5.17 and Corol-
lary 5.18). One can find a precursor of sorts to our generating functions EhrQ(P; t)
and Ehrref

Q (P; t) in work by Stapledon [Sta08; Sta17], and in fact this work was our
initial motivation to look for and study rational Ehrhart generating functions.

We explain the connection of [Sta17] to our work in Section 5.2. We deduce that
in the case 0 ∈ P◦ the generating function EhrQ(P; t) exhibits additional symmetry,
i.e., h∗

Q is palindromic.
A (d+ 1)-dimensional, pointed, rational cone C ⊆ Rd+1 is called Gorenstein if

there exists a point (p0, p) ∈ C ∩ Zd+1 such that C◦ ∩ Zd+1 = (p0, p) + C ∩ Zd+1

(see, e.g., [BB97; BR07; Sta78]). We define the homogenization hom(P) ⊆ Rd+1

of a rational polytope as hom(P) := cone({1} × P). A lattice polytope P ⊆ Rd is
Gorenstein if the homogenization hom(P) of P is Gorenstein. Gorenstein polytopes



play an important role in Ehrhart theory, as they have palindromic h∗
Z-polynomials.

We gave an analogous definition and characterization of Gorenstein polytopes in
the setting of rational Ehrhart theory: A rational d-polytope P ⊆ Rd is γ-rational
Gorenstein if hom( 1

γ P) is a Gorenstein cone.

Theorem 5.29. Let P be a rational d-polytope with codenominator r and 0 ∈ P.
Then the following are equivalent for g,m ∈ Z≥1 and m

r P a lattice polytope:

(i) P is r-rational Gorenstein.

(ii) There exists a (necessarily unique) integer solution (g, y) to

−⟨aj , y⟩ = 1 for j = 1, . . . , i
bj g− r ⟨aj , y⟩ = bj for j = i+ 1, . . . ,n .

(iii) h∗
Q(P; t;m) is palindromic:

t(d+1)m
r

− g
r h∗

Q

(
P; 1
t
;m
)

= h∗
Q(P; t;m) .

(iv) (−1)d+1t
g
r EhrQ(P; t) = EhrQ

(
P; 1

t

)
.

(v) ehrQ(P; n
r ) = ehrQ(P◦; n+g

r ) for all n ∈ Z≥0.

(vi) hom( 1
r P)∨ is the cone over a lattice polytope, i.e., there exists a lattice point

(g, y) ∈ hom( 1
r P)◦ ∩ Zd+1 such that for every primitive ray generator (v0, v)

of hom( 1
r P)∨

⟨(g, y) , (v0, v)⟩ = 1 .

The equivalence of (i) and (vi) is well known (see, e.g., [BN08, Definition 1.8] or
[BG09, Exercises 2.13 and 2.14]). It turns out that there are “many more” rational
Gorenstein polytopes among rational polytopes than Gorenstein polytopes among
lattice polytopes; e.g., any rational polytope containing the origin in its interior is
r-rational Gorenstein.

Chapter 6: Poset permutahedra

In joint work with Alexander Black and Raman Sanyal (unpublished, extended ab-
stract to appear in [ASR]), we define a new class of polytopes associated with posets.
Recall that an order polytope is given as follows: Let P be a poset on [d] and consider
the order cone CP = {x ∈ Rd : xa ≤ xb for all a ⪯ b ∈ P}. Then the order poly-
tope O(P) is the order cone intersected with the 0/1-hypercube: O(P) = CP ∩ [0, 1]d.
We alter that construction here to introduce the poset permutahedron ΠP, which
is given by CP ∩ Πd, where Πd is the standard permutahedron on d elements in Rd,
i.e., the convex hull of all the permutations of the point (1, 2, . . . , d) ∈ Rd.

Poset permutahedra arise as the monotone path polytopes of order polytopes,
i.e., a particular case of fiber polytopes introduced by Billera and Sturmfels [BS92].
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Theorem 6.16. Let P = ([d], ⪯) be a poset. Then the monotone path polytope
Σ1(O(P)) of the order polytope O(P) with respect to the linear function 1(x) =

x1 + · · ·+xd is a translation of the poset permutahedron, i.e., Σ1(O(P)) + 1
21 = ΠP.

Theorem 6.16 is our main tool to understand the face structure of poset permutahe-
dra. We give explicit descriptions for vertices (Theorem 6.19), facets (Corollary 6.17),
vertex-facet incidences (Corollary 6.24), edge directions (Theorem 6.22), subdivisions
(Theorem 6.26) and the volumes (Corollary 6.27) of poset permutahedra in terms of
the poset.

A score sequence is an integer sequence 0 ≤ s1 ≤ · · · ≤ sd ≤ d− 1 that is
a possible result of an d-team round-robin tournament. For d = 2, the only score
sequence is 0 ≤ 1 and for d = 3, we have two score sequences: 0 ≤ 1 ≤ 2 and
1 ≤ 1 ≤ 1. A score vector is a tuple of integers (t1, . . . , td) where ti records the
number of points team i wins during the tournament. For d = 2, there are two score
vectors: (0, 1) and (1, 0); for d = 3, we have 7 score vectors: (1, 1, 1) and the six
permutations of (0, 1, 2).

It follows from Landau’s theorem [Lan53] that score vectors are the integer points
in the standard permutahedron. Score sequences are the integer points in the stan-
dard permutahedron intersected with the order cone of the chain poset. Integer
points in the nth dilate of the permutahedron (resp. the permutahedron intersected
with the order cone of a chain) correspond to score vectors (resp. score sequences)
where n points are distributed in each game1 (see Proposition 6.31).

We define P-score vectors as tuples of integers (t1, . . . , td) ∈ {0, 1, . . . , d− 1}d

that are possible results of an d-team round-robin tournament under the condition
that ti ≤ tj whenever i ⪯P j is a relation in the poset P.

Theorem 6.32. For a finite poset P the integer points in the n-th dilate of the
poset permutahedron n · (ΠP − 1) ∩ Zd correspond to P-score vector of an d-team
round-robin tournament, where in each game n points are distributed between the
two teams.

Hence, integer points in poset permutahedra interpolate between score vectors and
score sequences. This offers a unifying perspective to study P-score vectors (including
classical score sequences and vectors) for arbitrary posets P and arbitrary numbers
of points awarded in each game of the tournament.

This interpretation of lattice points offers an easy argument to show that 2(ΠP − 1)
(or equivalently 2ΠP) has the integer decomposition property (idp), that is, for
every lattice point p ∈ 2n(ΠP − 1) there exist lattice points q1, . . . , qn ∈ 2(ΠP − 1)
such that p = q1 + · · · + qn (see Corollary 6.33).

Special cases of poset permutahedra show up in several other contexts: The New-
ton polytope of the discriminant is unimodularly equivalent to the poset permuta-
hedron of a chain. The stellahedron [PRW08, Section 10.4] is combinatorially equiv-
alent the poset permutahedron of a claw of size d+ 1 (i.e., an antichain of size d
and a unique maximum). For a disjoint union of two chains of length m and n, the
face lattice of the poset permutahedron corresponds to a poset of subdivisions of
an (m+ n+ 2)-gon with vertices split into two color classes. These triangulations

1 The On-Line Encyclopedia of Integer Sequences (OEIS) entries A000571, A007747, A047729-
A047731, and A047733-A047737.

https://oeis.org/A000571
https://oeis.org/A007747
https://oeis.org/A047729
https://oeis.org/A047731
https://oeis.org/A047733
https://oeis.org/A047737


appear in [AMV24] and extend a combinatorial description of the Newton polytope
of the resultant from [GKZ90; GKZ08].

For a disjoint union of k chains of lengths m1,m2, . . . ,mk, the resulting poset per-
mutahedron is a type A partitioned permutahedra recently introduced and studied in
[Hor+24b; Hor+24a] in the context of Hessenberg varieties and Representation The-
ory. They show that partitioned permutahedra are simple and that their h-vectors
were determined by using the cohomology of regular Hessenberg varieties. We show
that Πd(K) is the poset permutahedron of a disjoint union of chains, which implies
simplicity by our Theorem 6.25. We also provide a bijective proof using combinatorial
and polyhedral techniques for the following description of the h-vector.

Theorem 6.40 ([Hor+24b, Proposition 7.4]). The h-polynomial of the partitioned
permutahedron for K ⊆ [d− 1] is given by

hΠd(K)(x) =
∑

σ∈W (K)

xdes(σ),

where W (K) is the set of permutations σ such that σ−1(i) − σ−1(i+ 1) ≤ 1 for all
i ∈ K.





2
Background

In this chapter we introduce the basic notation used in this work as well as back-
ground on polyhedral geometry, Ehrhart theory, generalized (or deformed) permuta-
hedra, root systems, and some examples of combinatorial structures with interesting
geometric perspectives.

2.0 Basic Notation and Vector Spaces with Unordered Basis

We will work in real vector spaces, mostly Rd. In some combinatorial settings it is
convenient to work with vector spaces with an unordered basis. We briefly introduce
the notation. For a non-empty finite set U let RU be the real vector space with
distinguished, unordered basis U . The elements i ∈ U are denoted ei when we want
to distinguish the elements i in the set U from the corresponding basis vector ei

in the vector space RU . Moreover, we identify an element ∑i∈U xiei in the vector
space RU with the tuple (xi)i∈U for xi ∈ R. For the disjoint union U = S ⊎ T of
two finite sets S,T the equality

RS × RT = RU = RT × RS

holds, which is handy in combinatorial contexts. For a finite set U with |U | =: d
we can identify Rd ∼= RU by fixing a bijection σ : U → [d] := {1, . . . , d}. Via this
bijection we may also assume U = [d].

The dual vector space (RU)∗ can be interpreted as

(RU )∗ = RU := {maps y : U → R} .

We call the elements y ∈ RU directions. They act as linear functionals on elements
x =

∑
i∈U xiei ∈ RU via

y
(∑

i∈U

xiei

)
=
∑
i∈U

xiy(i) .

For the vector space Rd and its dual
(

Rd
)∗

we identify

(
Rd
)∗

= R[d] := {maps y : [d] → R} .

Again, directions y ∈ R[d] act as linear functionals on elements x ∈ Rd:

y(x) =
d∑

i=1
xiy(i).
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For elements y ∈ (Rd)∗ we will also denote the inner product y(x) by ⟨y, x⟩. Simi-
larly, we identify RU ≃

(
Rd
)∗

by fixing a bijection σ : U → [d] := {1, . . . , d}. In the
context of this work these two notations can and will be used interchangeably. We
will also exploit that primal and dual vector spaces are isomorphic.

As mentioned above, for i ∈ U (i ∈ [d]) we denote by ei ∈ RU (ei ∈ Rd) the
corresponding standard basis vector and for T ⊆ U (T ⊆ [d]) we denote by

1T :=
∑
i∈T

ei ∈ RU (∈ Rd)

1 := 1U ∈ RU (1 := 1[d] ∈ Rd)

0 := 1∅ ∈ RU (∈ Rd)

the indicator vector 1T of the subset T , the vector 1 with all entries equal to one,
and the zero element 0 in the vector spaces.

Let x1, . . . , xk ∈ Rd, λ1, . . . ,λk ∈ R and x = λ1x1 + · · · + λkxk, then x is called
• a linear combination of x1, . . . , xk ∈ Rd,
• an affine combination of x1, . . . , xk ∈ Rd, if λ1 + · · · + λk = 1.

We define
• the linear hull or linear span spanR(x1, . . . , xk) as the set of all linear com-

binations of x1, . . . , xk, or equivalently, the intersection of all linear subspace
containing x1, . . . , xk,

• the affine hull aff(x1, . . . , xk) as the set of all affine combinations of x1, . . . , xk,
or equivalently, the intersection of all affine subspace containing x1, . . . , xk.

2.1 Polytopes and Polyhedra

We first recall some basic notions from polytopes and polyhedra; for more detailed
information consult, e.g., [Zie98; Grü03]. Polyhedra can be described as the intersec-
tion of finitely many half-spaces, so their point set is the set of solutions to finitely
many linear inequalities, therefore they appear in many areas in Mathematics as
well as applications, such as optimization.

A set P ⊆ Rd is convex if for any two points x, y ∈ P we have that λx + (1 −
λ)y ∈ P for all λ ∈ [0, 1]. A polyhedron P ⊆ Rd is the intersection of finitely many
half-spaces:

P = {x ∈ Rd : Ax ≤ b} ,

where A ∈ Rf×d and b ∈ Rf . Such a half-space description is irredundant if
deleting any row i ∈ {1, . . . , f} in A together with the entry bi would define a
different polyhedron. If the intersection is bounded it is called a polytope and
can equivalently be described as the convex hull of finitely many points in Rd. A
(polyhedral) cone C is a polyhedron such that for x ∈ C the point λx is again
contained in C for every λ ∈ R≥0. It follows that polyhedra are convex sets.

A supporting hyperplane H =
{

x ∈ Rd : a · x = b
}

of a polyhedron P is a
hyperplane such that the polyhedron is contained in one of the closed half-spaces
bounded by H. The intersection of a polyhedron P with a supporting hyperplane H



is a face F = H ∩ P of P. We consider the polytope P itself a face, since it is the
intersection with Rd =

{
x ∈ Rd : 0 · x = 0

}
, the degenerate hyperplane. Faces that

are not the polytope itself and non-empty are called proper faces. The dimension
dim(P) (resp. dim(F)) of a polyhedron P (resp. face F) is the dimension of the
affine hull of the polytope P (resp. face F). A d-dimensional polyhedron is called
a d-polyhedron for short, 0-dimensional faces are called vertices, 1-dimensional
faces are called edges and (dim(P) − 1)-dimensional faces are called facets. The
empty set is a face of dimension −1. We denote the set of vertices of a polytope
P by vert(P). The 1-dimensional faces of a polyhedral cone are called rays, an
element x ∈ R \ {0} is called a ray generator and for rational cones we define the
primitive ray generator of the ray R as an element r ∈ R ∩ Zd such that there
exists no λ ∈ (0, 1) with λr ∈ Zd. The codimension codim(F) of a polyhedron F
is the difference between the dimension of the ambient space and the dimension of
the polyhedron dim(F). The set of faces can be ordered by inclusion. The resulting
partial order (poset) is a lattice1 called the face lattice of a polytope. Polytopes with
isomorphic face lattice are called combinatorially equivalent or combinatorially
isomorphic. Define the boundary ∂(P) of a polyhedron P as

∂(P) :=
⋃

F a proper face of P
F ⊆ Rd .

The (relative) interior P◦ of a polyhedron P is the point set

P◦ := P \ ∂(P) .

We will call such a point set a (relatively) open polyhedron.
Let x1, . . . , xk ∈ Rd, λ1, . . . ,λk ∈ R and x = λ1x1 + · · · + λkxk, then x is called
• a conical combination of x1, . . . , xk ∈ Rd, if λi ≥ 0,
• a convex combination of x1, . . . , xk ∈ Rd, if λi ≥ 0 and λ1 + · · · + λk = 1,

Recall that a set A ⊂ Rd is called convex if for x, y ∈ A and λ ∈ [0, 1] we have
λx + (1 − λ)y ∈ A. Note that polyhedra are convex sets. We define the

• the conical hull cone(x1, . . . , xk) as the set of all conical combinations of
x1, . . . , xk, or equivalently, the intersection of all cones containing x1, . . . , xk,

• the convex hull conv(x1, . . . , xk) as the set of all convex combinations of
x1, . . . , xk, or equivalently, the intersection of all convex sets containing the
points x1, . . . , xk.

It is probably the main theorem in Polyhedral Geometry that
• every polyhedron P = {x ∈ Rd : Ax ≤ b} ⊆ Rd can be written as

P = conv(x1, . . . , xk) + cone(xk+1, . . . , xn)

for some x1, . . . , xn ∈ Rd,
• every polytope P = {x ∈ Rd : Ax ≤ b} ⊆ Rd can be written as

P = conv(x1, . . . , xk)

for some x1, . . . , xk ∈ Rd, in particular, P = conv(vert(P)),

1 See Section 2.5.5 for definitions of poset and lattice.
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• every (polyhedral) cone P = {x ∈ Rd : Ax ≤ 0} ⊆ Rd can be written as

P = cone(x1, . . . , xk)

for some x1, . . . , xk ∈ Rd, in particular, x1, . . . , xk ∈ Rd can be chosen so that
they generate the rays of P.

A d-polytope is called a simplex if it has d+ 1 vertices. If every facet of a polytope
is a simplex it is called simplicial. Similarly, a simplicial polyhedral cone of
dimension d+ 1 has precisely d+ 1 facets. A d-polytope is called simple if every
vertex is contained in exactly d facets, or equivalently, every vertex is contained in
exactly d edges.

For a subset K ⊆ Rd we define the polar dual

K∨ :=
{

y ∈
(

Rd
)∗

: ⟨y, x⟩ ≥ −1 for all x ∈ K
}

⊆
(

Rd
)∗

.

If P is a full-dimensional polytope with the origin in the interior (0 ∈ P◦), then P∨

is again a polytope and the face lattice of P is anti-isomorphic to the face lattice
of P∨. In particular, the polar dual of a full-dimensional simplicial polytope is a
full-dimensional simple polytope and vice versa.

For a d-polytope P we define the f-vector f(P) = (f−1(P), f0(P), . . . , fd(P)),
where fi(P) denotes the number of i-dimensional faces in P. For example, for the
f -vector of a d-simplex S we have

fi(S) =
(
d+ 1
i+ 1

)
for i = −1, . . . , d .

If P is a full-dimensional polytope with the origin in the interior, then

fi(P∨) = fd−i−1(P) for i = −1, . . . , d .

Note that polytopes may have the same f -vector without being combinatorially
equivalent. For dimensions two and three, f -vectors of polytopes are completely
classified. In higher dimensions f -vectors for simple and simplicial polytopes are
completely classified by the g-Theorem, see, e.g., [Zie00, Section 8.6] and references
therein. For general polytopes in dimensions ≥ 4 we have inequalities given by the
Upper-Bound-Theorem, but no complete characterization of f -vectors.

For a simple d-polytope P we define the h-vector h(P) = (h0(P), . . . ,hd(P)),
where

hi(P) :=
d∑

k=i

(−1)k−i

(
k

i

)
fk(P) for i = 0, 1, . . . , d .

We can compute the h-vector of a simple polytope the following way (see, e.g., [Bar02,
Chapter VI.6]): First choose a linear functional ω : Rd → R, which is edge-generic,
i.e., for any two vertices v, u ∈ vert(P) connected by an edge we have ω(v) ̸= ω(u).
Now, orient the edges of P along ω, that is, if ω(v) < ω(u) then the edge is oriented
from v to u. For every vertex v we count its out-degree outdeg(v) with respect to



ω, i.e., the number of vertices u connected by an edge to v and with ω(v) < ω(u).
Then we have

hi(P) = |{v ∈ |(P) : outdeg(v) = i}| . (2.1)

We will use this to compute h-vectors in Section 6.5.
A polyhedral complex P is a non-empty finite collection of polyhedra in Rd

such that
(i) if F is a face of some P ∈ P then also F ∈ P,
(ii) if P, Q ∈ P then P ∩ Q is a face of both P and Q.

We also call elements in P cells in the polyhedral complex. If every cell P in a
polyhedral complex P is a polytope then P is a polytopal complex. If every cell
C in a polyhedral complex P is a polyhedral cone then P is a fan. A subdivision
S of a polyhedron P is a polyhedral complex such that

P =
⋃

R∈S
R .

If P is a polytope and S is a subdivision of P such that every cell R ∈ S is a simplex
then we say S is a triangulation of P. In Chapter 6 we will use special types of
subdivisions to construct polytopes and study their face lattices.

For a direction y ∈
(

Rd
)∗

we define the y-maximal face Py of a polytope P by

Py := {x ∈ P : y(x) ≥ y(x′) for all x′ ∈ P}.

For a face F of a polytope P define the open and closed normal cone N◦
P(F) and

NP(F) to be the set of all direction that (strictly) maximize F in P, that is,

NP(F)◦ :=
{

y ∈
(

Rd
)∗

: Py = F
}

NP(F) :=
{

y ∈
(

Rd
)∗

: Py ⊇ F
}

.

Collecting the normal cones NP(F) of all faces F of a polytope P defines the normal
fan

N (P) :=
{

NP(F) : F a face of P
}

.

It can be checked that this is indeed a polyhedral fan as defined above. See Fig-
ure 2.1 for an example. Polytopes with the same normal fan are called normally
equivalent. In particular, translating and scaling polytopes preserves the normal
fan.

Lemma 2.1. For a face F of a polytope P ⊆ Rd with dimension dim(F) = k the
dimension of the normal cone is given by dim(NP(F)) = d− k = codim(F). For
another face G of the polytope P we have F ⊆ G if and only if NP(F) ⊇ NP(G).

This implies that if we order the set of normal cones of a polytope by reverse
inclusion, then the resulting poset is isomorphic to the face lattice of the polytope.
Hence, normal equivalence of polytopes implies combinatorial equivalence.
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(a) (b)

Figure 2.1: Two-dimensional polytope (left) and its normal fan (right). Highlighted edge and
vertex in the polytope correspond to highlighted ray and cone in the polyhedral
fan, respectively.

Note that normal fans of polytopes are instances of complete fans in Rd, that is,
the union of the cones in the fan N covers the ambient space Rd, i.e.,⋃

N :=
⋃

N∈N
N = Rd .

For an introduction to complete fans consult, e.g., [Zie98, Section 7.1]. A fan is called
rational if all its cones N ∈ N are rational.

For a complete fan N in Rd we define the codimension-one fan2 N co 1 in Rd to
contain the cones in N with codimension ≥ 1, that is, all but the full-dimensional
cones in N :

N co 1 :=
{

N ∈ N : dim N ≤ d− 1
}

. (2.2)

We think of the codimension-one fan as a pruned hyperplane arrangement, since
cones of codimension one can be seen as parts of hyperplanes. This will be one of
the central tools in Chapter 3.

Let P ⊆ Rd and Q ⊆ Re be two polytopes, then we define their Cartesian
product as P × Q := {(p, q) ∈ Rd+e : p ∈ P, q ∈ Q}. This is again a polytope.
For example the unit square is the Cartesian product of two unit intervals, e.g.,
[0, 1]2 = [0, 1] × [0, 1].

The Minkowski sum of two sets A,B ⊆ Rd is defined as

A+B := {x + y ∈ Rd : x ∈ A, y ∈ B} .

The Minkowski sum of two polytopes is again a polytope and the normal fan
N (P + Q) of the Minkowski P + Q ⊆ Rd sum of two polytopes P, Q ⊆ Rd is the
(coarsest) common refinement of the normal fans N (P) and N (Q) of P and Q [Zie98,
Proposition 7.12], i.e.,

N (P + Q) = N (P) ∧ N (Q) := {N ∩ M : N ∈ N (P), M ∈ N (Q)} . (2.3)

2 This is still a fan, but it is not complete anymore.



Minkowski sums are highly nontrivial operations, but they behave nicely in the fol-
lowing two ways. Linear functionals and Minkowski sums commute (see, e.g., [BS18,
Lemma 7.5.1]), so for polytopes P, Q ⊂ Rd we have

(P + Q)y = Py + Qy . (2.4)

Furthermore, Minkowski sums and convex hulls commute, i.e., for finite sets A,B ⊂
Rd we have

conv(A+B) = conv(A) + conv(B) .

A finite sum of line segments is called a zonotope. Up to a translation we may
assume that all line segments defining a zonotope have the origin 0 as one of their
end points. For a1, . . . , am ∈ Rd we write

Z(a1, . . . , am) :=
m∑

i=1
[0, ai] . (2.5)

Equivalently, a zonotope is a projection of a hypercube

Z(a1, . . . , am) = A([0, 1]m) , (2.6)

where A ∈ Rd×m is the linear map defined by the matrix with a1, . . . , am ∈ Rd as
columns. Zonotopes will be one of the main objects to study in Chapter 4.

The normal fan of a line segment [0, a] is defined by the hyperplane H(a, 0) =

{x ∈ Rd : a · x = 0} and the two half-spaces defined by H. This implies that the
normal fan of a zonotope Z(a1, . . . , am) is induced by a hyperplane arrangement,
i.e., a set of hyperplanes, H(A) := {H(a1, 0), . . . , H(am, 0)} in the following way:
consider the connected components of

Rd \
m⋃

i=1
H(ai, 0) ,

these form open polyhedral cones in Rd; the normal fan N (Z(a1, . . . , am)) consists
of the topological closures of those cones and all their faces.

So, every zonotope defines a unique hyperplane arrangement that captures the
combinatorial data (face lattice) of the zonotope. However, several different (but
normally equivalent) zonotopes may define the same hyperplane arrangement. For
example, the unit cube

[0, e1] + [0, e2] + [0, e3] ⊂ R3

and the axis-parallel box

[0, 100 · e1] + [0, 13 · e2] + [0, −57 · e3] ⊂ R3

have the same normal fan induced by the coordinate planes. We will return to the
connections between zonotopes, hyperplane arrangements and vector configurations
in Section 2.5.3 and Chapter 4.
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2.2 Ehrhart Theory

Ehrhart theory is the study of lattice points in polytopes and their dilates. We will
mostly consider the integer lattice Zd. Slightly simplified, we can say that Ehrhart
theory is the study of integer points in polytopes and therefore the study of integer
solutions to a finite number of linear inequalities. Ehrhart theory has connections to
Number Theory, Computational Geometry, Commutative Algebra, Representation
Theory, Combinatorics, and many other areas.

We start this section with a short introduction to general lattices before we define
the Ehrhart counting function and state some of the fundamental results in the area.

Lattices3 are points in a vector space with some periodic structure. As such they
are important in Discrete Geometry, Cryptography, and Discrete Optimization, see,
e.g., [CS99]. For an introduction to lattices, see, e.g., [Mat13, Section 2.2] or [Rot23].
For linearly independent vectors b1, . . . , bk ∈ Rd we define the lattice Λ(b1, . . . , bk)

as the Z-span of b1, . . . , bk, that is,

Λ(b1, . . . , bk) := spanZ(b1, . . . , bk) :=

{
k∑

i=1
aibi : ai ∈ Z for i = 1, . . . , k

}
.

Note that different sets of linearly independent vectors may generate the same lattice.
Let B ∈ Rd×k be the matrix with b1, . . . , bk as columns. We will often also denote the
set of vectors {b1, . . . , bk} by B and write Λ(B) := Λ(b1, . . . , bk). Algebraically, a
lattice forms a free abelian group with vector addition and can be seen as a (discrete4)
subgroup of Rd. For example,

Λ(e1, . . . , ed) = Λ(1{1}, 1{1,2}, . . . , 1{1,...,d−1}, 1) = Zd ⊂ Rd

is the integer lattice.
From now on we will restrict our discussion to lattices generated by integer vectors

a1, . . . , ak ∈ Zd, i.e., to sublattices of Zd. A square matrix U ∈ Zd×d is called
unimodular if it has determinant ±1. A general integral matrix U ∈ Zd×k is
called totally unimodular if every square submatrix has determinant ±1 or 0.
Two lattices Λ(A) ⊆ Zd and Λ(D) ⊆ Zd are the same if and only if there exists a
unimodular matrix U ∈ Zd×d such that A = UD. Then a matrix U ∈ Zd×d defines
a basis for Zd if and only if it is unimodular.

The half-open fundamental parallelepiped of a lattice Λ(A) is the set

Π(a1, . . . , ak) :=
{
λ0a1 + · · · + λkak ∈ Rd : 0 ≤ λi < 1 for i = 0, . . . , k

}
. (2.7)

The half-open fundamental parallelepipeds tile the space Rd, that means,

Rd =
⊎

a∈Λ(A)

a + Π(A)

3 Note that these lattices are a fundamentally different concept from the special class of partially
ordered sets, also called lattices, which we will introduce in Section 2.5.5.

4 Here, discrete means that all points in the lattice have distance at least ϵ from each other for some
ϵ > 0.



is a disjoint union. Said differently, every point x ∈ Rd can be written uniquely as
the sum of a lattice point a ∈ Λ(A) and a point r ∈ Π(A). We will see a similar
argument for cones in Equation (2.15) and Figure 2.3.

For k = d, we can compute the volume vol(Π(A)) of the half-open fundamental
parallelepiped by the absolute value of the determinant det(A). It also follows that
this is precisely the number of integer points contained in the half-open fundamental
parallelepiped (see, e.g., [BR15, Lemma 9.2]):

|Π(A) ∩ Zd| = |det(A)| .

Let A ∈ Zd×d and D ∈ Zd×d be two bases for the same lattice, i.e., Λ(A) = Λ(D),
then the two half-open fundamental parallelepiped Π(A) and Π(D) may be different,
but they have the same volume |det(A)| = |det(UD)| = |det(D)|. We define this
as the determinant of the lattice: det(Λ(A)) := |det(A)|.

For k ≤ d, we can compute the relative volume of the half-open fundamental
parallelepiped by using the Smith normal form (see, e.g., [KR22, Section 7.3]): For
every matrix A ∈ Zd×k there exist unimodular matrices S ∈ Zd×d and T ∈ Zk×k

such that

S A T =



d1

d2
. . .

dk


,

where every entry except on the diagonal equals zero. Note that here we assumed A
to have full rank k. Then

d1 . . . dk = gcd( all k× k minors of A ) =: g(A) . (2.8)

Since S and T preserve the integer lattice Zd it also follows that

relvol(Π(A)) = |Π(A) ∩ Zd| = d1 . . . dk = g(A) (2.9)

and this quantity defines the determinant of the (lower-dimensional) lattice
Λ(A), see, e.g., [BR15, Lemma 9.8]. Note that, by definition, g(A) = g(AT ).

We want to give yet another interpretation for the quantity g(A). For that, recall
that (sub-)lattices have an abelian group structure. We call Λ(B) a sublattice of
Λ(A) if it is a subset, i.e., Λ(B) ⊆ Λ(A). Since every lattice, by definition, comes
with an abelian group structure, every sublattice is also a subgroup, and in fact
a normal subgroup. Therefore, for two lattices Λ(B) ⊆ Λ(A) we can define its
quotient, as the quotient of abelian groups, that is,

Λ(A)/Λ(B) := {a + Λ(B) : a ∈ Λ(A)}
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is the set of all cosets of Λ(B) in Λ(A) and it has a well defined group structure. In
particular, we want to consider the special case of the lattice Zd ∩ spanR(B) and its
sublattice spanZ(B) = Λ(B). Then both lattices have the same dimension, i.e.,

dim(Zd ∩ spanR(B)) := dim(spanR(Z
d ∩ spanR(B)))

= dim(spanR(B)) =: dim(Λ(B)) .

The quotient group(
Zd ∩ spanR(B)

)
/Λ(B) =

{
b + Λ(B) : b ∈ Π(B) ∩ Zd

}
is hence finite. We can compute the size of the quotient group, i.e., its index, via∣∣∣(spanR(B) ∩ Zd)/spanZ(B)

∣∣∣ = |Π(B) ∩ Zd| = g(B) . (2.10)

So, g(B) is also the number of cosets of the discrete subgroup generated by B,
considered as a sublattice of the integer points in the linear span of B.

For general (sub-)lattices Λ(B) ⊆ Λ(A) ⊆ Zd with the same dimension, i.e.,

dim(spanR(A)) = dim(spanR(B)) ,

we have that Λ(B) ⊆ Λ(A) ⊆ (Zd ∩ spanR(A)) are normal subgroups with finite
indices. From∣∣∣Zd/spanZ(B)

∣∣∣ = ∣∣∣Zd/spanZ(A)
∣∣∣ · ∣∣∣spanZ(A)/spanZ(B)

∣∣∣ ,

see, e.g., [Rob22, (4.1.3)], it follows that

∣∣∣spanZ(A)/spanZ(B)
∣∣∣ = |Zd/spanZ(B)|

|Zd/spanZ(A)|
=
g(B)

g(A)
. (2.11)

Now we return to studying polytopes and connect them to the notion of lattices.
A polytope P ⊆ Rd is a lattice polytope if all its vertices lie in some lattice Λ.
We usually assume this lattice to be the integer lattice Zd and call such a polytope
integral polytope. Most of the time we will use the terms lattice polytope and
integral polytope interchangeably and assume the lattice to be Zd. A polyhedron P
is a rational polyhedron if all its facet defining hyperplanes H can be described as
H =

{
x ∈ Rd : a · x = b

}
for some a ∈ Zd and b ∈ Z. Equivalently, for a rational

polytope all its vertices are contained in Qd.
For a polytope Q ⊆ Rd and a positive integer n ∈ Z>0 we define the nth dilate

of Q as
nQ :=

{
x ∈ Rd : 1

nx ∈ Q
}
=
{
nx ∈ Rd : x ∈ Q

}
.

The Ehrhart counting function ehrZ(Q;n) counts the number of integer point
in the nth dilate of the polytope Q:

ehrZ(Q;n) := #
(

1
nZd ∩ Q

)
= #

(
Zd ∩ nQ

)
. (2.12)



Figure 2.2: The cube [−1, 1]2 and its dilates [−2, 2]2 and [−3, 3]2 with Ehrhart function
ehrZ([−1, 1]2;n) = (2n+ 1)2 and ehrZ((−1, 1)2;n) = (2n− 1)2.

For the Cartesian product P × Q ⊂ Rd+e of two polytopes P ⊂ Rd and Q ⊂ Re

we can check that for the Ehrhart counting function we have

ehrZ(P × Q;n) = ehrZ(P;n) · ehrZ(Q;n) .

For example, for the cube [−1, 1]d we have ehrZ([−1, 1]d;n) = (2n+ 1)d. See Fig-
ure 2.2 for an example in dimension two. We say that two polytopes P ⊂ Rd and
Q ⊂ Rd are unimodular equivalent, if there exists a unimodular transforma-
tion f : Rd → Rd given by matrix U ∈ Zd×d such that

f(P) := {Ux : x ∈ P} = Q .

We have seen that unimodular matrices leave the lattice Zd invariant. This implies
that for unimodular equivalent polytopes P and Q,

ehrZ(P,n) = ehrZ(f(P),n) = ehrZ(Q,n) .

With a similar argument we have for polytopes P ⊂ Rd that

ehrZ(P + t,n) = ehrZ(P,n)

for all lattice translations t ∈ Zd.
For a rational polytope Q we define the denominator of Q as the smallest

integer k ∈ Z>0 such that kQ is a lattice polytope. A quasipolynomial of de-
gree d is a function q : Z → R of the form q(t) = cd(t)t

d + · · · + c1(t)t + c0(t)

where c0, c1, . . . , cd : Z → R are periodic functions. The least common period of
c0(n), c1(n), . . . , cd(n) is the period of q(t).

Theorem 2.2 (Ehrhart’s theorem [Ehr62]). For a rational polytope Q ⊆ Rd and
n ∈ Z>0 the Ehrhart counting function ehrZ(Q;n) agrees with a quasipolynomial of
degree equal to the dimension of Q and period dividing the denominator of Q.

For a lattice polytope Q ⊆ Rd Ehrhart’s theorem implies that the Ehrhart count-
ing function ehrZ(Q;n) is a polynomial. Therefore the Ehrhart counting function of
a lattice polytope is called its Ehrhart polynomial. It is not hard to see that, if
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the polytope is rational and full-dimensional, the leading coefficient of the Ehrhart
polynomial is constant and equals the volume of the polytope. To show that the con-
stant term of the Ehrhart polynomial equals 1 requires some more work. The second
highest coefficient can be computed via the relative volumes of the facets. One of
the general research themes in Ehrhart theory is to understand the coefficients and
the structure of the Ehrhart polynomial, as well as their connection to properties of
the polytope.

It is an interesting research direction to find combinatorial formulas to describe
the Ehrhart polynomial for special classes of polytopes. For lattice zonotopes this
was done by Richard Stanley in the following theorem.

Theorem 2.3 ([Sta91, Theorem 2.2]). Let Z be a zonotope generated by the integer
vectors a1, . . . , am ∈ Zd. Then the Ehrhart polynomial of Z equals

ehrZ(Z;n) =
∑
F
g(F)nrank(F)

where g(F) is the greatest common divisor of all maximal minors of F and F ranges
over all matrices formed by linearly independent subsets of {a1, . . . , am} as columns.

This theorem has a beautiful proof via half-open zonotopal tilings, see, e.g., [BR15,
Section 9.2]. The key observation is that every zonotope is the disjoint union of
certain translates of half-open parallelepipeds

Z(a1, . . . , am) =
⊎
F
(Π(F) + tF) , (2.13)

where F ranges over all linearly independent subsets of {a1, . . . , am} and the half-
open parallelepiped Π(F) is define as in Equation (2.7).

In Chapter 4 we will apply this theorem to zonotopes associated with signed
graphs and their “duals” to give combinatorial descriptions for the coefficients of the
Ehrhart polynomial. See also Section 2.5.1 for a first instance.

Recall that Theorem 2.2 says that the Ehrhart counting function ehrZ agrees
with a polynomial for positive integers. This means that there exists a polynomial
that we can evaluate at positive integers and the result will give us the value of
the Ehrhart counting function. Even though we can plug negative integers into that
polynomial, there is a priori no reason to believe that this would give us meaningful
results. This is where the beauty of combinatorial reciprocity theorems starts.
There are numerous instances of combinatorial counting functions that agree with a
polynomial for positive integers and where evaluating that polynomial at negative
integers again agrees with a, different but related, counting function. See [BS18]. The
following reciprocity theorem was conjectured and proved for various special cases
by Eugéne Ehrhart and proved by Ian G. Macdonald.

Theorem 2.4 (Ehrhart–Macdonald reciprocity [Mac71]). Let Q ⊆ Rd be a rational
polytope. Then

(−1)dim Q ehrZ(Q; −n) = ehrZ(Q◦;n) := #
(

Zd ∩ nQ◦
)

for n ∈ Z>0 ,

where Q◦ is the (relative) interior of the polytope Q.



For example, if we count integer points in the interior of the cube [−1, 1]d

ehrZ(Q◦;n) = (2n− 1)d = (−1)d(2(−n) + 1)d = (−1)d ehrZ(Q; −n) .

See Figure 2.2 for an example in dimension two.
We will expand Theorem 2.4 in Chapter 3 and apply it to derive new and old

combinatorial reciprocity theorems.
It is a general technique in Combinatorics to study integer sequences via generating

functions, see, e.g., [Wil94], [Sta12, Chapter 4]. We define the Ehrhart series of a
polytope as the generating series of its Ehrhart (quasi-)polynomial:

EhrZ(P; t) := 1 +
∑

n∈Z>0

ehrZ(P;n) tn . (2.14)

It is an easy exercise in generating functions to show that the generating series of a
quasipolynomial with degree d and period k can be written as a rational function of
the following form:

EhrZ(P; t) =
h∗

Z(P; t)
(1 − tk)d+1 ,

where h∗
Z(P; t) ∈ Z[t] is a polynomial with integral coefficients and of degree strictly

smaller than k · (d+ 1). The step from ehrZ(P;n) to h∗
Z(P; t) is essentially a change

of basis; see, e.g., [BS18, Section 4.5].
We will take a little detour to introduce the integer point transform of a poly-

hedral cone and to discuss how the Ehrhart series is a specialization of the integer
point transform. This is a useful technic both for actual computations as well as for
theoretical results in Ehrhart theory.

The integer point transform of a polyhedral cone C ⊆ Rd+1 is defined as

σ(C; z) :=
∑

p∈C∩Zd+1

zp ,

where zp = zp0
0 · zp1

1 · · · · · zpd
d . For simplicial cones there is a nice recipe to compute

a rational function expression for the interger point transform. Let C ⊆ Rd+1 be a
rational simplicial (d+ 1)-cone generated by integer vectors v(0), . . . , v(d) ∈ Zd+1,
i.e., C = cone{v(0), . . . , v(d)}. Since C is simplicial, v(0), . . . , v(d) ∈ Zd+1 are linearly
independent and form a basis for Rd+1. So every point in the cone C can be expressed
uniquely as a positive linear combination using the cone generators v(0), . . . , v(d). Let
p ∈ C ∩ Zd+1, then there are unique coefficients µ0, . . . ,µd ∈ R≥0 such that

p = µ0v(0) + µ1v(1) + · · · + µdv(d)

= (⌊µ0⌋ + {µ0})v(0) + · · · + (⌊µd⌋ + {µd})v(d)

= ⌊µ0⌋v(0) + · · · + ⌊µd⌋v(d)︸ ︷︷ ︸
∈Zd+1

+{µ0}v(0) + · · · + {µd}v(d) ∈ Zd+1 , (2.15)
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Figure 2.3: Cone C generated by (1, 1) and (1, 3) in yellow together with the half-open fun-
damental parallelepiped in blue (left) and the cone together with a few translates
of the half-open fundamental parallelepiped (right).

where ⌊µ⌋ ∈ Z denotes the largest integer smaller than or equal to µ ∈ R and {µ}
denotes the fractional part of µ, i.e., {µ} = µ− ⌊µ⌋ ∈ [0, 1). It follows that

{µ0}v(0) + · · · + {µd}v(d) ∈ Zd+1

is a unique integer point in the half-open fundamental parallelepiped

Π(v(0), . . . , v(d)) :=
{
λ0v(0) + · · · + λdv(d) ∈ Rd+1 : 0 ≤ λi < 1 for i = 0, . . . , d

}
.

Hence, every integer point in the simplicial cone C has a unique expression as a
nonnegative integer combination of the generators plus a lattice point in the half-
open fundamental parallelepiped. See Figure 2.3 for an example.

So,

σ(C; z) =
∑

p∈C∩Zd+1

zp

=
∑

p∈Π∩Zd+1

zp ·
∑

n0,...,nd∈Z≥0

zn0v(0)+···+ndv(d)

=
σ(Π; z)

(1 − zv(0)) · . . . · (1 − zv(d))
,

where
σ(Π; z) =

∑
p∈Π∩Zd+1

zp .

By triangulation and inclusion-exclusion arguments it follows that the integer point
transform of every polyhedral cone exhibits an expression as a rational function.

Example 2.5. We compute the integer point transform for the cone in Figure 2.3.
The half-open fundamental parallelepiped Π((1, 1), (1, 3)) contains two lattice points,
(0, 0) and (1, 2). Hence the integer point transform

σ(C; z) =
1 + z(1,2)

(1 − z(1,1)) · (1 − z(1,3))
=

1 + z0z2
1

(1 − z0z1) · (1 − z0z3
1)

.



Figure 2.4: The cone hom([0, 1]2) = cone({1} × [0, 1]2) (rays in yellow) with copies of nP at
height n in the cone (in green).

We will now see that the Ehrhart series is a special case of an integer point
transform. For that, we define the cone over P ⊆ Rd (also the homogenization
of P) of a rational polytope P = {x ∈ Rd : A x ≤ b} as

hom(P) := cone({1} × P) :=
{
(x0, x) ∈ Rd+1 : Ax ≤ x0b , x0 ≥ 0

}
⊆ Rd+1 .

It follows that

hom(P) ∩ {(x0, x) ∈ Rd+1 : x0 = n} = {n} × (nP) .

Hence, by intersecting the cone hom(P) with the hyperplane {(x0, x) ∈ Rd+1 : x0 =

n} at height n we recover a copy of nP embedded in Rd+1. We observe that the
number of lattice points in hom(P) at height n is the same as the number of lattice
point in nP. See Figure 2.4 for an example. Therefore we can express the Ehrhart
series of P as a specialization of the integer point transform of hom(P):

EhrZ(P; t) = 1 +
∑

n∈Z>0

ehrZ(P;n) tn

= 1 +
∑

n∈Z>0

∣∣∣(hom(P) ∩ {(x0, x) : x0 = n}) ∩ Zd+1
∣∣∣ tn

=
∑

(x0,x)∈hom(P)∩Zd+1

(t, 1)(x0,x)

= σ(hom(P); (t, 1)) .

Now, let k be the smallest integer so that all vertices of kP are integral, i.e., the
lowest height in the cone hom(P) so that all the ray generators are integral and
denote them by v(0), . . . , v(d) ∈ Zd+1. Then v(0)

0 = · · · = v(d)
0 = k. Hence,
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EhrZ(P; t) = σ(hom(P); (t, 1))

=
σ(Π; (t, 1))

(1 − tv
(0)
0 ) · . . . · (1 − tv

(d)
0 )

=
σ(Π; (t, 1))
(1 − tk)d+1 .

Example 2.6. We continue Example 2.5 and compute the Ehrhart series for the
cone in Figure 2.3. Note that the cone C = cone{(1, 1), (1, 3)} = hom([1, 3]) is the
homogenization of the line segment [1, 3] ⊂ R. Then,

EhrZ([1, 3]; t) = σ(hom([1, 3]); (t, 1)) = 1 + t · 12

(1 − t · 1) · (1 − t · 13)
=

1 + t

(1 − t)2 .

In the simplicial case, the polynomial σ(Π; (t, 1)) = h∗
Z(P; t) records the number

of integer points at the different heights in the half-open fundamental parallelepiped.
So the coefficients of the h∗

Z-polynomial are nonnegative for simplices. For general
polytopes one can use triangulation and inclusion-exclusion methods to compute the
h∗

Z-polynomial. However, those computations do not preserve nonnegativity. The fol-
lowing theorem shows that the h∗

Z-polynomial for general polytopes has nonnegative
coefficients nonetheless.

Theorem 2.7 ([Sta80, Theorem 2.1]). Let P ⊆ Rd be a rational d-polytope with
denominator k. Then,

EhrZ(P; t) = h∗
Z(P; t)

(1 − tk)d+1

and h∗
Z(P; t) ∈ Z≥0[t] is a polynomial with nonnegative coefficients.

Richard Stanley proved this theorem in the setting of commutative algebra, today
there are also more geometric proofs (see, e.g., [BR15]).

It follows from Theorem 2.4 that

EhrZ(P◦; t) :=
∑

n∈Z≥1

ehrZ(P◦;n)tn = (−1)dim(P)+1 EhrZ

(
P; 1
t

)
.

It is one of the main research directions within Ehrhart theory to investigate the
structure of h∗

Z-polynomials, e.g., for special classes of polytopes. On example is the
class of Gorenstein polytopes, which can be characterized by their h∗

Z-polynomials.
A lattice polytope P is called reflexive if there exists a lattice point p in the

interior P◦ of P that has lattice distance one to every facet, i.e., for every facet F
there exists a normal nF ∈ (Zd)∗ such that

⟨nF, p⟩ = ⟨nF, v⟩ + 1

for every vertex v in the facet F. A lattice polytope with the origin in its interior
is reflexive if and only if its polar dual polytope is a lattice polytope. This is also



equivalent to the polar dual polytope being reflexive. A lattice polytope P is called
Gorenstein of index k if kP is a reflexive polytope.

Theorem 2.8. Let P = {x ∈ Rd : A x ≤ b} ⊂ Rd be a lattice d-polytope and let s
denote the degree of h∗

Z(P; t). Then the following are equivalent:

(i) P is Gorenstein of index k.
(ii) There exists a (necessarily unique) integer solution (k, x) to

k− ⟨aj , x⟩ = 1 for j = 1, . . . , f .

(iii) the h∗
Z-polynomial is palindromic, i.e.,

h∗
Z(P; t) = ts h∗

Z(P; 1
t
) .

(iv) (−1)d+1tk EhrZ(P; t) = EhrZ(P; 1
t ).

(v) ehrZ(P,n) = (−1)d ehrZ(P; −n− k) = ehrZ(P◦;n+ k) for all n ∈ Z≥0.
(vi) hom(P)∨ is the cone over a lattice polytope, i.e., there exists a lattice point

(x0, x) ∈ hom(P)◦ ∩ Zd+1 such that for every primitive ray generator (w0, w)

of hom(P)∨

⟨(x0, x) , (w0, w)⟩ = 1 .

For proofs see, e.g., [HNP19, Section 7.3], [BR15, Exercise 4.8], [BN08, Defini-
tion 1.8], or [BG09, Exercises 2.13 and 2.14]. In Chapter 5 we generalize the defini-
tion of Gorenstein polytope to rational polytopes and give analogous characterization
theorems.

2.3 Generalized Permutahedra

Generalized permutahedra or deformed permutahedra5 are an interesting class of
polytopes. Generalized permutahedra have several equivalent characterizations, as
polymatroids [Edm70], as submodular functions [Fuj05], as deformations of standard
permutahedra [CL20], by their edge directions, via their normal fans, and as (virtual)
Minkowski sums of scaled standard simplices [ABD10], see also [Pos09], [AA23], and
[PRW08]. Moreover, this class of polytopes contains many subclasses associated with
combinatorial structures, as we will see in Section 2.5.

In this section we discuss in detail generalized permutahedra, which are also de-
formed Coxeter permutahedra in type A. We will introduce the latter in Section 2.4.
Many of the properties discussed in this section translate to deformed Coxeter per-
mutahedra.

5 In fact, deformed permutahedra is the more precise and descriptive term, as we will see later in this
section.However, generalized permutahedra is more commonly used and known.
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(a) Π2 ⊆ R2 (b) Π3 ⊆ R3 (c) Π4 ⊆ R4

Figure 2.5: Three standard permutahedra.

We define the standard permutahedron6 Πd as the convex hull of the d! permu-
tations of the point (1, 2, . . . , d), that is, the standard permutahedron Πd is defined
by7

Πd := conv
{
(xi)i∈[d] ∈ Rd : {xi}i∈[d] = [d]

}
⊆ Rd.

Figure 2.5 shows examples in low dimensions. Note that the standard permutahedron
is of dimension d− 1 since all vertices are contained in a hyperplane with constant
coordinate sum. In our definition, standard permutahedra are integer polytopes. The
standard permutahedron can equivalently be described as the Minkowski sum of line
segments:

Πd =
∑
i<j

∆{i,j}, (2.16)

where ∆{i,j} := [ei, ej ] :=:= conv{ei, ej} and ei are standard basis vectors. This im-
plies, in particular, that standard permutahedra are zonotopes. The facet description
of the standard permutahedron is given by

d∑
i=1

xi = d+ (d− 1) + · · · + 1 =
d(d+ 1)

2 = (d+1
2 ) (2.17)∑

i∈T

xi ≤ d+ (d− 1) + · · · + (d− |T | + 1) = (d+1
2 ) − (|T |+1

2 ) for all T ⊆ [d].

Every face of the standard permutahedron can be described combinatorially by com-
positions, for details see, e.g., [AA23, Section 4.1.].

The normal fan of the standard permutahedron has a nice description via the
braid arrangement Bd, the hyperplane arrangement consisting of the finite set of
hyperplanes Hij := {x ∈ Rd : xi = xj} for i, j ∈ [d], i ̸= j. See Figure 2.6(b) for
the example B3. The connected components of Rd \

⋃
Bd are the (open) regions of

the arrangement. The closed regions of the braid arrangement are the topological
closures of the open regions. They are polyhedral cones and their faces are the faces
of the braid arrangement, also called braid cones. The braid cones can be described
uniquely by compositions [d] = T1 ⊎ · · · ⊎ Tk (Lemma 2.10). We therefore denote
them by BT1,...,Tk

. For more details about concepts on hyperplane arrangements see,

6 Also called permutohedron.
7 The definition of standard permutahedron is not consistent within literature, e.g., Postnikov defines

the standard permutahedron in a more general way: as the convex hull of all the points obtained
by permuting the coordinates of an arbitrary point [Pos09, Definition 2.1].



(a) Standard permutahedron Π3 (b) Braid arrangement B3

Figure 2.6: The standard permutahedron Π3 ⊆ R3 (left) and the normal fan in (R3)∗ (right),
where the intersection line is the normal cone NΠ3(Π3), the half hyperplanes are
the normal cones of the edges and the full-dimensional cones are the normal
cones of the vertices of Π3.

Figure 2.7: A generalization P of the standard permutahedron Π3: here the up-right edge
was moved outwards until it degenerated to a vertex. The normal cone of that
“new” vertex is the union of the normal cones of the “old” degenerated edge and
its adjacent vertices.

for example, [Sta07]. The faces of the braid arrangement Bd form the braid fan and
the normal fan N (Πd) of the standard permutahedron Πd is precisely the braid fan
(see, for example, [AA23, Section 4]).

We say a fan N is a coarsening of another fan N ′ if every cone in N is the
union of some cones in N ′. A polytope P ⊆ Rd is a generalized permutahedron
or deformed permutahedra if its normal fan N (P) is a coarsening of the normal
fan N (Πd) of the standard permutahedron Πd, that is, it is a coarsening of the fan
induced by the braid arrangement Bd.

This is equivalent to saying a polytope P ⊆ Rd is a generalized permutahedron if
and only if every edge is parallel to ei − ej for some i ̸= j ∈ [d].

Since the normal fan N (P + Q) of the Minkowski sum P + Q of two polytopes
P and Q is the common refinement of the two normal fans N (P) and N (Q), see
Equation (2.3), generalized permutahedra are the (weak) Minkowski summands
of standard permutahedra. That is, P ⊆ Rd is a generalized permutahedron if and
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only if there exists a polytope Q ⊆ Rd and a real scalar λ > 0 such that P + Q =

λΠ[d].
Every Minkowski sum of standard simplices ∆I := conv(ei : i ∈ I) ⊂ Rd

∑
I⊆[d]

y(I)∆I for y(I) ∈ R≥0

is a generalized permutahedron. We will see a proof of this fact for y(I) ∈ Z≥0 in
Proposition 2.15 below.

Conversely, every generalized permutahedron P ⊂ Rd can be uniquely written as
a signed Minkowski sum of standard simplices

P =
∑

I⊆[d]

y(I)∆I for y(I) ∈ R ,

where Minkowski difference is defined by P − Q = R if P = R + Q. See [ABD10].
Finally, generalized permutahedra can be uniquely described as the base polytopes

of submodular functions. Recall, a set function z : 2U → R is called submodular if
for all A,B ⊆ U

z(A) + z(B) ≥ z(A∪B) + z(A∩B) . (2.18)

We define the base polytope P(z) of a submodular function z : 2U → R by

P(z) :=
{

x ∈ RU :
∑
i∈U

xi = z(U) and
∑
i∈A

xi ≤ z(A) for all A ⊆ U
}

.

Theorem 2.9. A polytope P ⊂ RU is a generalized permutahedron if and only if it
is the base polytope P(z) of a submodular function z : 2U → R with z(∅) = 0.

Note that we can interpret a submodular function z : 2[d] → R with z(∅) = 0 as
an element in R2d−1 and from Equations (2.18) it follows that the set of submodular
functions forms a polyhedral cone, called the deformation cone of the standard
permutahedron Πd. More about deformation cones can be found, e.g., in [PRW08,
Appendix].

Theorem 2.9 is well-known, see, e.g., [CL20, Theorem 3.11 and 3.17]. For the sake
of completeness and the convenience of the reader we include a self-contained proof
below. We do not claim the proof to be either new or original, but it seems to be
hard to find in the literature.

As explained in Section 2.0 we will use the notations for Rd and RU interchange-
ably. We further simplify notation by using

x(A) :=
∑
i∈A

xi for A ⊆ U .

With that at hand we can write the definition of base polytopes of submodular
functions as

P(z) =
{

x ∈ RU : x(U) = z(U) and x(A) ≤ z(A) for all A ⊆ U
}

.



As mentioned above the standard permutahedron ΠU is the base polytope of the
submodular function

z(A) := |U | + (|U | − 1) + · · · + (|U | − |A| + 1) .

We first give a description of the faces of the braid fan in terms of set compositions.
A composition of a finite set U is an ordered sequence (T1, . . . ,Tk) of disjoint non-
empty subsets Ti ⊆ U such that U = T1 ⊎ · · · ⊎ Tk.

Lemma 2.10. The faces of the braid arrangement BU , also called braid cones, can
be described uniquely by compositions U = T1 ⊎ · · · ⊎ Tk:

BT1,...,Tk
:=
{

y ∈ RU : y(i) = y(j) for all i, j ∈ Ta,

y(i) ≥ y(j) for all i ∈ Ta, j ∈ Tb with a < b
}

= cone{1T1 , 1T1∪T2 , . . . , 1T1∪···∪Tk−1} + spanR{1U }

with
dim BT1,...,Tk

= k ,

where 1T for some subset T ⊆ U is the 0/1-vector with entries equal to one for
indices in the subset T and zero otherwise.

Proof of Theorem 2.9. For a submodular function z : 2U → R we show that P(z)
is a generalized permutahedron by showing that every braid cone BT1,...,Tk

⊆ RU

is contained in a normal cone of P(z). Since P(z) is contained in the hyperplane
{x ∈ RU : x(U) = z(U)} the normal cone NP(z)(P(z)) contains the line spanned
by 1U ∈ RU , hence every normal cone of P(z) contains that line.

The following part of the proof relies on [FT83]. Fujishige and Tomizawa show
under which conditions a greedy-like algorithm gives an optimal solution in the base
polytope of a submodular functions on a general distributive lattice. We adapt the
proof to our special case.

Let BT1,...,Tk
⊆ RU a braid cone. Choose a maximal chain C : ∅ = C0 ⊊ · · · ⊊

Cn = U in the Boolean lattice8 2U such that T1,T1 ⊔ T2, . . . ,T1 ⊔ · · · ⊔ Tk are sets in
the chain C. Then

|Cj \Cj−1| = 1

for j = 1, . . . ,n := |U | and we define a linear ordering on U by ij := Cj \Cj−1 ∈ U

for j = 1, . . . ,n. Now, consider the point x̃ ∈ RU defined by

x̃ij
:= z(Cj) − z(Cj−1) für j = 1, . . . ,n.

We will show
(i) that x̃(Cj) = z(Cj) for j = 1, . . . ,n, and that the point x̃ lies in P(z),
(ii) that x̃ is maximal for all directions in the braid cone BT1,...,Tk

.
Then it follows that the braid cone BT1,...,Tk

is contained in the normal cone NP(z)(F),
where F is a face containing x̃.

8 See Section 2.5.5 for a definition of Boolean lattice.
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For j = 1, . . . ,n we compute

x̃(Cj) =
j∑

l=1
x̃il

=
j∑

l=1
(z(Cl) − z(Cl−1)) = z(Cj),

in particular, x̃(U ) = z(U). We show by induction on the cardinality |A| of a
subset A ⊆ U that x̃(A) ≤ z(A). For the empty set we have 0 = x̃(∅) = z(∅).
For an arbitrary set A ⊆ U let j∗ be the minimal index such that A ⊆ Cj∗ and
define the element i∗ := A \Cj∗−1 ∈ U . We compute using the induction hypothesis,
Lemma 2.3, and submodularity of z together with A \ {i∗} = A∩Cj∗−1 and Cj∗ =

A∪Cj∗−1:

x̃(A) = x̃({i∗}) + x̃(A \ {i∗}) ≤ x̃({i∗}) + z(A \ {i∗})
= z(Cj∗) − z(Cj∗−1) + z(A \ {i∗}) ≤ z(A) .

Hence, x̃ ∈ P(z).
Now, choose an arbitrary direction y ∈ BT1,...,Tk

. By Lemma 2.10 y(i) = y(i′) for
i, i′ ∈ Tl so we can set ŷl := y(i) for i ∈ Tl and l = 1, . . . , k. Moreover, ŷl ≥ ŷl+1.
For a point x ∈ P(z) compute:

⟨y, x̃⟩ − ⟨y, x⟩ =
∑
i∈U

x̃iy(i) −
∑
i∈U

xiy(i) =
k∑

l=1
ŷl

(
x̃(Tl) − x(Tl)

)

=
k∑

l=1

(
ŷl

(
x̃(T1 ⊔ · · · ⊔ Tl) − x(T1 ⊔ · · · ⊔ Tl)

)
− ŷl

(
x̃(T1 ⊔ · · · ⊔ Tl−1) − x(T1 ⊔ · · · ⊔ Tl−1)

))

=
k−1∑
l=1

(ŷl − ŷl+1)
(
x̃(T1 ⊔ · · · ⊔ Tl) − x(T1 ⊔ · · · ⊔ Tl)

)
+ ŷk

(
x̃(U ) − x(U )

)
=

k−1∑
l=1

(ŷl − ŷl+1︸ ︷︷ ︸
≥0

)
(
z(T1 ⊔ · · · ⊔ Tl) − x(T1 ⊔ · · · ⊔ Tl)︸ ︷︷ ︸

≥0

)
≥ 0,

(2.19)

where we use in the last equality, that the sets T1,T1 ⊔ T2, . . . ,T1 ⊔ · · · ⊔ Tk are
contained in the chain C : ∅ = C0 ⊊ · · · ⊊ Cn = U and that we already know
x̃(Cj) = z(Cj) for j = 1, . . . ,n. Since the computation in (2.19) is independent
from the actual values of the direction y ∈ BT1,...,Tk

, the inequality y(x̃) ≥ y(x)
holds for every direction y ∈ BT1,...,Tk

. So the braid cone BT1,...,Tk
is contained in the

normal cone NP(z)(F), where F is a face containing x̃. Hence, P(z) is a generalized
permutahedron.

For the opposite implication let P be a generalized permutahedron. We will define
a submodular function zP and show that P = P(zP). Since the generalized permuta-



hedron P is contained in the hyperplane with constant coordinate sum, the following
set function is well defined:

zP(U) :=
∑
i∈U

xi for x ∈ P

zP(A) := max
x∈P

(∑
i∈A

xi

)
for A ⊆ U .

We can immediately deduce that z(∅) = 0 and P ⊆ P(zP).
First we show that zP is submodular. For arbitrary A,B ⊆ U find a chain C : ∅ =

C0 ⊊ C1 ⊊ · · · ⊊ Ck = U in the Boolean lattice 2U that contains A∩B and A∪B.
We set Ti := Ci \ Ci−1 for i = 1, . . . , k and consider the braid cone BT1,...,Tk

=

cone{1T1 , . . . , 1T1⊔···⊔Tk−1} + spanR{1U }. Then there exists a face F of P such that
the normal cone NP(F) contains the braid cone BT1,...,Tk

and in particular every point
x ∈ F is maximal in the direction 1A∩B, 1A∪B ∈ BT1,...,Tk

. Then,

zP(A) + zP(B) ≥ x(A) +x(B) = x(A∪B) +x(A∩B) = zP(A∪B) + zP(A∩B)

and zP is submodular.
Now it is left to show that P ⊇ P(zP). The main idea for this part of the proof can

be found in [DF10]. For the sake of a contradiction, let us assume there is a point
u ∈ P(zP) \ P. Then there exists a separating hyperplane

Ht,c := {x ∈ RU : ⟨t, x⟩ = c}

such that

⟨t, u⟩ =
∑
i∈U

tiui > c and ⟨t, p⟩ =
∑
i∈U

tipi ≤ c for all p ∈ P

Now choose a braid cone BT1,...,Tk
such that t ∈ BT1,...,Tk

and set again t̂l := ti

for i ∈ Tl, l = 1, . . . , k. For points q in the t-maximal face F := Pt we know by
the definition of z that q(T1 ∪ · · · ∪ Tl) = z(T1 ∪ · · · ∪ Tl) for l = 1, . . . , k. Using
telescoping sums we compute

⟨t, u⟩ =
∑
i∈U

tiui > c ≥ ⟨t, p⟩ =
∑
i∈U

tiqi =
k∑

l=1
t̂jq(Tl)

= t̂kq(T1 ∪ · · · ∪ Tk) +
1∑

l=k−1
(t̂l − t̂l+1)q(T1 ∪ · · · ∪ Tl)

= t̂kz(T1 ∪ · · · ∪ Tk) +
1∑

l=k−1
(t̂l − t̂l+1)z(T1 ∪ · · · ∪ Tl)

≥ t̂ku(T1 ∪ · · · ∪ Tk) +
1∑

l=k−1
(t̂l − t̂l+1)u(T1 ∪ · · · ∪ Tl)

=
k∑

l=1
t̂lu(Tl) =

∑
i∈U

tiui = ⟨t, u⟩.
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This is a contradiction and completes the proof.

2.4 Root Systems and Deformed Coxeter Permutahedra

We briefly introduce root systems, Coxeter permutahedra and deformed Coxeter
permutahedra, generalizing the permutahedra and generalized permutahedra from
the previous section. For introductions to root systems and Coxeter groups see, e.g.,
[Hum90] or [BB05] and for introductions to (deformed) Coxeter permutahedra, see,
e.g.,[ABM20] or [Ard+20]. Similar to the generalized permutahedra in Section 2.3,
deformed Coxeter permutahedra give a general framework for various subclasses
of polytopes associated with (signed) combinatorial structures. We will see this in
action in Section 2.5.4 and Chapter 4.

A root system Φ ⊂ V in a real vector space V with inner product ⟨ · , · ⟩ is a
finite set of vectors such that

(i) spanR(Φ) = V,
(ii) the only scalar multiples of a root v ∈ Φ that belong to Φ are v and −v,
(iii) for every v ∈ Φ we have sv(Φ) = Φ, where

sv(x) := x − 2⟨x, v⟩
⟨v, v⟩

v .

For every root v ∈ Φ define a hyperplane Hv := {x ∈ V : ⟨x, v⟩ = 0}. For a
root system Φ, the hyperplane arrangement HΦ := {Hv : v ∈ Φ} is called Coxeter
arrangement. We call the polyhedral fan induced by a Coxeter arrangement HΦ

a Coxeter fan NΦ, i.e., the open full-dimensional cones in NΦ are the connected
components of V \

⋃
HΦ.

The direct sum of two root systems Φi ⊂ V1 and Φ2 ⊂ V2 is the root system

Φ1 ⊕ Φ2 := {(v1, 0) ∈ V1 ⊕ V2 : v1 ∈ Φ1} ∪ {(0, v2) ∈ V1 ⊕ V2 : v2 ∈ Φ2} .

A root system is called irreducible if it is not a nontrivial direct sum of root systems.

Example 2.11. Here are four families of irreducible root systems:
• Ad−1 = {±(ei − ej)}i ̸=j ,,
• Bd = {±(ei − ej)}i ̸=j ∪ {±(ei + ej)}i ̸=j ∪ {±ei},
• Cd = {±(ei − ej)}i ̸=j ∪ {±(ei + ej)}i ̸=j ∪ {±2ei},
• Dd = {±(ei − ej)}i ̸=j ∪ {±(ei + ej)}i ̸=j ,

where ei for i = 1, . . . , d are the standard basis vectors in Rd. Note that Ad−1 spans
the (d− 1)-dimensional vector space{

x ∈ Rd : x1 + · · · + xd = 0
}

⊂ Rd ,

hence the shift in the index. We will see combinatorial models for these root systems,
their subsets, and their hyperplane arrangements in Section 2.5.1 and Section 2.5.4.

Theorem 2.12 ([Hum90, Section 2]). Irreducible root systems can be completely
classified up to isomorphism: there are 5 exceptional root systems and the four infinite
families in Example 2.11.



A subset Φ+ ⊆ Φ is called positive roots if for each root v exactly one of the
roots v, −v is contained in Φ+ and for two distinct v1, v2 ∈ Φ+ with v1 + v2 ∈ Φ
we also have v1 + v2 ∈ Φ+. The standard Coxeter permutahedron of type Φ
or Φ-permutahedron is defined as

ΠΦ :=
∑

v∈Φ+

[
−1

2v, 1
2v
]

.

It follows directly from the definitions that the normal fan of the Φ-permutahedron
ΠΦ is the Coxeter fan NΦ. Note that the Coxeter arrangement HAd−1 in type Ad−1
is the braid arrangement Bd from Section 2.3 and the Coxeter permutahedron of
type Ad−1 is a translate of the standard permutahedron Πd from Section 2.3, i.e.,
for the choice A+

d−1 = {ei − ej ∈ Rd : i < j} we have with Equation (2.16)

ΠAd−1 +
d−1

2 1 =
∑
i<j

([
−1

2 (ei − ej), 1
2 (ei − ej)

]
+ 1

2 (ei + ej)
)
=
∑
i<j

[ei, ej ] = Πd .

The Ehrhart polynomial for standard Coxeter permutahedra of type A, B, C, and
D, was computed in [ABM20]. We will extend these results (for certain translates)
to integral subzonotopes, in the sense of subsets of the root systems, in Chapter 4.

We call a polytope generalized Coxeter permutahedron or deformed Cox-
eter permutahedron if its normal fan coarsens a Coxeter fan NΦ, i.e., it is a
deformation of a Φ-permutahedron. As in the last section, generalized Coxeter per-
mutahedra can be described by certain Coxeter submodular functions, see [Ard+20].
For example subzonotopes of the standard Coxeter permutahedra are deformed Cox-
eter permutahedra. In the case of root systems of types A, B, C, and D, we will study
those in Chapter 4. In Chapter 3 we will derive general a combinatorial reciprocity
theorem for deformed Coxeter permutahedra in types A, B, C, and D.

2.5 Combinatorial Structures and their Polytopes

In the following sections we introduce five combinatorial structures—graphs, hy-
pergraphs, matroids, signed graphs and posets—as well as their associated poly-
topes. Graphical zonotopes, hypergraphical polytopes, and matroid base polytopes
are subclasses of generalized permutahedra. Representable matroids also come with
(general) associated zonotopes. While signed graphical zonotopes are subclasses of
deformed Coxeter permutahedra, order polytopes are neither generalized permuta-
hedra nor deformed Coxeter permutahedra, but they are closely related to Coxeter
arrangements in type A, i.e., braid arrangements.

2.5.1 Graphs

A graph G = (V ,E) is a tuple consisting of a finite set V called nodes9and a finite
set E of two-subsets of V called edges. Throughout we will denote the number
of nodes by d := |V | and the number of edges by m := |E|. A path in a graph a
sequence (v1, e1, v2, e2, . . . , eℓ, vℓ+1) of nodes vi and edges ei, such that ei = {vi, vi+1}

9 We use the less common term nodes for graphs to distinguish them from the vertices of a polytope.
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and all the edges and nodes in the sequences are pairwise distinct. A graph G is
connected if there exists a path between any two nodes. A circle a closed path,
i.e., a sequence (v1, e1, v2, e2, . . . , eℓ, v1) where only the first and last node are equal.
A loop is a circle (v, e, v). A forest is a graph without circles and a tree is a
connected forest. A subset S ⊆ E of edges is called spanning (in G = (V ,E)), is
the graph G(S) := (V ,S) is connected. For a subset T ⊆ V of the nodes of the graph
G = (V ,E) we define the (node) induced subgraph G|T := (T ,E|T ), where

E|T := {{u, v} ∈ E : u, v ∈ T} . (2.20)

For a subset F ⊆ E of the edges of the graph G = (V ,E) we define the (edge)
subgraph G(F ) := (V ,F ). If G(F ) is a forest we also say that “F ⊆ E is a forest
in G” or “F ⊆ E forms a forest in G”.

An orientation of G assigns to every edge e = {u, v} ∈ E an order (or direction).
A cycle in an orientation of a graph is a sequence (u1, v1), (u2, v2), . . . , (uℓ, vℓ) of
directed edges such that ui ̸= uj for i ̸= j and ui = vi−1 for i = 2, . . . , ℓ and u1 = vℓ.
An orientation of a graph is called acyclic if it does not contain any cycles and it is
called totally cyclic (or strongly connected) if every edge in the graph is contained
in a cycle.

For a graph G = (V ,E) with |V | = d we define the graphical hyperplane
arrangement

HG = {H{u,v} : {u, v} ∈ E} ,

where H{u,v} := {x ∈ Rd : xu = xv}. Note that graphical hyperplane arrangements
are subsets of the Coxeter arrangement in type A introduced in Section 2.4. For ex-
ample the graphical hyperplane arrangement of the complete graph on three nodes
is the braid arrangement, or equivalently the Coxeter arrangement HA2 (see Fig-
ure 2.6(b)). Some combinatorial data of subsets of the Coxeter arrangement in type
A, and hence their (sub-)root systems, can be studied in terms of graphs. The com-
binatorics of hyperplane arrangements in general and graphical hyperplane arrange-
ments in particular was studied in [GZ83]. Greene–Zaslavsky show among other
things that regions in the graphical hyperplane arrangement HG are in bijection
with acyclic orientations of G.

We want to associate a polytope, more specifically a zonotope, to every graph. Let
G = (V ,E) be a graph, we define the graphical zonotope or acyclotope as

ZG :=
∑

{u,v}∈E

[eu, ev] ⊆ R|V | . (2.21)

Zaslavsky coined the charming term acyclotope in [Zas82a, Section 4] within the
more general setting of signed graphs (see Section 2.5.4), one that we would like to
revitalize. Zaslavsky’s original definition of the acyclotope is slightly different: it is a
centrally symmetric version, which is homothetic to our definition. It is a translation
of the second dilate, in fact it is the second dilate of subzonotopes of the standard
Coxeter permutahedra defined in Section 2.4. We chose the above definition because
it features more natural arithmetic properties, it is widely used in the case of graphs,
and it has a nice generalization for hypergraphs (Section 2.5.2).



Vertices of ZG are in bijection with the acyclic orientations of the graph G, and
lattice points in the acyclotope ZG correspond to indegree vectors of orientations. We
will prove this result in more generality for hypergraphs later (see Proposition 3.13).
Note that the acyclotope for graphs is a subzonotope of the standard permutahedron
Π|V | in type A in the sense that it is generated by a subset of the roots in A|V |−1,
see Section 2.3.

In order to rewrite this zonotope as in Equations (2.5) or (2.6) we need to choose
a suitable lattice translation. This can be done by choosing an arbitrary acyclic
orientation on the graph (which by the comment above corresponds to a vertex of
ZG). For such an orientation we define the incidence matrix

AG = (ev − eu)(u,v)∈E ∈ Rd×m = R|V |×|E| . (2.22)

The acyclotope as defined in Equation (2.21) is a translate of the zonotope defined
by the incidence matrix,

ZG = Z(AG) + (outdeg(u))u∈V ,

where (outdeg(u))u∈V denotes the vector of out-degrees with respect to the chosen
orientation. The properties of acyclotopes we will be interested in, such as face
structure and Ehrhart polynomial, are invariant under lattice translations. Hence,
the orientation chosen to define the incidence matrix is irrelevant and depending on
the context, we will either consider ZG or Z(AG). Note that for F ⊆ E the incidence
matrix AG(F ) of the subgraph G(F ) is the submatrix with columns corresponding
to edges in F , we denote this by F := AG(F ) ∈ R|V |×|F |.

We can apply Stanleys Theorem 2.3 to describe the coefficients of the Ehrhart
polynomial of acyclotopes. For that we need to understand the linear independent
subsets of the columns in the incidence matrix AG.

Lemma 2.13. A subset F = AG(F ) of columns in the incidence matrix AG of a
graph G is linearly independent if and only if the corresponding set of edges F ⊆ E

forms a forest in G.

By an inductive arguments it can be shown that he incidence matrix AG is totally
unimodular, i.e., every subdeterminant is either 0, +1, or −1. This implies, together
with Theorem 2.3 and Lemma 2.13, the following Corollary.

Corollary 2.14 ([Sta91]). Let G be a graph and Z(AG) its acyclotope, then

ehrZ(Z(AG);n) =
m∑

i=0
cin

i ,

where ci counts the number of (labeled) forests with i edges in the graph G.

For acyclotopes of graphs this gives a combinatorial meaning for the coefficients
of the Ehrhart polynomial and hence answers the research question (ii) mentioned
in the introduction. We will extend this result to signed graphs in Chapter 4, see
also Section 2.5.4.



38 background
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Figure 2.8: The hypergraph h = ({a, b, c} , {{a, b, c} , {a, b} , {b, c} , {a} , {b} , {c}}) and its
hypergraphic polytope P(h).

2.5.2 Hypergraphs

A hypergraph h = (U ,E) is a pair of a finite set U of nodes10 and a finite
multiset E of non-empty subsets e ⊆ U called hyperedges. Note that we allow
multiple edges and edges consisting of only one node. As mentioned in Section 2.0,
we can assume without loss of generality that the node set U equals {1, . . . , d} = [d]

for d = |U |, since all the claims in this section are invariant under relabeling the set
U . In a similar fashion recall that we can switch back and forth between the two
vector space notations RU ≃ Rd and RU ≃

(
Rd
)∗

.
For every hypergraph h we define the corresponding hypergraphic polytope

P(h) ⊆ RU as the following Minkowski sum of simplices:

P(h) =
∑
e∈E

∆e ⊆ RU

where
∆e = conv{ei : i ∈ e}, for a hyperedge e ⊆ U

and ei are the basis vectors for i ∈ U . An example is depicted in Figure 2.8. Hyper-
graphic polytopes have been studied (sometimes as Minkowski sum of simplices) in,
e.g., [Agn17; BBM19]. Hypergraphs are in bijection with hypergraphic polytopes. A
hypergraph with all hyperedges of size two is a (usual) graph and the hypergraphic
polytope agrees with the acyclotope as defined in Section 2.5.1. We will study hy-
pergraphs and their polytopes in more detail in Section 3.2.2.

Recall that the hypergraphic polytope P(h) ⊆ RU of a hypergraph h = (U ,E) is
defined as

P(h) =
∑
e∈E

∆e ⊆ RU

where
∆e = conv{ei : i ∈ e}, for a hyperedge e ⊆ U

and ei are the basis vectors for i ∈ U .

10 Again, we use the less common term nodes for hypergraphs to distinguish them from the vertices
of a polytope.



Proposition 2.15 ([Pos09, Proposition 6.3.]). For a hypergraph h = (U ,E) and its
hypergraphic polytope P(h), the function z : 2U → R defined by

z(T ) :=
∑
e∈E

e∩T ̸=∅

1 = #(hyperedges in h that intersect T ) for T ⊆ U

is a submodular function with z(∅) = 0 and

P(h) =
{

x ∈ RU :
∑
i∈U

xi = z(U) and
∑
i∈T

xi ≤ z(T ) for T ⊆ U

}
.

Hence, hypergraphic polytopes are generalized permutahedra and in bijection with
hypergraphs.

Remark 2.16. Postnikov uses a different convention for the facet description of a
generalized permutahedron:

P(z) :=
{

x ∈ Rd :
d∑

i=1
xi = z([d]) ,

∑
i∈J

xi ≥ z(J) , for J ⊆ [d]

}
.

This results in a differing formulation of Proposition 2.15 which is nevertheless equiv-
alent.

For an interesting characterization when a submodular function gives rise to a
hypergraphic polytope see [AA23, Proposition 19.4.].

2.5.3 Matroids

Matroids were introduced as an abstraction of the concept of (linear) independence
by Whitney [Whi35] and independently by Nakasawa [Nak35; Nak36a; Nak36b;
Nak38]. For more on the historical background see, e.g., [NK09]. There are numerous
cryptomorphic, i.e., equivalent, descriptions for matroids. Here, we restrict ourselves
to independent sets, bases, and rank functions. See, e.g., [Oxl03; GM12; Wel10;
Whi86] for introductions to matroid theory.

We will start by describing the independent sets of a matroid and then consider
two classes of examples that will serve as motivation and illustrate what is meant
by “matroids are an abstraction of the concept of (linear) independence”.

A matroid M = (U , I) consists of a finite ground set U and a collection of
independent subsets I ⊆ 2U fulfilling the following independence axioms:
(I1) ∅ ∈ I,
(I2) if F1 ∈ I and F2 ⊆ F1 then F2 ∈ I,
(I3) if F1,F2 ∈ I and |F2| < |F1|, then there exists an element x ∈ F1 \ F2 such

that F2 ∪ {x} ∈ I.

Example 2.17. Let A ∈ Rd×m be a matrix with columns a1, . . . , am ∈ Rd. We
define the linear matroidM(A) = ([m], IA) with ground set [m] and the collection
of independent sets

IA :=
{
F ∈ 2[m] : {ai : i ∈ F} are linearly independent

}
.
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From Linear Algebra we know that IA fulfills the independence axioms. We call
a matroid M = (U , I) representable over a field F if there exists a matrix
A ∈ Fd×U such that M =M(A).
Example 2.18. Let G = (V ,E) be a graph. We define the graphic matroid
M(G) = (E, IG) with the ground set the edges of the graph E and the collection of
independent sets

IG :=
{
F ∈ 2E : F forms a forest in G

}
.

It is easy to check that IG fulfills the independence axioms.
Recall from Equation (2.22) the definition of incidence matrix AG for a graph.

From Lemma 2.13, it follows that every graphic matroid is representable over R

and M(G) ∼= M(AG). Hence, the notion of independence captured by a matroid
generalizes simultaneously the notion of linear independence in (real) vector spaces
and the notion of subgraphs not containing cycles (i.e., a dependence).

We call an inclusion-maximal independent set a basis or base of a matroid. We
can define a matroid also by its collection of bases, i.e., a matroid M = (U , B) is
tuple with a finite ground set U and a collection of subsets B ⊆ 2U called bases
such that the following basis axioms hold:
(B1) B ̸= ∅,
(B2) for two bases B1,B2 ∈ B and for every element x ∈ B1 \B2 there exists an

element y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} ∈ B.
It can be shown that basis axioms and independence axioms are equivalent. It also
follows from the axioms that every basis B ∈ B contains the same number of elements
r(B) and we call this the rank of the matroid M . A subset that is not contained
in any base is called dependent. A circuit is an inclusion-minimal dependent set.
We call a subset S ⊆ U spanning if it contains a base, i.e., there exists a B ∈ B
such that S ⊇ B. An element x ∈ U is called loop if it is not contained in any base
and it is called a coloop if it is contained in every base.

Note how some of the vocabulary in matroid theory stems from the two motiva-
tions discussed in the beginning, linear matroids and graphic matroids.

We give a third set of axioms for a matroid. The rank function r : 2U → Z≥0 is
defined as

r(A) = max
B∈B

|B ∩A| .

Then the rank function fulfills the following properties:
(R1) For every subset A ⊆ U , we have r(A) ≤ |A|.
(R2) The rank function is submodular, i.e., for every two subsets A1,A2 ⊆ U , we

have

r(A1 ∪A2) + r(A1 ∩A2) ≤ r(A1) + r(A2) .

(R3) The rank function is montone, i.e., for every subset A ⊆ U and every element
x ∈ U , we have r(A) ≤ r(A∪ {x}) ≤ r(A) + 1.

Vice versa, every function r : 2U → Z≥0 that fulfills the axioms (R1), (R2), and (R3)
defines a matroid.



Rank functions of matroids facilitate a polytopal perspective on matroids. Define
the matroid base polytope PM of a matroid M = (U , B) as

PM := conv(1B ∈ RU : B ∈ B) .

Then matroid base polytopes are generalized permutahedra (Section 2.3). This can
be seen from the fact that an inequality description of the matroid base polytope
PM is given by the rank function of the matroid M (compare Theorem 2.9), i.e.,

PM = {x ∈ RU :
∑
i∈U

xi = r(U ) ,
∑
i∈A

xi = r(A) for every A ⊆ U} .

In fact, this is a defining property for matroids.

Theorem 2.19 ([Gel+87, Theorem 4.1]). A collection B ⊆ 2U of subsets of U is
the set of bases of a matroid if and only if

conv(1B ∈ RU : B ∈ B) ⊂ RU

is a generalized permutahedron.

In that sense, matroid base polytopes are a visualization of matroids and general-
ized permutahedra form a superclass.

There are numerous constructions on matroids. We will only discuss dual matroids
and direct sums here. For every matroid M = (U , B) there exists a dual matroid
M△ = (U , B△) defined by

B△ := {U \B : B ∈ B} .

Equivalently, we can describe the independent sets of the dual matroid M△ =

(U , I△) by
I△ = {U \ S : S is a spanning set in M} . (2.23)

Checking that the axioms (B1) and (B2), or (I1), (I2), and (I3), respectively, are
fulfilled is an easy exercise.

The following theorem is true for any field F, see, e.g., [Wel10, Section 9.3]. We
only will use F = R and therefore state and prove the theorem in that simplified
version. To simplify notation we also assume the ground set of the matroid to be
[m].

Theorem 2.20. Let M = ([m], B) be a representable matroid over a field R. Then
the dual matroid M△ = ([m], B△) is also representable over R.

Proof. let A ∈ Rr×m be a representation for M = ([m], B), i.e., M = M(A). We
can assume A to have full rank r. Then A : Rm → Rr defines a linear map of rank
r and with kernel kern A ⊆ Rm of dimension dim kern A = m − r. Now choose
a basis b1, . . . , bm−r ∈ Rm for the kernel kern A and write it as the columns of
B ∈ Rm×(m−r).

Now, the transposed matrix BT ∈ R(m−r)×m is a representation of M△, i.e.,
M△ =M(BT ). Indeed, after reordering columns it is enough to check that the first
r columns of A are linearly dependent if and only if the last m− r columns of BT
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are linearly dependent. Assume the first r columns of A are linearly dependent, then
there exists λ1, . . . ,λr ∈ R such that

λ := (λ1, . . . ,λr, 0, . . . , 0) ∈ Rm \ {0} and AλT = 0 .

That is, λ ∈ kern A. Since b1, . . . , bm−r ∈ Rm generate the kernel kern A there
exists ω = (ω1, . . . ,ωm−r) ∈ Rm−r \ {0} such that

λ1
...
λr

0
...
0


= λT = BωT =:

B1

B2

ωT ,

where B1 ∈ Rr×(m−r) and B2 ∈ R(m−r)×(m−r), i.e., BT
2 consists of the last m− r

columns of BT . We have shown that 0 = B2ω
T , hence B2 is singular and the last

m− r columns of BT are linearly dependent. This argument can be reversed and
finishes the proof.

Let M = ([m], B) be a representable matroid (over R) of rank r. Assume that
{1, . . . , r} ∈ B is a basis. Then there is a representation of M of the form[

R | Ir

]
∈ Rr×m ,

where Ir ∈ Rr×r is the identity matrix and R ∈ Rr×(m−r). We call this the standard
representation of the matroid M .

Corollary 2.21. If M = ([m], B) is a matroid of rank r with a standard repre-
sentation [R | Ir] ∈ Rr×m, then the dual matroid M△ has a representation of the
form [

Im−r | − RT
]

∈ R(m−r)×m .

Let M1 = (U1, I1) and M2 = (U2, I2) be two matroids with disjoint ground sets
U1 ∩U2 = ∅. We define the direct sum M1 ⊕M2 := (U1 ⊎U2, I1 ⊕ I2), where the
collection of independent sets I1 ⊕ I2 is defined by

I1 ⊕ I2 := {I1 ⊎ I2 : I1 ∈ I1, I2 ∈ I2} .

It can be checked that this definition fulfills the independence axioms (I1), (I2), and
(I3). See, e.g., [Whi86, Section 7.6]. Moreover, it follows that

(M1 ⊕M2)
△ =M△

1 ⊕M△
2 .



Similarly, for representable matroids M1 = (m1, I1) and M2 = (m2, I2) with repre-
sentations if A1 ∈ Rr1×m1 and A2 ∈ Rr2×m2 we have A1 0r1×m2

0r2×m1 A2

 ∈ R(r1+r2)×(m1+m2)

is a representation for M1 ⊕M2.
Remark 2.22. Matroids that are representable over R can be oriented, that is in
addition to the matroid structure, i.e., a collection of subsets, we can construct a
sign structure, i.e., a collection of signed subsets. For oriented matroids there
are also various cryptomorphic axiomatizations, see [Bjö+99]. In the case of repre-
sentable matroids over R, we could work a bit harder and instead of capturing just
the dependent sets, we could also record the signs of the coefficients of the linear
dependencies. This would essentially define an oriented matroid. For oriented ma-
troids there also exists a notion of duality and a theorem analogous to Theorem 2.20
defines Gale transforms. See, e.g., [Zie98, Chapter 6] for a geometric introduction
to oriented matroids and Gale duality.

Recall that the normal fan of a zonotope Z(A) ⊂ Rd is induced by a hyper-
plane arrangement H(A) (Section 2.1). Then the linear matroid M(A) captures the
combinatorial information of the zonotope Z(A) and the hyperplane arrangement
H(A). However, in each step, going from zonotope to hyperplane arrangement and
from hyperplane arrangement to linear matroid, we loose some geometric informa-
tion. Equivalently, in the reverse process we have to make a number of (non-unique
choices): for every representable matroid M we can choose a (non-unique) repre-
sentation A ∈ Rd×m so that M = M(A). This uniquely defines a hyperplane
arrangement H(A) and it also defines a zonotope Z(A) with the normal fan of Z(A)

being induced by H(A). However, for any scalars λ1, . . . ,λm ∈ R \ {0} we have
that Z(λ1a1, . . . ,λmam) has the same normal fan (as Z(a1, . . . , am)) induced by the
hyperplane arrangement H(a1, . . . , am).

Recall that the Ehrhart polynomial of a zonotope can be computed by

ehrZ(Z(A);n) =
∑
F
g(F)nrank(F) ,

where F ranges over submatrices of A with the linearly independent columns. So
the Ehrhart polynomial encodes statistics of linearly independent sets, but also the
arithmetic information g(F). This arithmetic information gets lost when passing
from a zonotope to its hyperplane arrangement of matroid. This is one motivation
for defining arithmetic matroids [DM13].

That is, similarly as for oriented matroids, we can add more information or struc-
ture to a matroid. An arithmetic matroids is a pair (M ,m), where M is a matroid
on the ground set U and m : 2U → Z>0 is a multiplicity function with the follow-
ing properties:
(A1) For A ⊆ U and x ∈ U with r(A) = r(A ∪ {x}) we have m(A ∪ {x}) divides

m(A).
(A2) For A ⊆ U and x ∈ U with r(A) + 1 = r(A ∪ {x}) we have m(A) divides

m(A∪ {x}).
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(A3) If A ⊆ B ⊆ U with B = A⊔F ⊔T is a disjoint union such that for all A ⊆ C ⊆
B we have r(C) = r(A) + |C ∩F |, then m(A) ·m(B) = m(A∪F ) ·m(A∪ T ).

(A4) If A ⊆ B ⊆ U with r(A) = r(B), then∑
A⊆T ⊆B

(−1)|T |−|A|m(T ) ≥ 0 .

(A5) If A ⊆ B ⊆ U with |A| + r(U \A) = |B| + r(U \B), then∑
A⊆T ⊆B

(−1)|T |−|A|m(U \ T ) ≥ 0 .

See [DM13, Section 2.3] or [BM14, Section 2] for a more compact version.
For A ∈ Zr×m the matroid M(A) on the ground set [m] together with the multi-

plicity function m(B) := g(B), where B is the matrix with columns of A indexed by
B and g(B) is as defined in Equation (2.9), forms a representable arithmetic ma-
troid, see [DM13, Section 2.4]. Arithmetic matroids have well-defined duals [DM13,
Lemma 2.2]. We will see this construction in the special case of representable arith-
metic matroids of the form (M(A), g) in Chapter 4.

2.5.4 Signed Graphs

Signed graphs originated in the social sciences and have found applications also in
biology, physics, computer science, and economics. Signed graphs have been exten-
sively studied, generalized, applied and rediscovered since the first half of the 20th

century. Thomas Zaslavsky’s dynamic survey [Zas18] consists of over 500 pages of
(commented) references regarding signed graphs and related concepts. Note that
there is also a mathematically inconsistent use of the term “signed graph” within
the literature, as explained in [Zas18].

Here, we will focus on signed graphs as a generalization of graphs, which allows
us to give a combinatorial model for subsets of root systems of type A, B, C, and D,
in analogy to (usual) graphs modelling subsets of root systems of type A. Excellent
background references for this perspective are [Zas81; Zas10].

A signed graph Σ = (Γ,σ) consists of a graph Γ = (V ,E) and a signature σ
that assigns each link and loop of Γ either + or −. The underlying graph Γ the
edge set E may contain besides the usual, potentially multiple, links (two distinct
endpoints) and loops (two endpoints that are the same), also halfedges (with only
one endpoint) and loose edges (no endpoints), though the latter play no role in our
work. An ordinary graph can be realized by a signed graph all of whose edges are
labelled with +.

We recall some notions from the theory of signed graphs. Some of them are iden-
tical to notions from graph theory, but for the reader’s convenience we repeat them
here. For a subset R ⊆ E of edges of a signed graph Σ = (Γ,σ) with Γ = (V ,E)
we define the subgraph Σ(R) to be the signed graph with the underlying graph
Γ(R) = (V ,R) and the same signature σ restricted to R.



(a) full graph (b) signed tree (c) (signed) halfedge-tree

(d) (signed) loop-tree (e) (signed) pseudo-tree (f) pseudo-forest

(g) balanced circle (h) handcuff with a connecting
path

(i) handcuff with degenerate con-
necting path

Figure 2.9: Various types of subgraphs.

• A path is a sequence (v1, e1, v2, e2, . . . , en, vn+1) of nodes vi and edges ei, such
that ei = {vi, vi+1} and all the edges and vertices in the sequences are pairwise
distinct.

• A signed graph Σ is connected if there exists a path between any two nodes.
• A circle a closed path, i.e., a sequence (v1, e1, v2, e2, . . . , en, v1) where only the

first and last node are equal. A loop is a circle but we will usually treat loops
separately from circles.

• A signed tree is a connected signed graph with no circles, loops, or halfedges.
See Figure 2.9(b).

• A (signed) halfedge-tree is a connected (signed) graph with no circles or
loops, and a single halfedge. See Figure 2.9(c).

• A (signed) loop-tree is a connected (signed) graph with no circles or half-
edges, and a single negative loop. See Figure 2.9(d).

• A (signed) pseudo-tree is a connected (signed) graph with no loops or
halfedges that contains a single circle with an odd number of negative edges.
See Figure 2.9(e).

• A signed pseudo-forest is a signed graph whose connected components are
signed trees, signed halfedge-trees, signed loop-trees, or signed pseudo-trees.
See Figure 2.9(f).

• A circuit is a subgraph with an inclusion minimal set of edges that is not a
pseudo-forest. For signed graphs those can be a circle with an even number
of negative edges, (positive loops, loose edges,) and a handcuff , i.e., a path
(possibly consisting of only one node) that on each of its two (possibly identical)
end-nodes is connected to a negative circle, halfedge, or negative loop. See
Figure 2.9(g),2.9(h),2.9(i).

For a signed pseudo-forest Σ, let tc(Σ), lc(Σ) and pc(Σ) be the number of tree
components, loop-tree components, and pseudo-tree components, respec-
tively. For a subset F ⊆ E of edges we use the shorthand

tc(F ) := tc(Σ(F ))
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(a) positive link (bi)oriented from i to j (left) and from j
to i (right), i.e., τ ({i, j}, i) = − and τ ({i, j}, j) = +
(left) and with flipped signs on the right

(b) negative loop (bi)oriented extroverted
(left) and (bi)oriented introverted
(right), i.e., τ ({i, i}, i) = + (left) and
τ ({i, i}, i) = − (right)

(c) negative link (bi)oriented introverted (left) and ex-
troverted (right), i.e., τ ({i, j}, i) = − = τ ({i, j}, j)
(left) and with flipped signs on the right

(d) halfedge (no signature) pointing to-
wards i (left) and pointing away from
i (right), i.e., τ ({i}, i) = + (left) and
τ ({i}, i) = − (right)

Figure 2.10: All different types of bioriented edges.

to count the number of signed tree components in the edge subgraph Σ(F ). We define
pc(F ) and lc(F ) analogously. Note that the edge subgraph Σ(F ) still has the same
number d of nodes as the signed graph Σ; in particular tc(∅) = tc(Σ(∅)) = d. For
example, the subgraph in Figure 2.9(f) has one loop-tree component, one pseudo-tree
component, and no tree component.

An orientation of a signed graph Σ = (Γ,σ) is an assignment τ from the set
of node-edge-incidences to {±} such that σ(e) = −τ (e, v)τ (e,u) for very edge e =
{u, v}. Equivalently, choosing a bidirection τ for an unsigned graph Γ = (V ,E) first
and setting σ(e) = −τ (e, v)τ (e,u) for very edge e = {u, v} defines an oriented signed
graph Σ = (Γ,σ) with orientation τ . Hence, oriented signed graphs and bidirected
graphs are equivalent objects. We can interpret this as follows: if τ (e, v) = + the
edge e enters node v, i.e., the head of the node-edge-incidence (e, v) points towards
v, if τ (e, v) = − the edge e exits node v, i.e., the head of the node-edge-incidence
(e, v) points away from v.11 See Figure 2.10 for illustrations.

• A source (sink) is a node s with only outward (inward) pointing node-edge-
incidences, i.e., τ (s, e) = − (τ (s, e) = +) for all edges e incident to the source
(sink) s.

• A (bidirected) cycle is an oriented circuit that has neither sinks nor sources.
• An oriented signed graph is called acyclic if it does not contain any cycles. It

is called totally cyclic if every edge is contained in a cycle.

We want to emphasize that we carefully distinguish between the notions of circles,
circuits, and cycles, which tend to have non-uniform meanings throughout the liter-
ature.

11 Thus, positive edges get oriented consistently with orienting an unsigned graph, whereas negative
edges get oriented alongside the charming adjectives introverted or extroverted.



We now elaborate on the construction of an incidence matrix of a signed graph,
hinted at in the beginning. For an oriented signed graph without positive loops or
loose edges, we define the incidence matrix AΣ ∈ Rd×m by

(AΣ)v,e =



0 if v and e are not incident,

+1 if e enters v, i.e., τ (v, e) = + ,

−1 if e exits v, i.e., τ (v, e) = − ,

±2 if e is a negative loop at v and τ (v, e) = ±, respectively.

With our definition of subgraph (see above), the incidence matrix of AΣ(R) =: R is
precisely the matrix formed by columns of AΣ indexed by R. In order to highlight
the already mentioned connection to root vectors of type B/C/D12 we reformulate
the definition of the incidence matrix of a given signed graph Σ with d nodes and m
edges as the matrix AΣ whose column corresponding to the edge e equals

• ej − ek or ek − ej if e = (jk) is a positive link,
• ej + ek or −ek − ej if e = (jk) is a negative link,
• ej if e is a halfedge at j,
• 2ej or −2ej if e is a negative loop at j.

The choices in the above list correspond to choosing a biorientation of Σ, in analogy
to AG depending on an orientation of G. In both cases, the combinatorial and
arithmetic data we will compute are independent of the chosen (bi-)orientation.

Parallel to the graphic case, we define the acyclotope corresponding to Σ as the
zonotope

Z(AΣ) =
m∑

i=1
[0, ai] .

As discussed in Section 2.5.1, Zaslavsky’s original definition of the acyclotope in
[Zas91, Section 4] is slightly different. The acyclotope for a signed graph is defined
by a subset of a root system of type A, B, C, and D, and vice versa, any such
subset defines a signed graph. Thus the acyclotope is a subzonotope (in the sense
that we remove some of the generators) of a translate of the respective of the Coxeter
permutahedra of type A, B, C, and D defined in Section 2.4. In Chapter 4 we will
compute the Ehrhart polynomial for acyclotopes.

A signed graph Σ = (Γ,σ) is called balanced if it does not contain any halfedges
and every circle has an even number of negative links. An unsigned graph can be
realized by a signed graph all of whose edges are labelled with +; it is automatically
balanced. Vice versa, a balanced graph can be converted into a signed graph with only
positive edges by switching operations, that is, for a fixed node v flipping the sign
of τ (v, e) for all node-edge-incidences involving v. In terms of the incidence matrix,
switching means flipping signs in one row. The incidence matrix of a connected signed
graph is full rank if and only if the graph is not balanced. For more on switching
equivalences and balance of signed graphs see, e.g., [Zas82b; Zas10].

12 This correspondence is one reason to leave out positive loops and loose edges when building the
incidence matrix; neither do they play a role in our work.



48 background

To every signed graph Σ we can associate a signed graphic matroid M(Σ) =
(E, I), also called the bias matroid of Σ, which is the representable matroid with
ground set E (indexing the columns of the incidence matrix A) and independent
sets formed by selections of linearly independent columns in AΣ, i.e.,

M(Σ) :=M(AΣ) .

Switching operations preserve all combinatorial data in the signed graphic matroid.

Proposition 2.23 ([Zas82b, Theorem 5.1],). We recall the signed graphic meaning
of the relevant matroid notions:

(i) A subset F ⊆ E is an independent set in M(Σ) if and only if the subgraph
Σ(F ) is a signed pseudo-forest.

(ii) A subset T ⊆ E is a basis in M(Σ) if and only if the subgraph Σ(T ) is an
inclusion maximal signed pseudo-forest in Σ.

(iii) A subset C ⊆ E is a circuit in M(Σ) if and only if the subgraph Σ(C) is
a circuit together with isolated vertices (the set of isolated vertices might be
empty).

(iv) A subset C ⊆ E is dependent in M(Σ) if and only if the subgraph Σ(C) contains
a circuit.

Note that inclusion maximal edge sets that form a pseudo-forest as subgraphs are
not necessarily connected, hence not necessarily a (signed) tree, loop-tree, halfedge-
tree, or pseudo-tree, see, e.g., Figure 2.9(f). We will call an edge set S ⊆ E spanning
if it contains an inclusion maximal pseudo-forest. Again this does not imply that the
subgraph is connected.

A coloop is an edge in a signed graph that corresponds to a coloop in the signed
graphic matroid, i.e., an element that is contained in every basis. A coloop is not
necessarily a bridge in the (underlying) graph, i.e., an edge that increases the number
of connected components after removing, as it is in the case of unsigned graphs.
Conversely, not every bridge in (the underlying graph of) a signed graph is necessarily
a coloop. See [Bou83, Lemma 2.4 and Lemma 2.5].

Remark 2.24. Proposition 2.23 shows that every signed graph also has an associ-
ated matroid structure. This can be extended to oriented signed graphs having an
oriented matroid structure. See [Zas91, Section 3].

2.5.5 Partially Ordered Sets

In this section we recall some background on posets, order polytopes, and order
cones. These will be central objects in Chapter 6.

A finite partially ordered set, a poset, is a pair P = (U , ⪯P) consisting of a finite
ground set U and an order relation ⪯P⊆ U ×U , such that ⪯P is transitive, reflexive
and antisymmetric. By a standard abuse of notation, we often identify the poset P

with its ground set U . A poset C = (U , ⪯C) is called a total order or chain if for



any two elements a, b ∈ C either a ⪯C b or b ⪯C a. An antichain A = (U , ⪯A) is a
poset without any relation, that is, ⪯A= ∅. An element a ∈ P is called a minimal
element (resp. maximal element) if there is no element c ∈ P such that c ⪯P a

(resp. a ⪯P c). In an antichain every element is minimal and maximal, while a chain
has precisely one minimal and one maximal element. For two elements a, b ∈ P we
define the interval [a, b] ⊆ P as

[a, b] := {c ∈ P : a ⪯ c ⪯ b} .

We say that b covers a (denoted by a ≺· b) if a ⪯ b, a ̸= b, and there is no element
c such that a ⪯ c ⪯ b. We call a ≺· b a cover relation. The Hasse diagram
of a poset P = (U , ⪯) is a graphical representation of the poset in the following
way: define an undirected graph G(P) = (U , ≺·) with the ground set U as nodes
and one undirected edge for each cover relation, i.e., {a, b} is an edge in G(P) if
either a ≺· b or b ≺· a. For example, the Hasse diagram of a chain is a path and the
Hasse diagram of an antichain consists of isolated nodes. See Figure 2.11 for some
Hasse digrams. We call a poset connected, if the Hasse diagram (considered as an
undirected graph) is connected. For a poset P = (U , ⪯P) and a subset T ⊆ U we
define the poset restricted to T as P[T ] = (T , ⪯T ), where

⪯T :=⪯P |T ×T = {(a, b) ∈ T × T : (a, b) ∈⪯P⊆ U ×U} .

The Hasse diagram of a restricted poset P[T ] is the induced subgraph G(P)|T (2.20).
A filter F is a subset of the ground set U that is upwards closed, i.e., if a ⪯ b for

some a ∈ F then b ∈ F. We call a chain of filters F : ∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fk = P

connected if the poset restricted to Fi+1 \Fi is connected for i = 0, . . . , k.
A poset L is called a lattice13 if for every two elements a, b ∈ L there exists a

lowest upper bound a∨ b, called join, and a greatest lower bound a∧ b, called meet.
A lattice L is called distributive, if for all a, b, c ∈ L we have

a∧ (b∨ c) = (a∧ b) ∨ (a∧ c) .

For any (finite) poset P the collection of filters together with the inclusion relation
forms a finite distributive lattice called the Birkhoff lattice of filters B(P). For
example, the Birkhoff lattice of an antichain A = ([d],∅) is the Boolean lattice
B(A) = (2[d], ⊆). The fundamental theorem for finite distributive lattices states that
for every finite distributive lattice L there exists a (up to isomorphism unique) poset
P such that L = B(P), see, e.g., [Sta12, Section 3.4].

A linear extension T = (U , ⪯T) of a poset P = (U , ⪯P) is a total order (or
chain) on the same ground set U that extends the partial order ⪯P, i.e., ⪯P⊆⪯T. We
denote the set of linear extensions of a poset P by L(P). Note that linear extensions
T ∈ L(P) are in bijection with full chains of filters F : ∅ = F0 ⊊ F1 ⊊ · · · ⊊ F|U | = P,
i.e., |Fi \Fi−1| = 1, or equivalently, inclusion-maximal chains in the Birkhoff lattice
B(P). Indeed, for T = {a1 ≺· a2 ≺· · · · ≺· a|U |} define Fi := {a|U |−i+1, . . . , a|U |} for
i = 0, . . . , k. See, e.g., [BS18, Lemma 6.3.4.].

13 Note that a lattice L as a special partially ordered set essentially only has its name in common with
the lattices (discrete subgroups) Λ ⊂ Rd from Section 2.2.
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(a) Chain poset on three ele-
ments and its order sim-
plex.

(b) A tree poset on three el-
ements and its associated
order polytope.

(c) Disjoint union of a chain on
two elements and a singleton
and its order polytope.

Figure 2.11: Three examples of order polytopes in three dimensions and the Hasse diagram
of their corresponding posets on three elements.

We now want to recall order polytopes. The first reference systematically studying
order polytopes was [Sta86]. Stanley writes in the introduction: “Much of what
we say about the order polytope will be essentially a review of well-known results,
albeit ones scattered throughout the literature, sometimes in a rather obscure form.”
For a textbook introduction to order polytopes and order cones, see, e.g., [BS18,
Chapter 6].

Recall that RP = {f : P → R} is a vector space of dimension |P|. In this section
we will mostly work in the vector space RP. For some examples the notation will be
simpler in Rd ∼= RP for |P| = d (see Section 2.0).

We define the order polytope O(P) as the subset of all functions f : P → R such
that

0 ≤ f(a) ≤ 1 , for all a ∈ P , (2.24)
f(a) ≤ f(b) if a ⪯ b in P .

This subset of RP is described by finitely many linear in equalities and from the
conditions in (2.24) it follows that it is bounded, hence it is indeed a polytope. For
example the order polytope of an antichain on d elements is the hypercube [0, 1]d.
For more examples see Figure 2.11.

Facets are given by cover relations, minimal, and maximal elements, i.e., an irre-
ducible description of the order polytope is given by

0 ≤ f(a) , for all minimal elements a ∈ P ,
f(a) ≤ f(b) , for all cover relations a ≺· b in P ,
f(a) ≤ 1 , for all maximal elements a ∈ P .

(2.25)

From that description it already follows that the vertices of order polytopes are
0/1-vectors.

We will now give a complete combinatorial description of the faces of the order
polytope in terms of partitions. Recall that a (set) partition π = {B1, . . . ,Bk} of a
finite set U is a collection {B1, . . . ,Bk} of subsets of U called blocks, such that the
blocks are pairwise disjoint and their union is U . Note that the blocks in a partition
are not ordered, i.e., {{1, 2}, {3}} and {{3}, {1, 2}} are the same partition.



Here, it is convenient to embed the order polytope in a higher dimensional space by
defining a new poset P∪ {0̂, 1̂}, where the element 0̂ is smaller than all elements in P

and the element 1̂ is larger than all other elements in P. Now define Ô(P∪ {0̂, 1̂}) ⊂
RP∪{̂0,̂1} by the following (in-)equalities:

0 = g(0̂), g(1̂) = 1,
g(a) ≤ g(b) , for all a ≺· b in P∪ {0̂, 1̂} .

The linear map given by forgetting the coordinates corresponding to 0̂ and 1̂ is clearly
a linear bijection from Ô(P∪ {0̂, 1̂}) to O(P).

Facets in Ô(P∪ {0̂, 1̂}) are given by cover relations in P∪ {0̂, 1̂}, i.e., facets are of
the form

O(P) ∩ {f ∈ RP : f(a) = f(b)} for some cover relation a ≺· b in P .

Every face is the intersection of some facets and hence every face F ⊆ Ô(P∪ {0̂, 1̂})
defines a partition of P ∪ {0̂, 1̂} by putting elements a, b ∈ P ∪ {0̂, 1̂} into the same
block if they are related by a cover relation a ≺· b corresponding to a facet containing
the face F. We call such a partition a face partition and the coarsest partition
defined by a particular face is called closed. A closed face partition has k blocks, if
and only if the dimension of the corresponding face is k− 2.

However, not every partition of P ∪ {0̂, 1̂} defines a face of the order polytope
Ô(P∪ {0̂, 1̂}). In order to characterize these partitions, we need more definitions: A
partition π = {B1, . . . ,Bk} is called connected, if for every block Bi, i = 1, . . . , k
the Hasse of the poset P∪ {0̂, 1̂} restricted to Bi is connected. Given a partition
π = {B1, . . . ,Bk} of P∪ {0̂, 1̂} we define a binary relation on the blocks {B1, . . . ,Bk}
by Bi ≺π Bj if a ⪯

P∪{̂0,̂1} b for some a ∈ Bi and b ∈ Bj . We call the partition π

compatible if the transitive closure of the relation ⪯π is anti-symmetric and hence
defines a partial order. Note that connected compatible partitions of P ∪ {0̂, 1̂} are
exactly those defining poset quotients as described in [Wil24, Section 6.5].

Theorem 2.25 ([Sta86, Theorem 1.2]). A partition π = {B1, . . . ,Bk} of P∪ {0̂, 1̂}
with k blocks is a closed face partition for a face of dimension k − 2 if and only
if it is connected and compatible. In particular, the partition into a single block
π = {P∪ {0̂, 1̂}} yields the empty face, which we regard as a face of dimension −1.

This also implies that every face of an order polytope O(P) is again isomorphic
to an order polytope (of a quotient poset of P as in [Wil24]).

Example 2.26. In figure Figure 2.11(b) we can see that the order polytope O(P) of
the tree poset P = ([3], ⪯P= {(3, 1), (2, 1)}) has one 2-face, that is a quadrilateral.
This corresponds to the set partition {{0̂}, {2}, {3}, {1, 1̂}} of [3] ∪ {0̂, 1̂}. This face
is isomorphic to the order polytope of an antichain with two elements.

The remaining 2-faces are triangles and correspond to the partitions

{{0̂, 2}, {1}, {3}, {1̂}} , {{0̂, 3}, {1}, {2}, {1̂}}
{{0̂}, {1, 2}, {3}, {1̂}} , {{0̂}, {2}, {1, 3}, {1̂}} .

These faces are isomorphic to order polytopes of chains with two elements.



52 background

We collect some corollaries about the face structure of order polytopes, which we
will use later. We start with a description of the vertices. Face partitions that give rise
to a 0-dimensional face have two blocks {B1,B2}. Connectedness and compatibility
imply that these two blocks are of the form B2 = {1̂} ∪ F and B1 = {0̂} ∪ (P \ F)

for some filter F ⊆ P. For an alternative proof of the vertex description, see, e.g.,
[BS18, Corollary 6.3.1.].

Corollary 2.27. Vertices of the order polytope O(P) are given by indicator vectors
1F of filters F ⊆ P, i.e., vert(O(P)) = {1F : F ⊆ P is a filter}.

It follows that the order polytope is full-dimensional and for total orders T the
order polytope O(T) is a simplex. E.g., for the total order T = ([d], ≤) the vertices
0, 1{n}, 1{n−1,n}, . . . , 1{2,...,n−1,n}, 1 are affinely independent. See Figure 2.11(a) for a
three-dimensional example.

Corollary 2.28. Let F be a facet of O(P) corresponding to cover relation a ≺· b in
P, then F contains precisely all vertices 1F for filters F with {a, b} ⊆ F.

Now we would like describe the edges of the order polytope using Theorem 2.25,
hence we need face partitions {B1,B2,B3} with three blocks. It can be checked that
these are connected and compatible if and only if they are of the form B3 = {1̂} ∪F′,
B2 = F′ \ F, and B1 = {0̂} ∪ (P \ F) for two filters F,F′ ⊆ P such that F′ ⊆ F and
F \F′ is a connected poset. A proof for the following Corollary can also be found in
[CM10, Theorem 1].

Corollary 2.29. Two filters F,F′ correspond to the vertices 1F, 1F′ of an edge of
O(P) if and only if, say, F′ ⊆ F and F \F′ is a connected poset.

Every two dimensional faces of any 0/1-polytope is either a triangle or quadrilat-
eral, see, e.g., [Zie00]. We can also see this from the interpretation that every face
of an order polytope is (isomorphic to) an order polytope itself. Two-dimensional
order polytopes O(P) correspond to posets P with two elements, either the two el-
ements are comparable and O(P) is a triangle, or P = ({a, b},∅) and O(P) is a
quadrilateral.

Corollary 2.30. Let F be a two-dimensional face of O(P). Then F is either a triangle
or a quadrilateral.

We can also play that game the other way around: let us define a partition of the
poset P that is connected and compatible and see what face in the order polytope
O(P) it defines. Note that in the poset P ∪ {0̂, 1̂} every filter F ⊆ P is connected.
Similarly, every complement of a filter P \F is connected in P∪ {0̂, 1̂}. Finally, every
singleton set {a} for a ∈ P is trivially connected. Now it is easy to check that for
any two filters F,F′ ⊆ P with F ⊆ F′

π =
{

{a} : a ∈ F′ \F
}

∪
{
F ∪ {1}

}
∪
{
(P \F′) ∪ {0}

}
defines a connected and compatible partition, hence by Theorem 2.25 a face parti-
tion.



(a) The cube, also the order polytope of the an-
tichain on three elements and its triangula-
tion by the order cones of the six linear ex-
tensions.

(b) The three dimensional order cones of the six
total orders on three elements inducing a
complete polyhedral fan in R3.

Figure 2.12: Polyhedral fan induced by all total orders on three elements forming a complete
fan in R3 (right) and subdividing the unit cube [0, 1]3 (left).

Corollary 2.31. For any two filters F ⊆ F′ in a poset P there is a unique face
F(F,F′) ⊆ O(P) whose vertices are 1G for filters G in the interval [F,F′] ⊆ B(P) in
the Birkhoff lattice of P.

For a poset P we define the order cone

C(P) :=
{
f ∈ RP : f(a) ≤ f(b) if a ⪯P b

}
.

It follows from the transitivity of posets that an irredundant description of order
cones is given by the cover relations in the poset P:

C(P) =
{
f ∈ RP : f(a) ≤ f(b) if a ≺·P b

}
.

We have seen these cones already in Section 2.3: Let us consider all total orders on
the ground set [d]. Then

{C(T) ⊂ Rd : T is a total order on [d]}

defines a complete polyhedral fan in Rd, in fact, this is the braid fan Bd, or equiv-
alently, the Coxeter fan NAd−1 in type A. See Figure 2.12(b) for an illustration in
three dimensions. That is full-dimensional cones in a coarsening of the braid fan are
order cones and the description of faces in the braid fan given in Lemma 2.10 is
essentially equivalent to Theorem 2.25 for total orders and reformulated for cones.

From the inequality descriptions of the order cones we can also easily check that
for total orders on U we have that C(T) ⊆ C(P) for a poset P = (U , ⪯) if and only
if T ∈ L(P) (see, e.g., [BS18, Proposition 6.2.1]). Therefore

{C(T) : T ∈ L(P)}
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forms a polyhedral subdivision of the order cone C(P).
Now we return to order polytopes. For every poset P

O(P) = [0, 1]P ∩ C(P) .

Recall that the order polytope of a total order is a simplex.

Proposition 2.32. For every poset P = (U , ⪯) the collection of order simplices
{O(T) : T ∈ L(P)} forms a triangulation of O(P).

See Figure 2.12(a) for an illustration of the triangulation of the 3-cube, i.e., the
order polytope of the antichain A = ([3],∅).

One can consider various constructions on posets. We will only use disjoint unions
and how they translate on the order polytope side. For a proof of the following
proposition, see, e.g., [BS18, Lemma 6.1.3].

Proposition 2.33. Let P = (U , ⪯P) and Q = (V , ⪯Q) be two posets. Then P∪Q :=
(U ∪ V , ⪯P ∪ ⪯Q) is a poset and O(P∪Q) = O(P) × O(Q).

See Figure 2.11(c) for an example. Here, the poset is a disjoint union of a two-chain
and an antichain with one element. The order polytope of a two-chain is a triangle,
the order polytope of the antichain with one element is the line segment [0, 1] ⊂ R

and their product is the triangular prism in the figure.



3
Pruned Inside-out Polytopes

A combinatorial reciprocity theorem can be described as a result that relates two
classes of combinatorial objects via their enumeration problems (see, e.g., [Sta74;
BS18]). For example, the number of proper m-colorings of a graph g = (U ,E)
agrees with a polynomial χ(g)(m) of degree d = |U | for positive integers m ∈ Z>0,
and (−1)dχ(g)(−m) counts the number of pairs of compatible acyclic orientations
and m-colorings of the graph g [Sta73]. Another example is Ehrhart–Macdonald-
reciprocity (Theorem 2.4).

As we have seen in Section 2.3 and Section 2.5, generalized permutahedra are a
class of polytopes containing numerous subclasses of polytopes defined via combi-
natorial structures, such as graphic zonotopes, hypergraphic polytopes (Minkowski
sums of simplices), simplicial complex polytopes, matroid polytopes, associahedra,
and nestohedra. Generalized permutahedra themselves are closely related to sub-
modular functions, which have applications in optimization.

One of the main results in this chapter is a combinatorial reciprocity theorem for
generalized permutahedra counting integral directions with k-dimensional maximal
faces:

Theorem 3.10. For a generalized permutahedron P ⊆ Rd and k = 0, . . . , d− 1,

χd,k(P)(m) := #
{

y ∈ [m]d : y-maximum face Py is a k-face
}

agrees with a polynomial of degree d− k, and

(−1)d−kχd,k(P)(−m) =
∑

y∈[m]d

# (k-faces of Py) .

We will use integer point counting in dissected and dilated cubes to prove this result
and comment on further generalizations in Remark 3.11.

The special case of this theorem for k = 0, i.e., generic directions, was obtained
by Aguiar and Ardila [AA23], and earlier by Billera, Jia, and Reiner [BJR09] in a
slightly different language. The k = 0 case was also recently extended in [Kar22]. As
shown for some examples in [AA23, Section 18] the application of such a result to
the various subclasses of generalized permutahedra yields already known combinato-
rial reciprocity theorems for their related combinatorial structures such as matroid
polynomials [BJR09], Bergmann polynomials of matroids and Stanley’s famous reci-
procity theorem for graph colorings [Sta73].

Aguiar and Ardila develop a Hopf monoid structure on the species of generalized
permutahedra, work with polynomial invariants defined by characters, and apply
their antipode formula to get the combinatorial interpretation of the reciprocity
result for generalized permutahedra for k = 0 (Theorem 3.19, below) [AA23, Sections
16, 17]. This method is also used in [Kar22]. The approach in [BJR09] is similar
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to the one by Aguiar and Ardila. Billera, Jia, and Reiner use Hopf algebras of
matroids and quasisymmetric functions, as well as a multivariate generating function
as isomorphism invariants of matroids. The reciprocity providing ingredient is again
the antipode of a Hopf algebra together with Stanley’s reciprocity for P -partitions
[BJR09, Sections 6 and 9].

We give a different, geometric perspective. In order to prove Theorem 3.10 we ap-
ply Ehrhart–Macdonald reciprocity to pruned inside-out polytopes. A pruned inside-
out polytope Q \

⋃
N co 1 consist of the points that lie inside a polytope Q but not in

the codimension one cones N co 1 of a complete polyhedral fan N . This is a general-
ization of inside-out polytopes introduced by Beck and Zaslavsky [BZ06b]. We think
of the codimension-one cones N co 1 defining a pruned inside-out polytope as pruned
hyperplanes, hence the name. One of the many applications of inside-out polytopes
[BZ06c; BZ06a; BZ10; BS18] is yet a different proof of Stanley’s reciprocity result
for graph colorings [Sta73].

Aval, Karaboghossian, and Tanasa presented a reciprocity theorem for hypergraph
colorings [AKT20], generalizing Stanley’s result for graph colorings. A main tool in
the paper is a Hopf monoid structure on hypergraphs defined in [AA23, Section
20.1.] and the associated basic polynomial invariant. However, they do not use the
antipode as reciprocity inducing element, but rather technical computations involv-
ing Bernoulli numbers.

In Section 3.2.2 we show how the reciprocity theorem for hypergraph colorings
in [AKT20] is a consequence of the reciprocity for generalized permutahedra. Our
main tool is a vertex description of hypergraphic polytopes in terms of acyclic ori-
entations of hypergraphs (Proposition 3.13). More recent work by Karaboghossian
[Kar20; Kar22] presents a more general version of the combinatorial reciprocity re-
sult for hypergraphs and an alternative proof with similar techniques as we present
in Section 3.2.2.

As spelled out in [AA23, Sections 21–25] and [AKT20, Section 4] hypergraphs and
hypergraphic polytopes contain a number of interesting combinatorial subclasses
such as simple hypergraphs, graphs, simplicial complexes, building sets, set parti-
tions, and paths, together with their associated polytopes such as graphical zono-
topes, simplicial complex polytopes, nestohedra, and graph associahedra.

This chapter is organized as follows: In Section 3.1 we introduce the notion of
pruned inside-out polytopes, define two counting functions on pruned inside-out
polytopes, and derive (quasi-)polynomiality and reciprocity results. Section 3.2 pro-
vides three applications of the results in Section 3.1; first, to generalized permutahe-
dra, giving a new geometric perspective on reciprocity theorems in [BJR09; AA23;
Kar22] and, moreover, presenting generalized versions for arbitrary face dimensions
(Section 3.2.1). The relationship between our approach and the polynomial invari-
ants for Hopf monoids is analyzed in Section 3.3. Secondly, we apply the reciprocity
theorem for generalized permutahedra to the subclass of hypergraphic polytopes giv-
ing an elementary combinatorial and geometric proof of the reciprocity theorem for
hypergraph colorings in [AKT20] (Section 3.2.2). Finally, in Section 3.2.3, we briefly
discuss the application of our tools to deformed Coxeter permutahedra in types A,
B, C, and D (Section 2.4).

Most of this chapter is published in [Reh22], except for Section 3.2.3 (unpublished).



(a) Polytope [−1, 1]2. (b) The complete poly-
hedral fan M and
its codimension-1
fan Mco 1 (rays).

(c) The pruned inside-
out polytope
[−1, 1]2 \

⋃
Mco 1

with its regions R1,
R2, and R3.

(d) The open pruned
inside-out polytope
(−1, 1)2 \

⋃
Mco 1

with open regions.

Figure 3.1: Construction of pruned inside-out polytopes and their regions as in Example 3.1.

3.1 Pruned Inside-out Polytopes and Ehrhart Theory

In [BZ06b] Beck and Zaslavsky develop the notion of an inside-out polytope, that
is, a polytope dissected by hyperplanes. Counting integer points in a polytope but
off certain hyperplanes turns out to be a useful tool to derive (quasi-)polynomiality
results and reciprocity laws for various applications such as graph colorings and
signed graph colorings, composition of integers, nowhere-zero flows on graphs and
signed graphs, antimagic labellings, as well as magic, semimagic, and magic latin
squares [BZ06c; BZ06a; BZ10]. We introduce a generalization of inside-out polytopes,
which we call pruned inside-out polytopes and develop Ehrhart-theoretic results
(Section 3.1).

Recall that a complete fan N in Rd is a family of polyhedral cones that is closed
under taking faces, where intersections of cones form faces and that covers Rd. Recall
that the codimension one fan N co 1 contains all cones of the complete fan N with
codimension at least one. This implies in particular that the codimension-one fan of
the normal fan N co 1(P) of a polytope P defined in (2.2) can be described as

N co 1(P) = N (P) \
{

NP(v) : v vertex of P
}

=
{

NP(F) : F a face of P with dim(F) ≥ 1
}

.

For a polytope Q ⊆ Rd and a complete fan N in Rd we call

Q \
(⋃

N co 1
)
=

⊎
N∈N ,

N full-dimensional

(Q ∩ N◦)

a pruned inside-out polytope and we call the connected components in the
pruned inside-out polytope Q \

(⋃
N co 1) regions. So, a pruned inside-out polytope

Q \
(⋃

N co 1) is the disjoint union of its regions Q ∩ N◦, where N◦ is an open full-
dimensional cone in N . We will mostly consider open pruned inside-out polytopes
Q◦ \

(⋃
N co 1), which decompose into disjoint open polytopes, the regions. A pruned

inside-out polytope is rational if the topological closures of all its regions are rational
polytopes.
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Example 3.1. Let [−1, 1]2 ⊆ R2 be a square (see Figure 3.1(a)). We consider
the complete fan M := {N1, N2, N3, . . . } consisting of all faces of the three full--
dimensional cones

N1 := {x ∈ R2 : x2 + x1 ≥ 0, x2 − x1 ≥ 0} ,
N2 := {x ∈ R2 : x2 ≤ 0, x2 + x1 ≤ 0} ,
N3 := {x ∈ R2 : x2 ≥ 0, x2 − x1 ≤ 0} .

Then the codimension-one fan Mco 1 = {n1,n2,n3} consists of the three rays

n1 := {(λ,λ) ∈ R2 : λ ≥ 0} ,
n2 := {(−λ,λ) ∈ R2 : λ ≥ 0} ,
n3 := {(0, −λ) ∈ R2 : λ ≥ 0} .

See Figure 3.1(b). The pruned inside-out polytope

[−1, 1]2 \
⋃

Mco 1 = [−1, 1]2 \
3⋃

i=1
ni =

3⋃
i=1

(
[−1, 1]2 ∩ N◦

i

)
is composed of three half-open regions R1,R2,R3, see Figure 3.1(c). Their topological
closures can be described as

R1 = conv{(0, 0), (1, 1), (−1, 1)} , R2 = conv{(0, 0), (−1, 1), (−1, −1), (0, 1)} ,
R3 = conv{(0, 0), (0, 1), (1, −1), (1, 1)} .

The open pruned inside-out polytope

(−1, 1)2 \
⋃

Mco 1 = (−1, 1)2 \
3⋃

i=1
ni =

3⋃
i=1

R◦
i

is depicted in Figure 3.1(d).

For a positive integer n ∈ Z>0 we define the inner pruned Ehrhart function
as

inQ,N co 1(n) :=#
(

1
n

Zd ∩
(

Q \
(⋃

N co 1
)))

= #
(

Zd ∩ n ·
(

Q \
(⋃

N co 1
)))

,

where

n ·
(

Q \
(⋃

N co 1
))

:= n · Q \
(⋃

n · N co 1
)

.

See Figure 3.2(a) and Figure 3.2(b) for illustrations.

Lemma 3.2. For a polytope Q ⊆ Rd and a complete fan N in Rd,

inQ◦,N co 1(n) =
k∑

i=1
ehrZ(R

◦
i ;n)

where R◦
i are the open regions of the open pruned inside-out polytope Q◦ \

(⋃
N co 1).



(a) in[−1,1]2,Mco 1 (2) = 18 (b) in(−1,1)2,Mco 1 (2) = 5 (c) cu[−1,1]2,Mco 1 (2) = 33

Figure 3.2: Inner and cumulative pruned Ehrhart functions of the pruned inside-out polytope
[−1, 1]2 \

⋃
Mco 1 and the open pruned inside-out polytope (−1, 1)2 \

⋃
Mco 1

illustrated. White dots are not counted, black dots are counted according to their
size with multiplicity one, two, or three. The corresponding computations can
be found in Example 3.4.

Proof. We decompose the pruned inside-out polytope Q \
(⋃

N co 1) into its regions
R1, . . . ,Rk. Then the open pruned inside-out polytope Q◦ \

(⋃
N co 1) = ⊎k

i=1R
◦
i is

the disjoint union of the open polytopes R◦
1, . . . ,R◦

k. The result follows since counting
lattice points is a valuation (see, e.g., [BS18, Section 3.4]).

Furthermore, we define a second counting function for pruned inside-out polytopes,
the cumulative pruned Ehrhart function cuQ,N co 1(Zd), for a positive integer
n ∈ Z>0 as

cuQ,N co 1(n) :=
∑

y∈ 1
n

Zd

multQ,N co 1(y) =
∑

y∈Zd

mult(n·Q,n·N co 1)(y) ,

where

multQ,N co 1(y) :=

# (closed full-dim. normal cones in N containing y) ,if y ∈ Q ,

0, otherwise.

See Figure 3.2(c) for an illustration.

Lemma 3.3. For a polytope Q ⊆ Rd and a complete fan N in Rd,

cuQ,N co 1(n) =
k∑

i=1
ehrZ(Ri;n) ,

where Ri are the topological closures of the regions Ri of the pruned inside-out poly-
tope Q \

(⋃
N co 1).

Proof. The right hand side of the equation counts lattice points in the interior of the
regions tRi precisely once and lattice points in the boundaries of the regions once
for every closed region the lattice point is contained in. The closed regions are the
intersections of the polytope Q with the closed full-dimensional cones in N . Hence
every lattice y point in tQ is counted with multiplicity mult(n·Q,n·N co 1)(y).
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Example 3.4. We compute the counting functions for the pruned inside-out poly-
topes introduced in Example 3.1:

in(−1,1)2,Mco 1(n) = (n2 − 2n+ 1) + 2( 3
2n

2 − 5
2n+ 1) = 4n2 − 7n+ 3

cu[−1,1]2,Mco 1(n) = (n2 + 2n+ 1) + 2( 3
2n

2 + 5
2n+ 1) = 4n2 + 7n+ 3 .

See Figure 3.2 for illustrations.
Theorem 3.5. Let Q \

(⋃
N co 1) ⊆ Rd be a rational pruned inside-out polytope.

Then the inner pruned Ehrhart function inQ◦,N co 1(n) and the cumulative pruned
Ehrhart function cuQ,N co 1(n) agree with quasipolynomials in n of degree d for n ∈
Z>0 and are related by reciprocity:

(−1)d inQ◦,N co 1(−n) = cuQ,N co 1(n).

Proof. We first use Lemma 3.2 to get

inQ◦,N co 1(n) =
k∑

i=1
ehrZ(R

◦
i ;n) .

For every i = 1, . . . , k we can apply Ehrhart’s Theorem 2.2 to ehrZ(R
◦
i ;n), hence

the counting function inQ◦,N co 1(n) is a sum of quasipolynomials, which is again a
quasipolynomial.

For the second part of the claim we use Ehrhart–Macdonald reciprocity (Theo-
rem 2.4) and compute

inQ◦,N co 1(n) =
k∑

i=1
ehrZ(R

◦
i ;n) =

k∑
i=1

(−1)d ehrZ(Ri; −n)

= (−1)d cuQ,N co 1(−n),

where the last equality follows from Lemma 3.3.

Remark 3.6. In the case that the polytope Q and the complete fan intersect such
that all the closed regions R = Q ∩ N of the pruned inside-out polytope Q \

(⋃
N co 1)

are integer polytopes, the counting functions inQ◦,N co 1(n) and cuQ,N co 1(n) agree
with a polynomial of degree d, by Theorem 2.2 and Theorem 2.4. We will use this
fact in the proof of Theorem 3.8.
Remark 3.7. One can certainly generalize this setting, e.g., to polyhedral complexes.
The framework here is motivated by the applications below. However, it would be
nice to find more applications for this framework.

3.2 Applications

We will now show how the tools from Section 3.1 can be applied to generalized permu-
tahedra introduced in Section 2.3 to derive known and unknown reciprocity results
for generalized permutahedra (Section 3.2.1). Reciprocity theorems for generalized
permutahedra by Ardila and Aguiar ([AA23, Propositions 17.3 and 17.4], see Theo-
rem 3.19) and extended by Karaboghossian ([Kar22, Theorem 2.5 and Theorem 2.8],



see Theorem 3.20), were developed by introducing a Hopf monoid structure on the
vector species of generalized permutahedra and using their antipode formula to de-
rive polynomial invariants. We give a new interpretation from a discrete-geometric
perspective as integer point counting functions. In Section 3.3 we give an explanation
on the relation between the results in this chapter and prior results developed with
Hopf-algebraic tools. We demonstrate why generalized permutahedra are such an
interesting class of polytopes by translating the reciprocity result for hypergraphic
polytopes to combinatorial statements about hypergraphs (Section 3.2.2). In Sec-
tion 3.2.3 we briefly describe how to apply our perspective to deformed Coxeter
permutahedra in types A, B, C, and D.

3.2.1 Generalized Permutahedra

We restate the combinatorial reciprocity result for generalized permutahedra by
[AA23, Propositions 17.3 and 17.4] in a slightly different language (see Theorem 3.19
for the original statement) and prove it using Ehrhart theory.

Theorem 3.8. Let P ⊆ Rd be a generalized permutahedron and m ∈ Z>0. Then

χd(P)(m) := #
(
P-generic directions y ∈

(
Rd
)∗

with y ∈ [m]d
)

agrees with a polynomial in m of degree d. Moreover,

(−1)dχd(P)(−m) =
∑

y∈[m]d

# (vertices of Py) .

While we will extend Theorem 3.8 (and our proof) in Theorem 3.10 and Re-
mark 3.11 below, we provide a self-contained proof here to present a flavor of our
method. In contrast to [BJR09; AA23; Kar22] we will prove these results without
using any Hopf-algebraic method. Our proof gives a geometric point of view by
counting integer points in pruned inside-out cubes. That is, we will consider the
cube

[1,m]d := {x ∈ Rd : 1 ≤ xi ≤ m for i = 1, . . . , d} ⊆ Rd

and intersect it with the integer lattice:

[1,m]d ∩ Zd =
{

x ∈ Rd : xi ∈ {1, . . . ,m} for i = 1, . . . , d
}
= {1, . . . ,m}d = [m]d.

The same holds in the dual space
(

Rd
)∗

. Now, a direction y : [d] → [m] ∈
(

Rd
)∗

can be identified with an integer point y in the cube {1, . . . ,m}d = [m]d in the dual
space. See Figure 3.3. Before we start the proof of Theorem 3.8 we need the following
result.

Lemma 3.9. The intersections of the unit cube [0, 1]d and the braid cones BT1,...,Tk

for compositions [d] = T1 ⊎ · · · ⊎ Tk are integer polytopes.

Proof. It is enough to consider the full-dimensional braid cones, since lower dimen-
sional braid cones are faces of full-dimensional braid cones and faces of an integer
polytope are integer polytopes. Full-dimensional braid cones BT1,...,Td

correspond to
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Figure 3.3: A generalized permutahedron in R3 (left) and its normal fan intersecting the
cube [1, 2]3 (right).

permutations of the coordinates, i.e., total orders on [d]. Recall from Section 2.5.5
that we can think of the intersection [0, 1]∩ BT1,...,Td

as an order simplex of the total
order on [d] given by T1, . . . ,Td. Order polytopes are 0/1-polytopes and therefore
integral polytopes.

Proof of Theorem 3.8. We will argue in the dual space
(

Rd
)∗

and its integer lattice;
to simplify notation we will not always explicitly point that out. Let us recall that
y ∈

(
Rd
)∗

being P-generic means that the y-maximal face of P is a vertex, that is,
y is contained in a full-dimensional cone of the normal fan N (P). So the direction
y is not contained in any cone N in the codimension-one fan N (P)co 1. Hence,

χd(P)(n) = #
(
P-generic directions y ∈

(
Rd
)∗

with y ∈ [n]d
)

= #{y ∈ [1,n]d ∩ Zd : y-maximum face Py is a vertex}
= #{y ∈ [1,n]d ∩ Zd : y ∈ N ∈ N (P) with N full-dimensional}
= #{y ∈ [1,n]d ∩ Zd : y /∈ N for all N ∈ N (P) with codimension ≥ 1}

= #
( (

[1,n]d \
⋃

N (P)co 1
)

∩ Zd
)

= in(0,1)d,N (P)co 1(n+ 1) ,

where we use in the last line that [1,n]d ∩ Zd = (0,n+ 1)d ∩ Zd = (n+ 1) · (0, 1)d ∩
Zd. With Lemma 3.9 we know that the unit cube and the normal fan N (P) intersect
producing integer regions. Therefore, using Theorem 3.5 and Remark 3.6, polyno-



miality of χd(P)(n) follows. With the above equality and Theorem 3.5 at hand, we
compute

(−1)dχd(P)(−n) = (−1)d in(0,1)d,N (P)co 1(−n+ 1)
= (−1)d in(0,1)d,N (P)co 1(−(n− 1))
= cu[0,1]d,N (P)co 1(n− 1)

=
∑

y∈ 1
n−1 Zd

mult[0,1]d,N (P)co 1(y)

=
∑

y∈Zd

mult[0,n−1]d,N (P)co 1(y) .

Every cone in the braid fan contains the line L = λ(1, . . . , 1). Therefore, the fans
N (P) and N (P)co 1 are invariant under translations by vectors in the line L and
scaling. So we can shift the cube [0,n− 1]d to [1,n]d and this bijection not only
preserves the number of integer points but also their multiplicities mult[1,n]d,N (P)co 1

with respect to the fan N (P). Hence,

(−1)dχd(P)(−n) =
∑

y∈Zd

mult[1,n]d,N (P)co 1(y)

=
∑

y∈[1,n]d∩Zd

# (closed full-dim. normal cones that contain y)

=
∑

y∈[n]d
# (closed normal cones of vertices that contain y)

=
∑

y∈[n]d
# (vertices of Py) ,

where we make use of Lemma 2.1.

We can extend Theorem 3.8 above to faces of arbitrary dimension.

Theorem 3.10. For a generalized permutahedron P ⊆ Rd and k = 0, . . . , d− 1,

χd,k(P)(n) := #{y ∈ [n]d : y-maximum face Py is a k-face}

agrees with a polynomial of degree d− k, and

(−1)d−kχd,k(P)(−n) =
∑

y∈[n]d
# (k-faces of Py) .

Before we prove the theorem we extend the notion of codimension-one fans to
arbitrary dimensions by defining the codimension-k fan N co k as

N co k :={N ∈ N (P) : codim(N) ≥ k},

that is, for a polytope P,

N (P)co k = {NP(F) : F a face of P with dim(F) ≥ k} .
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For a polytope Q ⊆ Rd and k ≥ 0 we define the k-pruned inside-out polytope
as (

Q ∩
⋃

N co k
)

\
(⋃

N co k+1
)
= Q ∩

⊎{
N◦ : N ∈ N co k

}
.

Note this is consistent with the notation in the beginning of this section. As before,
for a polytope Q ⊆ Rd the open k-pruned inside-out polytope

(
Q◦ ∩

⋃
N co k

)
\(⋃

N co k+1
)

is the disjoint union of relatively open (d− k)-dimensional polytopes,
namely, the intersection of Q◦ with the relatively open cones in N of codimension k.

Proof of Theorem 3.10. We compute

χd,k(P)(n) = #
{

y ∈ [1,n]d ∩ Zd : y-maximum face Py is a k-face
}

= #
((

Zd ∩ (0,n+ 1)d ∩
⋃

N (P)co k
)

\
(⋃

N (P)co k+1
))

= #
(( ⊎

N∈N (P)
dim N=d−k

N◦ ∩ (0,n+ 1)d
)

∩ Zd
)

.

The intersection N◦ ∩ (0,n+ 1)d is the relative interior of a polytope. Moreover, since
N◦ is an open cone containing the origin, N◦ ∩ (0,n+ 1)d is the (n+ 1)st dilate of
N◦ ∩ (0, 1)d. Hence,

χd,k(P)(n) = #
(( ⊎

N∈N (P)
dim N=d−k

N◦ ∩ (0,n+ 1)d
)

∩ Zd
)

(3.1)

=
∑

N∈N (P)
dim N=d−k

ehrZ(N◦ ∩ (0, 1)d;n+ 1) .

Using again Lemma 3.9 and Ehrhart’s Theorem 2.2 we obtain polynomiality for
χd,k(P)(n).

With Ehrhart–Macdonald reciprocity (Theorem 2.4) we compute

(−1)d−kχd,k(P)(−n) = (−1)d−k
∑

N∈N (P)
dim N=d−k

ehrZ(N◦ ∩ (0, 1)d; −n+ 1)

=
∑

N∈N (P)
dim N=d−k

(−1)d−k ehrZ(N◦ ∩ (0, 1)d; −(n− 1))

=
∑

N∈N (P)
dim N=d−k

ehrZ(N ∩ [0, 1]d;n− 1) (3.2)

=
∑

N∈N (P)
dim N=d−k

#
(
N ∩ [0,n− 1]d ∩ Zd

)
.



Here, we use, as in the proof of Theorem 3.8, that the normal fan of a generalized
permutahedron is a coarsened braid fan and therefore is invariant under scaling and
shifts by λ(1, . . . , 1) for λ ∈ R. So,

(−1)d−kχd,k(P)(−n) =
∑

N∈N (P)
dim N=d−k

#
(
N ∩ [1,n]d ∩ Zd

)

=
∑

y∈[1,n]d∩Zd

# ((d− k)-dim. cones N ∈ N (P) that contain y)

=
∑

y∈[n]d
# (k-faces of Py) ,

applying Lemma 2.1 in the last equality.

Remark 3.11. At the heart of the proofs of Theorem 3.8 and Theorem 3.10 lie
sums of Ehrhart polynomials and the reciprocity results are applications of Ehrhart-
Macdonald reciprocity (Theorem 2.4): Recall (3.1) and (3.2) from the proof of The-
orem 3.10. One can see that for a generalized permutahedron P any combination of
Ehrhart polynomials as in (3.1) and (3.2) results in a polynomial counting function

χd,α(P)(n) :=
∑

N∈N (P)
αN ehrZ(N◦ ∩ (0, 1)d;n+ 1)

=
∑

F a face of P
αNP(F) ehrZ(NP(F)◦ ∩ (0, 1)d;n+ 1)

(3.3)

for coefficients αN. This provides a combinatorial reciprocity result

χd,α(P)(−n) =
∑

N∈N (P)
(−1)dim NαN ehrZ(N ∩ [0, 1]d;n− 1)

=
∑

F a face of P
(−1)d−dim FαF ehrZ(NP(F) ∩ [0, 1]d;n− 1) .

Theorem 3.10 (and therefore also Theorem 3.8) is a reformulation of this general
result with coefficients

αN =

1 if dim N = d− k

0 else
for k = 0, 1, . . . , d− 1 .

Remark 3.12. We observe that we used the following properties of generalized
permutahedra in the proofs of Theorem 3.8 and Theorem 3.10

(i) the intersection of the unit cube and the normal fan of a generalized permuta-
hedron form integer pruned inside-out polytopes,

(ii) every cone N in the normal fan N (P) of a generalized permutahedron P con-
tains the line L = {λ(1, . . . , 1) : λ ∈ R}.

The first property (i) can be weakened to rational intersections leading to a quasipoly-
nomiality result. Considering normal fans without property (ii) produces similar but
more complicated statements, since the shift of the cube [0,n− 1]d to the cube [1,n]d
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can not be performed in general. Nevertheless, the framework of pruned inside-out
polytopes can be applied to generate reciprocity results for generalized permutahedra
in other types (see, e.g., [Ard+20]). See Section 3.2.3.

3.2.2 Hypergraphs

Generalized permutahedra are an especially interesting class of polytopes, due to
their numerous combinatorial subclasses such as graphical zonotopes, matroid poly-
topes, hypergraphic polytopes, and many more. In this section we illustrate this
fruitful connection between combinatorics and geometry proving a combinatorial
reciprocity result for hypergraphs, which generalizes Stanley’s famous theorem about
the chromatic polynomial for graphs. Aval, Karaboghossian, and Tanasa use a Hopf-
theoretic ansatz similar to that of Ardila and Aguiar to derive the reciprocity theo-
rem for hypergraph colorings [AKT20]. They define a basic polynomial invariant on
hypergraphs and give combinatorial interpretations. A general version of this can be
found in [Kar22]. For convenience we demonstrate the technique for a special case of
orientation, that we call heading. We give another perspective and proof by applying
Theorem 3.19 (reciprocity for generalized permutahedra) and exploiting geometric
and combinatorial properties of the hypergraph and its associated polytope. This
approach is also described as alternative proof for the general case in [Kar22]1.

A hypergraph h = (U ,E) is a pair of a finite set U of nodes2 and a finite
multiset E of non-empty subsets e ⊆ U called hyperedges. Note that we allow
multiple edges and edges consisting of only one node. For simplicity we will often
assume without loss of generality that the node set U equals {1, . . . , d} = [d] for
d = |U |, since all the claims in this section are invariant under relabeling the set U .
In a similar fashion we might switch back and forth between the two vector space
notations RU ≃ Rd and RU ≃

(
Rd
)∗

(see Section 2.0).
For every hypergraph h we define the corresponding hypergraphic polytope

P(h) ⊆ RU as the following Minkowski sum of simplices:

P(h) =
∑
e∈E

∆e ⊆ RU

where
∆e = conv{ei : i ∈ e}, for a hyperedge e ⊆ U ϵieeieϵi

and ei are the basis vectors for i ∈ U . An example is depicted in Figure 2.8. Hy-
pergraphic polytopes have been studied (sometimes as Minkowski sum of simplices)
in, e.g., [Agn17; BBM19]. Hypergraphs are in bijection with hypergraphic polytopes
and they form a subclass of generalized permutahedra (see Proposition 2.15 or, e.g.,
[Pos09, Proposition 6.3.]).

The vertices of graphic polytopes are described by the acyclic orientations of the
corresponding graph [Zas91, Corollary 4.2]. We will give an analogous statement

1 There also seems to be a polytopal approach by Alexander Postnikov, mentioned in [AKT20,
Acknowledgments] and on http://math.mit.edu/~apost/courses/18.218_2016/ (Lecture 19. W
03/16/2016), but to the best of our knowledge, no reference is available.

2 We decided to use the less common term nodes for hypergraphs to distinguish them from the vertices
of a polytope.

http://math.mit.edu/~apost/courses/18.218_2016/


Figure 3.4: The hypergraph h = ({a, b, c} , {{a, b, c} , {a, b} , {b, c} , {a} , {b} , {c}}) with a
cyclic heading (left) and all its acyclic headings (right). See Figure 2.8 for the
corresponding hypergraphic polytope.

and proof for hypergraphic polytopes. In order to do so we need the subsequent
definitions following3 [AKT20]. A heading4σ of a hypergraph h = (U ,E) is a map
σ : E → U such that for every hyperedge e ∈ E we have σ(e) ∈ e. In other words the
heading σ picks for every hyperedge e a node i = σ(e) ∈ e within that hyperedge.
We will call that node σ(e) the head of the hyperedge e. An oriented cycle in
a heading σ of a hypergraph h is a sequence e1, . . . , eℓ of hyperedges such that

σ(e1) ∈ e2 \ σ(e2)

σ(e2) ∈ e3 \ σ(e3)

...
σ(eℓ−1) ∈ eℓ−1 \ σ(eℓ−1)

σ(eℓ) ∈ e1 \ σ(e1).

A heading σ of a hypergraph h is called acyclic if it does not contain any oriented
cycle. See Figure 3.4 for some examples. Note that the notions of heading and acyclic
here are special cases of the notions in [BBM19; Kar22; RR12; Rus13].

The following description of the vertices of the hypergraphic polytope in terms
of acyclic orientations plays a central role in the remainder of this paper and is a
particular instance of, e.g., [BBM19, Theorem 2.18.]. Proposition 3.13 was stated
without proof in [CF18]. For convenience we give an elementary proof generalizing
the proof idea for graphs presented in [CF18].

Proposition 3.13. For a hypergraph h = (U ,E) the hypergraphic polytope P(h)
can be described as

P(h) = conv{ δ(σ) ∈ RU : σ is an acyclic heading of h}

where
δ(σ)i = |σ−1(i)| for i ∈ U ,

i.e., δ(σ) ∈ RU is the vector of in-degrees of the nodes i ∈ U in the heading σ.

3 Some of the definitions are also mentioned by Postnikov (http://math.mit.edu/~apost/courses/
18.218_2016/ Problem set 2, Problem 6).

4 We have chosen to call this generalization of orientations heading to distinguish it from other defi-
nitions of orientations for hypergraphs. Thanks to Thomas Zaslavsky for suggesting this wording.

http://math.mit.edu/~apost/courses/18.218_2016/
http://math.mit.edu/~apost/courses/18.218_2016/
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Figure 3.5: An oriented cycle e1, . . . , eℓ with heading σ (top) and the new headings σ∗
1, . . . ,σ∗

ℓ
on the edges e1, . . . , eℓ (below).

Proof. Since the Minkowski sum of convex hulls of point sets is the same as the
convex hull of the Minkowski sum of the points sets, we have

P(h) =
∑
e∈E

conv
(
{ei : i ∈ e}

)
= conv

(∑
e∈E

{ei : i ∈ e}
)

.

Every point in the convex hull on the right-hand side is the vector of in-degrees of the
nodes for some heading σ. Indeed, choosing some ei in every summand corresponds
to choosing i ∈ e as the head for the hyperedge e, and vice versa. It is left to show
that δ(σ) is a vertex of P(h) if and only if the heading σ is acyclic.

First, consider a heading containing an oriented cycle e1, . . . , eℓ. Then

σ(e1) ∈ e2 \ σ(e2), . . . ,σ(eℓ) ∈ e1 \ σ(e1)

holds. We will construct new headings σ∗
1, . . . ,σ∗

ℓ such that their vectors of in-degrees
δ(σ∗

1), . . . , δ(σ∗
ℓ ) convex combine the vector of in-degrees δ(σ) of the original heading

σ. We define the new headings σ∗
j by changing the orientation of the hyperedge ej

in the cycle, as depicted in Figure 3.5:

σ∗
1(e) :=

σ(eℓ), if e = e1

σ(e), otherwise
, σ∗

j (e) :=

σ(ej−1), if e = ej

σ(e), otherwise.
for j = 2, . . . , ℓ .

Then

δ(σ) =
ℓ∑

j=1

1
ℓ
δ(σ∗

j ).

Therefore, the vector of in-degrees δ(σ) of a heading σ containing a cycle cannot be
a vertex.



(a) Not a proper coloring
c1 : {a, b, c} → {1, 2}.

(b) A proper coloring
c2 : {a, b, c} → {1, 2}.

(c) Incompatible head-
ing and coloring.

(d) Compatible head-
ing and coloring.

Figure 3.6: Hypergraph h = ({a, b, c} , {{a, b, c} , {a, b} , {b, c} , {a} , {b} , {c}}) with colorings
ci : {a, b, c} → {1, 2}.

Now, let σ be an acyclic heading and let us assume there are headings σ∗
1, . . . ,σ∗

l

and scalars 0 ≤ λ1, . . . ,λl ∈ R such that

δ(σ) =
ℓ∑

j=1
λjδ(σ

∗
j ) and

ℓ∑
j=1

λi = 1.

First note that hyperedges e with cardinality |e| = 1 have only one possible heading
(the one choosing the only node in the hyperedge as head) and they do not appear
in oriented cycles. Hence they are irrelevant when it comes to deciding whether an
heading is acyclic or not. Therefore we delete all singleton hyperedges and adjust
the values in δ(σ) as well as in δ(σ∗

1), . . . , δ(σ∗
ℓ ).

Since the heading σ is acyclic and we deleted all singleton hyperedges, there exists
at least one source s ∈ U with δ(σ)s = 0. From Figure 3.2.2 it follows that δ(σ∗

j )s = 0
for all j = 1, . . . , ℓ. So, for the node s the in-degree of all the headings is identical. We
proceed by first deleting the source s in all hyperedges, then deleting all hyperedges
e with cardinality |e| = 1, and adjusting the entries in δ(σ), δ(σ∗

1), . . . , δ(σ∗
l ). After

finitely many iterations (the node set U is finite) we get δ(σ)i = δ(σ∗
j )i for every

node i ∈ U and all j = 1, . . . , ℓ and the in-degree vector δ(σ) of the acyclic heading
σ cannot be written as a convex combination, that is, δ(σ) is a vertex.

A coloring of a hypergraph h = (U ,E) with n colors is a map c : U → [n] that
assigns a color c(i) ∈ [n] to every node i ∈ U . A node i ∈ e ∈ E is called a maximal
node in the hyperedge e for the coloring c if the color c(i) is maximal among
the colors in the hyperedge e, that is c(i) = maxj∈e c(j). The color maxj∈e c(j) is
called the maximal color. A coloring c : U → [n] of a hypergraph h = (U ,E)
is called proper if every hyperedge e ∈ E contains a unique maximal node i ∈ e.
This definition of a proper coloring is the same as, e.g., in [AKT20], but different
from the ones in [EH66; BTV15; BDK12; AH05]. A coloring c : U → [n] and a
heading σ : E → U of a hypergraph h = (U ,E) are said to be compatible if
c(σ(e)) = maxj∈e c(j), i.e., if the head σ(e) of a hyperedge e has maximal color. See
Figure 3.6 for some examples.

Remark 3.14. Considering usual graphs, the above definitions of (proper) colorings,
(acyclic) headings and compatible pairs for hypergraphs specialize to those commonly
used for graphs. In the same way the following Theorem 3.15 and Theorem 3.16
generalize Stanley’s reciprocity theorem for chromatic polynomials of graphs [Sta73].
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Theorem 3.15 ([AKT20, Theorem 18]). For a hypergraph h = (U ,E) with |U | =: d
and a positive integer n ∈ Z>0,

χd(h)(n) := #(proper colorings of h with m colors)

agrees with a polynomial in n of degree d.

Proof. Without loss of generality we assume U = [d]. For a hypergraph h = (U ,E)
we consider its corresponding hypergraphic polytope P(h) and since P(h) is a gen-
eralized permutahedron we can apply Theorem 3.19. Hence we need to show

#(P(h)-generic directions y ∈ [n]d) = #( proper colorings of h with n colors).

We do so via a bijection. For y ∈ [n]d we define the coloring cy(i) := yi for i =
1, . . . , d and vice versa, for a coloring c : U → [n] define yc ∈ [n]d by yc

i := c(i).
It is left to show that a direction y ∈ [n]d is P(h)-generic if and only if the coloring

cy is proper. Recall y ∈ RU is P(h)-generic if the maximal face (P(h))y in direction
y is a vertex. Linear functionals and Minkowski sums commute (see, e.g., [BS18,
Lemma 7.5.1]), so

(P(h))y =

(∑
e∈E

∆e

)y

=
∑
e∈E

(∆e)
y . (3.4)

Since the Minkowski sum is a point if and only if every summand is a point, the
direction y is P(h)-generic if and only if it is ∆e-generic for every hyperedge e ∈ E.
Finally, the direction y is ∆e-generic if and only if (∆e)y is a vertex. Recall that
∆e = conv{ei : i ∈ e} is the convex hull of standard basis vectors ei, so

(∆e)
y = conv

{
ei : i ∈ e, y(i) = max

j∈e
y(j)

}
. (3.5)

Therefore (P(h))y is a vertex, if and only if for every hyperedge e the direction y
has a unique maximal value among the entries y(i) with i ∈ e. The last statement
is equivalent to the coloring cy having a unique maximal node, i.e., being proper. In
summary, for a positive integer n ∈ Z>0

χd(h)(n) = # (proper colorings of h with n colors)

= #
(
P(h)-generic directions y ∈ [n]d

)
= χd(P(h))(n)

which is a polynomial in n of degree d.

Theorem 3.16 ([AKT20, Theorem 24]). Let h = (U ,E) be a hypergraph and n ∈
Z>0 a positive integer. Then

(−1)dχd(h)(−n) = #(compatible pairs of acyclic headings of h
and colorings of h with n colors).

In particular, the number of acyclic headings of h equals (−1)dχd(h)(−1).

Note that the colorings do not need to be proper here.



Proof. We follow the same idea as in the previous proof, that is, we use

(−1)dχd(h)(−n) = (−1)dχd(P(h))(−n) =
∑

y∈[n]d
# (vertices of P(h)y)

and need to show∑
y∈[n]d

# (vertices of P(h)y) =
∑

c n-coloring
# (acyclic headings of h compatible to c) .

We use the same bijection between n-colorings cy of h and directions yc ∈ [n]d

as above. It is left show that for every direction y ∈ [m]d the number of vertices
of the maximal face (P(h))y in direction y equals the number of acyclic headings
of h compatible to the coloring cy defined by the direction y. We compute the
y-maximum faces as in Equations (3.4) and (3.5):

P(h)y =

(∑
e∈E

∆e

)y

=
∑
e∈E

(∆e)
y =

∑
e∈E

conv
{

ei ∈ RU : i ∈ e, y(i) = max
j∈e

y(j)
}

.

From Theorem 3.2.2 we can see that a vertex of P(h)y corresponds to choosing
for every hyperedge e ∈ E one of the nodes i ∈ e with maximal entry y(i), i.e.,
maximal color cy(i). This is, by definition, the same as constructing a compatible
heading for the coloring cy. We know by Proposition 3.13 that vertices correspond to
acyclic headings. Hence, vertices of P(h)y correspond to acyclic headings compatible
to the coloring cy. Vice versa, for a coloring c the compatible acyclic headings are
those with heads of hyperedges having a maximal coloring. That is, these acyclic
headings correspond to those vertices, that are vertices of the maximum face P(h)yc

in direction yc.

3.2.3 Deformed Coxeter Permutahedra

We extend our combinatorial reciprocity results to deformed Coxeter permutahedra
in type A, B, C, and D (see Section 2.4). To do so, we first need to check that
the resulting pruned inside-out polytopes are integral, then we state and proof the
theorem.

Lemma 3.17. Let [−1, 1]d ⊂ Rd be the d-dimensional hypercube and N a Coxeter
fan in type A, B, C, or D. Then the pruned inside-out polytope [−1, 1]d \ N co 1 is
integral.

Proof. If we restrict our consideration to the non-negative orthant Rd
≥0 then the

statement is equivalent to Lemma 2.10. By symmetry the same follows for every
other orthant and therefore [−1, 1]d \ N co 1 is integral.

Theorem 3.18. Let P ⊆ Rd be a deformed Coxeter permutahedron in type A, B,
C, or D and m ∈ Z>0. Then

χd(P)(m) := #
(
P-generic directions y with y ∈ {−m, . . . , −1, 0, 1, . . . ,m}d

)
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agrees with a polynomial in m of degree d. Moreover,

(−1)dχd(P)(−m) =
∑

y∈{−m+1,...,−1,0,1,...,m−1}d

# (vertices of Py) .

Proof. As before in the proof of Theorem 3.8, we compute:

χd(P)(m) := #
(
P-generic directions y with y ∈ {−m, . . . , −1, 0, 1, . . . ,m}d

)
=
∣∣∣([−m,m]d \ N co 1

)
∩ Zd

∣∣∣
=
∣∣∣((−m− 1,m+ 1)d \ N co 1

)
∩ Zd

∣∣∣
= in(−1,1)d,N co 1(m+ 1) .

From Lemma 3.17 and Theorem 3.5 we get polynomiality and

(−1)dχd(P)(−m) = (−1)d in(−1,1)d,N co 1(−m+ 1)
= cu[−1,1]d,N co 1(m− 1)

=
∑

y∈{−m+1,...,−1,0,1,...,m−1}d

# (vertices of Py) .

In a similar straightforward way we can extend Theorem 3.10 to deformed Coxeter
permutahedra in type A, B, C, and D.

These results can easily be specialized to subclasses of deformed Coxeter permuta-
hedra in type A, B, C, and D. This was done earlier for signed graphs, see [BZ06b;
BZ06c].

3.3 Relation to Polynomial Invariants from Hopf Monoids

In this section we compare our results to the polynomial invariants from Hopf
monoids developed in [AA23; Kar22]. This research was motivated by giving a ge-
ometric interpretation of the combinatorial reciprocity theorems in [AA23]. In this
section it is convenient to work with unordered bases for vector spaces as introduced
in Section 2.0.

An introduction to the theory of Hopf monoids can be found in, e.g., [AA23],
[AM10] and is omitted here. For a Hopf monoid on the ground set U , a character ζ,
and an element x in the Hopf monoid, there is a polynomial invariant

χζ
U (x)(n) :=

∑
U=S1⊔···⊔Sn

(ζS1 ⊗ · · · ⊗ ζSn) ◦ ∆S1,...,Sn(x) ,

where the sum is over all compositions and ∆ denotes the coproduct of the Hopf
monoid. Using the antipode sU of the Hopf monoid one obtains the reciprocity
relation

χζ
U (x)(−n) = χU (sU (x)) (n)



which gives an interpretation for negative integers [AA23, Section 16]. In [AA23]
Aguiar and Ardila define a Hopf monoid structure on the species of generalized
permutahedra and then obtain combinatorial formulas for the polynomial invariant
χU (x)(n) and χU (x)(−n) for n ∈ Z>0 using the basic character, which takes values
in {0, 1}.

Theorem 3.19 ([AA23, Propositions 17.3 and 17.4]). At a positive integer n ∈ Z>0
the basic polynomial invariant χ of a generalized permutahedron P ⊆ RU is given by

χU (P)(n) = # (P-generic directions y : U → [n])

and
(−1)|U |χU (P)(−n) =

∑
y : U→[n]

# (vertices of Py) .

This result was obtained earlier but stated differently by Billera, Jia, and Reiner
using a similar Hopf-algebraic approach (using the antipode) on quasisymmetric
functions and matroids [BJR09, Theorem 9.2. (v)]. We have seen in Section 3.2.1 how
this result can be understood using pruned inside-out cubes. Recently, Theorem 3.19
was generalized in [Kar22].

Theorem 3.20 ([Kar22, Theorem 2.5 and Theorem 2.8]). Let ζ be a character of
the Hopf monoid of generalized permutahedra GP , U a finite set and P ∈ GP [U ] a
generalized permutahedron. Then,

χζ
U (P)(n) =

∑
F a face of P

ζ(F)|N◦
P(F)n| ,

and
χζ

U (P)(−n) =
∑

F a face of P
(−1)|U |−dim Fζ(F)|NP(F)n| ,

Here, elements in the sets N ◦
P(F)n = [n]U ∩ N ◦

P(F) and NP(F)n = [n]U ∩ NP(F)
are called the colorings c : U → [n] that are strictly compatible, respective com-
patible with F. These can be understood as the integer points in the open normal
cone of the face F intersected with the (n+ 1)st dilate of the open unit cube (0, 1)U ,
so |N◦

P(F)n| agrees with the Ehrhart polynomial ehrZ(NP(F)◦ ∩ (0, 1)d;n+ 1). Sim-
ilarly, the set NP(F)n can be recognized as the integer points in the closed normal
cone of the face F intersected with the closed cube [1,n]U . After shifting the cube
as in the proof of Theorem 3.10, we can see that |NP(F)n| agrees with the Ehrhart
polynomial of NP(F) ∩ [0, 1]U . Hence, the polynomial invariants can be interpreted
as sums of Ehrhart polynomials that are weighted by the character ζ(F), compare
Remark 3.11.

With a view towards applications our Ehrhart-theoretic approach has some ad-
vantages. One strength is that the weights in (3.3) can be chosen arbitrarily, while
in the Hopf-theoretic setting the character needs to fulfill certain axioms. This does
not allow to interpret the combinatorial reciprocity result in Theorem 3.10 as an
instance of Theorem 3.20. A character taking value one on k-dimensional faces and
zero elsewhere would not fulfill compatibility with multiplication in the Hopf monoid
of generalized permutahedra. Another advantage is be the extension to generalized
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permutahedra in other types, as mentioned before (Remark 3.12, Section 3.2.3). This
seems to be very hard from the Hopf monoid setting (see, e.g., [AA23, Theorem 6.1],
[Ard+20, Section 9]).



4
Acyclotopes and Tocyclotopes

Let A = [a1, a2, . . . , am] ∈ Rd×m. There is a well-developed dictionary between the
zonotope generated by A,

Z(A) := A [0, 1]m,

and the (central) hyperplane arrangement H(A) with normal vectors ai for
i = 1, . . . ,m (see Section 2.1), and in some instances, the zonotope and the arrange-
ment encode certain combinatorial data captured by the linear matroid M(A), see
Section 2.5.3. A prime example is given by graphic zonotopes/arrangements as
discussed in Section 2.5.1. Here, the generating matrix is AG := [ej − ek : jk ∈ E],
for a given graph G = (V ,E) and an (arbitrary but fixed) orientation on E; as
usual we call AG an incidence matrix of G. Greene and Zaslavsky [GZ83] showed
that the vertices of Z(AG) (equivalently, the regions of H(AG)) are in one-to-one
correspondence with the acyclic orientations of G, and they gave analogous interpre-
tations for all faces of Z(AG). Zaslavsky [Zas82a, Section 4] thus coined the charming
term acyclotope for Z(AG).

Going back to general zonotopes, recall from Equation (2.13) that each Z(A)

comes with a natural tiling into parallelepipeds [McM71; She74], whose (relative)
volumes encode important arithmetic data of Z(A) (see Equation (2.9)). When A ∈
Zd×m, i.e., Z(A) is a lattice zonotope, this data can admit yet more combinatorial
meaning. It is most easily packaged into the Ehrhart polynomial of Z(A) (2.12).
In the above case that A = AG stems from a graph G, Stanley [Sta91] proved
that the coefficient of tj in the Ehrhart polynomial of Z(AG) equals the number of
induced forests in G with j edges (see Corollary 2.14).

The goal in this chapter is twofold. First, we extend the interpretation of the
Ehrhart coefficients for acyclotopes to signed graphs. The face structure of the acy-
clotope in this setting goes back to the same Greene–Zaslavsky paper [GZ83], but
we could not find the analogue of Stanley’s Ehrhart polynomial in the literature.
Second, we define and study dual zonotopes in the sense of the underlying matroids
(see Section 2.5.3), which we call tocyclotopes, as their vertices corresponds to
the totally cyclic orientations of the given (signed) graph. The face structure of the
tocyclotope in the case of an ordinary graph can once more be found in [GZ83].
Its Ehrhart polynomial must be known to experts, but we could not find it in the
literature. Our results for tocyclotopes of signed graphs seem to be novel. Along the
way, the construction and arithmetic of the tocyclotope suggest a general duality
concept for zonotopes, one that was already employed by McMullen [McM71] and
D’Adderio–Moci [DM12; DM13]: starting with A ∈ Rd×m, construct a matrix that
represents the matroid dual to that of A; McMullen described the face structure of
its associated zonotope entirely from the data of A, and D’Adderio–Moci developed
the general notion of an arithmetic matroid, whose duality nature applies here. In
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this context, we give a concrete computation that describes the Ehrhart polynomial
of the zonotope of the dual arithmetic matroid in terms of A.

Recall that we can phrase the above setting in the language of root systems, see
Section 2.4. The generators AG = [ej − ek : jk ∈ E] of the acyclotope for an ordi-
nary graph G = (V ,E) form a subset of a root system of type A, and subsequently,
the acyclotope is a subpolytope of the permutahedron, see Section 2.5.1. Recall that
the incidence matrix of a given signed graph Σ with d nodes and m edges is an
d×m matrix AΣ whose column corresponding to the edge e equals

• ej − ek or ek − ej if e = (jk) is a positive link,

• ej + ek or −ek − ej if e = (jk) is a negative link,

• ej if e is a halfedge at j,

• 2ej or −2ej if e is a negative loop at j.

As already mentioned, these are root vectors of type A, B, C, D.1 Similarly, the
acyclotope for a signed graph is defined by a subset of a root system of type A, B,
C, D, and vice versa, any such subset defines a signed graph, see Section 2.5.4. Thus
the acyclotope is a subzonotope (in the sense that we remove some of the generators)
of the respective root polytope (see, e.g., [ABM20]).2

Recall from Equation (2.23) that for a matroid M = (E, I) its dual matroid
M△ := (E, I△) is defined via

I△ := {J ⊆ E | E \ J is a spanning set of M} ,

where a subset S ⊆ E is called spanning if it contains a basis. We are interested
in the case that the matroid M is representable (over R), i.e., a spanning set S
consists of the columns of a given matrix A ∈ Rd×m and independence refers to
linear independence, compare Example 2.17. In this case, and under the (reason-
able) assumption that A has rank d, there is a well-known construction of M△, see
Theorem 2.20. The standard representation (see Corollary 2.21) can be computed as
follows: one uses elementary row operations on A resulting in a matrix of the form
[R | I] ∈ Rd×m where we denote by I the identity matrix of the appropriate dimen-
sion. The matrix [R | I] also represents M . Now let A△ := [I | − RT ] ∈ R(m−d)×m;
by construction A△ represents M△. We are particularly interested in the case when
A = AΣ is the incidence matrix of a (signed) graph, i.e., consists of roots of type
A/B/C/D.

In Section 4.1 we construct the tocyclotope Z(A△
G ) for a graph G and Theorem 4.1

gives its Ehrhart polynomial; and indeed, its coefficients enumerate (complements
of) spanning sets in G.

In Section 4.2 we set up the necessary machinery from the theory of signed graphs
and then study their acyclotopes, in particular we compute their Ehrhart polynomial
in Theorem 4.4.

1 This correspondence is one reason to leave out positive loops and loose edges when building the
incidence matrix; neither they do play a role for our work.

2 There are, unfortunately, conflicting definition of root polytope in the literature. Here we mean what
might be more precisely called the integral Coxeter permutahedron ΠZ(Φ) :=

∑
α∈Φ+ [0, α] of the

finite root system Φ with a choice Φ+ of positive roots.



In Section 4.3 we return to general lattice zonotopes. Given A ∈ Zd×m of rank
d, choose a lattice basis for the lattice ker(A) ∩ Zm and write them as the m− d

columns of D ∈ Zm×(m−d). Theorem 4.6 describes the arithmetic of Z(DT ) in terms
of A. We call Z(DT ) the lattice Gale zonotope associated with A. By construction,
DT represents the dual matroid of the matroid represented by A, and our results give
the afore-mentioned arithmetic extension of McMullen’s study of the face structure
of Z(DT ) in the spirit of D’Adderio–Moci’s arithmetic matroids.

Section 4.4 is devoted to the construction and study of tocyclotopes for a signed
graph. We then apply Theorem 4.6 to compute their Ehrhart polynomials in Theo-
rem 4.14.

This chapter is joint work with Eleon Bach and Matthias Beck [BBR24], Sec-
tion 4.1 is based on Eleon Bachs master thesis.

4.1 Tocyclotopes and the Flow Space

This section is based on Eleon Bachs master thesis. We include it here since it serves
as entry point and motivation for the remainder of this chapter.

We start with an (unsigned, simple) graph G = (V ,E) with incidence matrix
AG ∈ Rd×m; it comes with a natural block form given by the connected components
of G, and thus we may (and will) assume that G is connected. The matroid M

defined by AG can be given in terms of G (i.e., M is a graphic matroid): such
a reduction corresponds to choosing a basis of the corresponding matroid, i.e., a
spanning tree, whose edges then correspond each to the the columns of the identity
matrix.

We first modify AG (which has rank d− 1) to a full-rank matrix that still repre-
sents M , using a well-known construction. Namely, one uses elementary row opera-
tions to create a row of zeros and then discards the latter. The result is a matrix of
the form [R | I] ∈ R(d−1)×m known as a network matrix ofG. It can be constructed,
e.g., via a spanning tree of G, whose edges correspond to the identity matrix.

Matroid duality yields a representation matrix A△
G = [I | − RT ] ∈ R(m−d+1)×m for

M△, which is called the cographic matroid. It can be described purely in terms of
G: its ground set is again E and the independent sets are precisely the complements
of spanning sets of G. A spanning set of a connected graph is a subset of edges
whose subgraph contains a spanning tree.

The tocyclotope of G is the zonotope Z(A△
G ). We note that there were choices

involved when constructing A△
G ; however, different choices correspond to resulting

matrices that are unimodularly equivalent (since elementary row operations are uni-
modular). Thus Z(A△

G ) is unique up to unimodular equivalence. Recall Stanley’s
result for Ehrhart polynomials of lattice zonotopes, Theorem 2.3, and the quantities
g(F) from Section 2.2 (they will also be rediscussed in Remark 4.10 below). These
ingredients yield the companion result to Stanley’s [Sta91] afore-mentioned Ehrhart
polynomial structure of Z(AG), see Corollary 2.14.



78 acyclotopes and tocyclotopes

Theorem 4.1. Let G = (V ,E) be a simple and connected graph. Then the Ehrhart
polynomial of the tocyclotope Z(A△

G ) is

ehrZ(Z(A△
G );n) =

|E|−|V |+1∑
k=0

dk n
k

where the coefficient dk equals the number of (complements of) spanning sets in G

of size k, which equals the number of forests of size m− k in G∆.

Proof. Both AG and A△
G are totally unimodular. Further, the column vectors of A△

G

are, by definition, linearly independent if and only if they induce complements of
spanning sets on G as these induce the independent sets of the cographic matroid.
Now apply Theorem 2.3. Counting the number of spanning sets or the number of
their complements is the same.

Example 4.2. The tocyclotope of the complete graph K4 is the 3-permutahedron.
We can thus calculate its Ehrhart polynomial as follows. The linear coefficient d1
equals 6 since every edge of K4 is a complement of a spanning set. Every choice of
two edges of K4 is a complement of a spanning set and so the second coefficient d2
equals 15. Every choice of three edges besides the ones incident to a single node is a
complement of a spanning set and thus d3 = 16. In total we obtain

ehrZ(Z(A△
K4

);n) = 16n3 + 15n2 + 6n+ 1 .

We briefly comment on how Z(A△
G ) connects to flows on G and its cographic ar-

rangement; here we assume that G does not contain isthmi (in the graph case isthmi
are bridges). The flow space (also called the cycle space) of G is defined as the
kernel of AG, which is an (m− d+ 1)-dimensional subspace of Rm. The cographic
arrangement H(A△

G ) is the arrangement induced by the coordinate hyperplanes
in Rm on ker(AG). Greene and Zaslavsky [GZ83] showed that the regions of the
cographic arrangement are in one-to-one correspondence with the totally cyclic ori-
entations of G.

Lemma 4.3. Let G = (V ,E) be a simple, connected, and bridgeless graph. The
linear surjection A△

G : Rm → Rm−d+1 maps the flow space ker(AG) bijectively to
Rm−d+1. Thus the columns of the matrix A△

G are normal vectors for an isomorphic
copy of the cographic arrangement living in Rm−d+1.

Proof. We need to prove ker(AG) ∩ ker(A△
G ) = {0}. By construction, each row of

AG is perpendicular to each row of A△
G . Thus, any w ∈ ker(AG) ∩ ker(A△

G ) is
perpendicular to all row vectors in both AG and in A△

G , which implies w = 0.

Thus, we may think of A△
G as simultaneously generating the cographic arrange-

ment H(A△
G ) and the tocyclotope Z(A△

G ), giving rise to geometric (e.g., the vertices
of Z(A△

G ) are given by totally cyclic orientations of G) and arithmetic (e.g., Theo-
rem 4.1) structures.



4.2 Ehrhart Polynomial of Acyclotopes for Signed Graphs

Our definition of Z(AΣ) implicitly depends on a choice of orientation for each edge of
Σ (except loops and halfedges). However, any property of the acyclotope discussed
here is independent of these choices. For example, the face structure of the zono-
tope is determined by the combinatorial structure of the corresponding hyperplane
arrangement, i.e., the poset of intersections. This in turn does not depend on the
choice of orientation of the hyperplane normals.

The following result generalizes the Ehrhart polynomial of the type-B root poly-
nomial [ABM20].

Theorem 4.4. The Ehrhart polynomial of the acyclotope Z(AΣ) equals

ehrZ(Z(AΣ);n) =
∑
F

2pc(F )+lc(F ) nd−tc(F ) ,

where the sum is over all F ⊆ E such that Σ(F ) is a pseudo-forest.

We recall that the number of nodes in every edge subgraph Σ(F ) is the same as
the number d of nodes in Σ. Similarly, the number tc(F ) of signed tree components
counts, in particular, all the isolated vertices; e.g., for a graph with d nodes, tc(∅) =

d.
The following lemma has appeared in various guises; see [ACH15, Lemmas 4.9.

& 4.10.], [Kot02, Proposition 4.2.], and [Zas82b, Lemma 8A.2], see also Proposi-
tion 2.23.

Lemma 4.5. Let F be a linearly independent subset of the columns of AΣ. The
corresponding subset F of edges of Σ forms a pseudo-forest as subgraph. Then

g(F) = 2pc(F )+lc(F ) and |F | = d− tc(F ) ,

where g(F) is as in Equation 2.9.

Proof of Theorem 4.4. We apply Stanley’s Theorem 2.3. Linearly independent sub-
sets of AΣ correspond, by Lemma 4.5, to pseudo-forests of Σ. Lemma 4.5 also gives
the dimension (d− tc(F )) and volume (2pc(F )+lc(F )) of the parallelepiped associated
with a given linearly independent set. As we will discuss in Remark 4.10, the latter
volume equals g(F).

4.3 Lattice Gale Zonotopes

We now revisit the construction of the tocyclotope of a given graph G: starting
with the incidence matrix of G, we constructed a matrix representing the cographic
matroid, from which we generated a zonotope. This process is not confined to the
incidence matrix of a graph, and so we now start with a general integral matrix
A ∈ Zd×m of rank d. Choose a lattice basis for the lattice ker(A) ∩ Zm and write
them as the m− d columns of D ∈ Zm×(m−d), which we call a lattice Gale dual
of A.3 By construction, DT represents the dual of the matroid represented by A.

3 Our terminology follows that of matrices/vector configurations over a field; see, e.g., [Zie98, Chap-
ter 6].
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This is reminiscent of the interplay of Z(A) and Z(A△) (which is combinatorially
equivalent to Z(DT )), which we alluded to in the introduction; McMullen [McM71]
calls Z(A△) and Z(DT ) derived zonotopes and the corresponding Gale diagrams
zonotopal diagrams. He completely described the face structure of Z(A△). Our point
is to extend this description to the arithmetic structure (in the sense of integer points)
of the derived zonotope Z(DT ); hence our construction of the lattice Gale dual.

Our goal is to describe the arithmetics of the lattice Gale zonotope Z(DT ) in
terms of A. While this zonotope depends on the construction of the lattice basis
that yields D, Theorem 4.6 is the main result in this section and shows that the
arithmetic of the lattice Gale zonotope depends only on A.4

Theorem 4.6. Let A ∈ Zd×m be of rank d, with lattice Gale dual D ∈ Zm×(m−d).
Then we can compute the Ehrhart polynomial of the associated lattice Gale zonotope
as

ehrZ(Z(DT );n) =
∑
S

g(AS)

g(A)
nm−|S|

where the sum is over all spanning sets S ⊆ [m] in the matroid represented by A
and g(A) is defined as in Equation 2.9.

Remark 4.7. As (the usual) Gale duality can be used to efficiently compute the
face structure of a d-polytope with k vertices where k − d is small (but d and k

may be large), Theorem 4.6 can be used to efficiently compute the Ehrhart polyno-
mial of a zonotope generated by DT ∈ Z(m−d)×m for large m but small d: here we
have to understand only the arithmetic of the (much smaller) matrix A ∈ Zd×m.
Note that every full rank integer matrix A can be seen as a lattice Gale dual. More-
over, the resulting matrix, after applying the lattice Gale dual construction twice, is
unimodularly equivalent to the original matrix.

Theorem 4.1 is a special case of Theorem 4.6, because the incidence matrix of
a graph is totally unimodular, and thus g(AS) = 1 for all AS . Indeed, the same
reasoning implies the following specialization for any totally unimodular matrix A,
i.e., when the associated matroid is regular.

Corollary 4.8. Let A ∈ Zd×m be a totally unimodular matrix of rank d, with lattice
Gale dual D ∈ Zm×(m−d). Then the Ehrhart polynomial of the associated lattice Gale
zonotope is given by

ehrZ(Z(DT );n) =
∑
S

nm−|S| =
m∑

k=d

dk n
m−k

where the sum in the first sum is over all spanning sets S in the regular matroid
represented by A and dk is the number of spanning sets of size k in the matroid
represented by A.

4 In the language of D’Adderio–Moci, a lattice zonotope corresponds to representable, torsion-free
arithmetic matroid with GCD property [DM13] and the Ehrhart polynomial is a specialization of
the arithmetic Tutte polynomial [DM12]. Our lattice Gale zonotopes then correspond to the dual
representable torsion-free arithmetic matroids.



There are two main ingredients we will need to prove Theorem 4.6. For the first we
give an elementary proof here. Given a matrix A, we denote by spanR(A) the real
vector space spanned by its columns and by spanZ(A) the set of integer combination
of its columns.

Lemma 4.9 (Gale duality for lattices). Let A ∈ Zd×m be of rank d, with a lattice
Gale dual D ∈ Zm×(m−d). Every choice of k ≤ m linearly independent rows of D
indexed by some ρ ⊆ [m] yields a submatrix Dρ ∈ Zk×(m−d). Then the complement
ρ := [m] \ ρ defines a matrix Aρ ∈ Zd×(m−k) consisting of the columns of A indexed
by ρ, which are spanning and hence contain a basis of Rd. Then there is a bijection

ψ : Zk/spanZ(Dρ) → spanZ(A)/spanZ(Aρ) .

Proof. We may assume without loss of generality that ρ indexes the first m − k

columns of A and the first m− k rows of D. Let

ψ : Zk/spanZ(Dρ) → spanZ(A)/spanZ(Aρ)

[v] 7→ [Aρ v] .

We first show that ψ is well defined and injective. Let v ∈ Zk. Then

ψ[v] = [Aρ v] = 0 ∈ spanZ(A)/spanZ(Aρ)

if and only if Aρ v = Aρw for some w ∈ Zm−k, that is,−w
v

 ∈ ker(A) ∩ Zm = spanZ(D) .

This means (−w
v ) = Du for some u ∈ Zm−d, i.e., v = Dρ u, which in turn means

[v] = 0 ∈ Zk/spanZ(Dρ) .

To show that ψ is surjective, let y ∈ spanZ(A), so Ax = y for some x = (xρ

xρ
) ∈

Zm. Let v = xρ ∈ Zk and w = −xρ ∈ Zm−k. Thus

y = Ax = −Aρw + Aρv ,

i.e., ψ[v] = [y].

The second ingredient is the quantity g(F) from Equation 2.9. Recall that, for a
matrix F, we defined g(F) as the greatest common divisor of all maximal minors of
F.
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Remark 4.10. We recall and slightly extend our discussion of the quantity g(A)

and the Smith Normal Form from the beginning of Section 2.2. The Smith Normal
Form of a matrix A ∈ Zd×m of rank r is

S A T =



d1

d2
. . .

dr


where S ∈ Zd×d and T ∈ Zm×m are invertible matrices and d1 d2 · · · dr equals the
gcd of all r× r minors of A. Thus S and T are integer-lattice preserving, from which
we deduce ∣∣∣ (spanR(A) ∩ Zn)/spanZ(A)

∣∣∣ = d1 d2 · · · dr .

Thus, if A has full (column or row) rank, as in Equation (2.10),∣∣∣ (spanR(A) ∩ Zn)/spanZ(A)
∣∣∣ = g(A) .

Note that, by definition, g(A) = g(AT ). For some subset F ⊆ Zd of linearly inde-
pendent vectors, i.e., the case of full column rank, we recall various interpretations
for g(F):

(i) g(F) is (by definition) the greatest common divisor of all minors of size |F| of
the matrix whose columns are the elements of F, see Equation (2.8),

(ii) g(F) is the |F|-dimensional relative volume of the parallelepiped spanned by F,
see Equation (2.9),

(iii) g(F) is the number of cosets of the discrete subgroup generated by F, consid-
ered as a sublattice of the integer points in the linear span of F, see Equa-
tion (2.10).

Let A ∈ Zd×m be of rank d, with lattice Gale dual D ∈ Zm×(m−d). Every choice
of k ≤ m linearly independent rows of D yields a matrix Dρ ∈ Zk×(m−d) whose
rows are indexed by ρ ⊆ [m] and induces a map Dρ : Zm−d → Zk. This on the other
hand induces a matrix Aρ ∈ Zd×(m−k) consisting of the columns of A indexed by
ρ := [m] \ ρ; note that they contain a basis of Rd.

Corollary 4.11. With the same conditions and notations as in Lemma 4.9,

g(Dρ) =
g(Aρ)

g(A)
.

Proof. First note that
spanR(Dρ) = Rk ,



since the rows of Dρ are linearly independent and k ≤ m − d. By Remark 4.10,
Lemma 4.9, and Equation (2.11)

g(Dρ) =
∣∣∣Zk/spanZ(Dρ)

∣∣∣ = ∣∣∣spanZ(A)/spanZ(Aρ)
∣∣∣ = |Zn/spanZ(Aρ)|

|Zn/spanZ(A)|
=
g(Aρ)

g(A)
.

Proof of Theorem 4.6. By Stanley’s Theorem 2.3,

ehrZ(Z(DT );n) =
∑

J

g
(
(DT )J

)
n|J |

where J indexes linearly independent subsets of columns of DT , i.e., the sum is
over independent sets J ⊆ [m] in the dual matroid. By matroid duality, these sets
correspond to spanning sets S = [m] \ J in the primal matroid. By Remark 4.10,
g((DT )J ) = g(DJ ), and from Corollary 4.11 we know g(DJ ) =

g(AS)
g(A) , and so

ehrZ(Z(DT );n) =
∑
S

g(AS)

g(A)
nm−|S|

where the sum is now over spanning sets in the primal matroid.

4.4 Tocyclotopes for Signed Graphs

The goal of this section is to construct the signed tocyclotope and then compute
its Ehrhart polynomial in terms of signed graph-theoretic data. We could define
the signed tocyclotope as a lattice Gale dual of the signed acyclotope as explained
in the previous section. However, there is a more combinatorial and concrete route
via bidirected network matrices, which can be seen in analogy to the graphic case.
This construction is in fact a special case of our more general framework in Sec-
tion 4.3, which will help us with the computation of the Ehrhart coefficients for the
tocyclotopes.

As mentioned in Section 2.5.4, oriented signed graphs are equivalent to bidirected
graphs. Bidirected graphs were first defined by Edmonds and Johnson [Jac67; JE70].
Appa and Kotnyek [AK06] studied a bidirectional analog of network matrices. One
of their central results, which we will use, is conditions on when the duals of those
matrices is integral. In general, those inverses are half-integral, a result that first
appeared in [Bou83]. For more information see also the references in [BZ06d; Bou83;
Kot02].

From now on we want to assume that our (signed) graph is connected. If it is not
connected, we can apply the following results to each of the connected components
and then take the appropriate product; we will give more details in Remark 4.17
below. Additionally, we will assume that the incidence matrix AΣ ∈ Zd×m has full
rank, i.e., rank(AΣ) = d. If this is not the case then the signed graph is balanced
and can hence be considered as an unsigned graph.
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4.4.1 Binet Matrices and the Tocyclotope

We will give the definition of a binet matrix5 as it was introduced by Appa and
Kotnyek [AK06] in order to generalize the dual of network matrices to bidirected
graphs.6

Let AΣ ∈ Zd×m be the incidence matrix of the signed graph Σ and let T ⊆ E be
a subset of the edges of Σ that forms a basis, as discussed in Proposition 2.23. This
implies that the submatrix T ∈ Zd×d of AΣ formed by choosing the columns indexed
by T is invertible over R. After reordering columns, we can write the incidence matrix
AΣ as [R | T], where R ∈ Zd×(m−d) is the matrix formed from columns indexed by
R := E \ T . Then we multiply AΣ = [R | T] with T−1 from the left to obtain

T−1AΣ = [T−1R | I] = [B | I] ,

where I ∈ Zd×d is the unit matrix and B := T−1R ∈ Rd×(m−d). The matrix B is
called the binet matrix. Appa and Kotnyek further present a graphical algorithm
to compute binet matrices [AK06]. The algorithm gives an easier and more direct
way of computing binet matrices, relies on the intuition of flows on bidirected graphs,
and is a useful perspective to prove properties of binet matrices. The algorithm was
reformulated in [BZ06d].

Lemma 4.12 ([AK06, Lemma 17]). Let Σ be a signed graph and T ⊆ E be a subset
that forms a maximal pseudo-forest. The binet matrix B = T−1R is integral if and
only if one of the following conditions holds:

1. every connected component in the maximal pseudo-forest spanned by T is a
(signed) halfedge-tree, or

2. Σ does not contain halfedges and T spans one connected component.

Since we assumed the signed graph Σ to be connected, we can always choose a
pseudo-tree T ⊆ E that fulfills one of the conditions in Lemma 4.12: If the signed
graph contains halfedges, choose a connected basis that contains one of the halfedges
(case 1 in Lemma 4.12), otherwise choose any other connected basis (case 2 in
Lemma 4.12). Then we know that the matrix [B | I] ∈ Zn×m has integral coeffi-
cients.

It is immediate from the construction that the rows of DT := [I | − BT ] ∈
Z(m−d)×m, where here I ∈ Z(m−d)×(m−d) and −BT = −(T−1R)T ∈ Z(m−d)×d,
are contained in the kernel of AΣ. Since the matrix has full rank m− d, its rows
span the kernel of AΣ. Note that g([I | − BT ]) = 1 because the maximal minor
given by the identity matrix I equals one and hence the greatest common divisor
of all minors as well. From Remark 4.10 it follows that the rows of [I | − BT ] form
a lattice basis for ker(AΣ) ∩ Zm. So DT = [I | − BT ] ∈ Z(m−d)×m is the transpose

5 “The term binet is used here as a short form for bidirected network, but by coincidence it also
matches the name of Jacques Binet (1786–1856) who worked on the foundations of matrix theory
and gave the rule of matrix multiplication.” [Kot02, page 46]

6 Note that the network matrix is the reduced incidence matrix of a graph, while the binet matrix is
a part of the dual matrix in the signed graphic case.



of a lattice Gale dual of AΣ. Therefore this combinatorial construction fits into the
general frame work from Section 4.3.

Hence, we define the tocyclotope for signed graphs as the integral zonotope
Z([I| − BT ]). As in the case of unsigned graphs, this zonotope depends on our choice
of T; however, not only is its face structure independent of this choice (by [McM71])
the same is true for its Ehrhart polynomial. This follows from Theorem 4.6) or
from the observation that for every right choice of T the rows of the resulting
matrix [I | − BT ] form a lattice bases for ker(AΣ)∩ Zm and therefore are unimodular
equivalent.

Parallel to the definitions for graphs, the flow space of the signed graph Σ is
ker(AΣ), and the signed cographic arrangement is the hyperplane arrangement
induced by the coordinate hyperplanes of Rm on ker(AΣ); see, e.g., [BZ06c; CW09;
CWZ17].The proof of the following lemma is almost verbatim that of Lemma 4.3.

Lemma 4.13. Let Σ be a signed graph without coloops and let DT = [I| − BT ] be
as described above. The linear surjection DT : Rm → Rm−d maps the flow space
ker(AΣ) bijectively to Rm−d. Thus the columns of the matrix DT are normal vectors
for an isomorphic copy of the signed cographic arrangement living in Rm−d.

Although this is not a main theme of this paper, we add a remark about the face
structure of the tocyclotope, as it follows directly from (oriented matroid) duality.
We recall that a cycle is a minimally dependent set of edges that is oriented in
such a way that it has neither a sink nor a source. Recall that an orientation is
totally cyclic if every (bioriented) edge is contained in a cycle. The regions of the
signed cographic arrangement, and therefore the vertices of the signed tocyclotope,
correspond bijectively to totally cyclic orientations of the signed graph Σ; see [BZ06c,
proof of Theorem 4.5.(b)]. Higher dimensional faces of the signed tocyclotope can
be understood via the flats of the signed corgraphic arrangement.

4.4.2 The Ehrhart Polynomial of the Tocyclotope

The goal of this section is to prove the combinatorial description of the coefficients
in the Ehrhart polynomial of signed tocyclotopes.

Theorem 4.14. Let Σ be a connected signed graph whose incidence matrix has
full rank. Choose a connected basis T ⊆ E that contains a halfedge if Σ contains
an halfedge. Then the Ehrhart polynomial of the tocyclotope Z([I | − (T−1R)T ]) in
Rm−d is

ehrZ(Z([I | − BT ]);n) =


∑

S 2mplc(S)nm−|S| if Σ contains a halfedge,∑
S 2mplc(S)−1nm−|S| otherwise,

(4.1)

where the sums run over all sets S ⊆ E that contain a basis of Σ, i.e., Σ(S) contains
a maximal pseudo-forest of Σ, and

mplc(S) := min
T̃ ⊆S

(
pc(T̃ ) + lc(T̃ )

)
,
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with the minimum taken over all maximal pseudo-forests T̃ in Σ contained in the
spanning set S.

We will again apply Stanley’s Theorem 2.3 for zonotopes. For that we need a
combinatorial understanding of g(J), where the columns in the submatrix J of DT =

[I | − (T−1R)T ] are linearly independent. Recall that they correspond to independent
sets J in the dual signed graphic matroid. Hence they correspond to subsets of edges
S = E \ J in the signed graph Σ that contain a basis, i.e., a maximal pseudo-forest.

Corollary 4.15. A subset of columns J of DT = [I | − (T−1R)T ] (as constructed
above) is linearly independent if and only if the subset S of columns in AΣ indexed
by S = E \ J is a spanning set, i.e., S contains a maximal pseudo-tree in Σ. In this
case,

g(J) = g(S)
g(AΣ)

.

Proof. This follows from Corollary 4.11.

Therefore, it remains to understand the parameter g(S) for spanning sets in the
signed graph.

Lemma 4.16. Let S ⊆ E be a spanning set. Then there exists a maximal forest
F ⊆ S such that g(AΣ(S)) = g(AΣ(F )). Moreover, this maximal forest F will be one
with a minimal number of pseudo-tree components plus loop-tree components.

Proof. From Remark 4.10 we know that g(AΣ(S)) is the greatest common divisor of
all minors of size d in S. Since all minors are powers of 2 (by Lemma 4.5), the greatest
common divisor is the lowest power of 2 that appears. The selection of columns in S
for which the minor attains its minimum corresponds to a forest F ⊆ S of the kind
that we are looking for. Then

g(AΣ(S)) = g(AΣ(F )) = 2pc(F )+lc(F ) = 2mplc(S) .

Proof of Theorem 4.14. By Theorem 4.6

ehrZ(T(Σ);n) =
∑
S

g(AS)

g(AΣ)
nm−|S|

where the sum is over all spanning sets S in the matroid represented by AΣ, i.e.,
over all subsets S ⊆ E that contain a maximal pseudo-forest of Σ.

Note that for connected signed graphs Σ of full rank, spanZ(AΣ) = Zd (and hence
g(AΣ) = 1 by Remark 4.10) if and only if Σ contains a halfedge by Lemma 4.5. In
the case of connected signed graphs without halfedges we can apply Corollary 4.11,
and we will get a correction factor of 2 since then g(AΣ) = 2 again by Lemma 4.5.
This explains the case distinction in (4.1) and the difference of a factor of 2 between
the cases.

The last missing piece now is to understand g(AS) = g(S). This is given in
Lemma 4.16: we need to find the minimal possible number mplc(S) of loop-tree



components plus pseudo-tree components in a maximal pseudo forest in the spanning
set S. Then we arrive at

ehrZ(T(Σ);n) =


∑

S 2mplc(S)nm−|S| if Σ contains a halfedge,∑
S 2mplc(S)−1nm−|S| if Σ does not contain any halfedges.

We conclude this section with the extension of the results to signed graphs that
are not connected.

Remark 4.17. Let Σ be an arbitrary signed graph with connected components
Σ1, . . . , Σc. Then we can order nodes and edges so that the incidence matrix AΣ has
a block structure given by the connected components:

AΣ =



AΣ1 0 0 . . . 0
0 AΣ2 0 . . . 0
... . . . . . . . . . ...
... . . . . . . 0
0 . . . . . . 0 AΣc


.

This implies that the acyclotope of the signed graph Σ is simply the Cartesian
product of the acyclotopes of the connected components:

Z(AΣ) = Z(AΣ1) × · · · × Z(AΣc) .

Hence the Ehrhart polynomial of Z(AΣ) is a product of Ehrhart polynomials

ehrZ(Z(AΣ);n) = ehrZ(Z(AΣ1);n) · . . . · ehrZ(Z(AΣc);n) .

A similar decomposition property can be found on the level of matroids. Here the
signed graphical matroid M(Σ) is the direct sum

M(Σ) =M(Σ1) ⊕ · · · ⊕M(Σc) .

This structure is preserved under taking matroid duals, hence

M△(Σ) =M△(Σ1) ⊕ · · · ⊕M△(Σc) .

So we can also apply our duality construction block by block to achieve a dual
representation

DΣ =


D1 0 . . . 0

0 . . . . . . ...
... . . . . . . 0
0 . . . 0 Dc

 .
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Then the signed tocyclotope is the Cartesian product Z(DΣ) = Z(D1)× · · · × Z(Dc),
and hence its Ehrhart polynomial is again a product of Ehrhart polynomials

ehrZ(Z(DΣ);n) = ehrZ(Z(D1);n) · . . . · ehrZ(Z(Dc);n) .

We conclude with a concrete open questions. Recall that the lattice points in the
acyclotope (for unsigned graphs) arise as indegree vectors from all orientations of
the graph. While this correspondence is bijective for acyclic orientations, it is not
for general orientations. For tocyclotopes we know that the vertices correspond to
totally cyclic orientations. Is there a similar interpretation for all lattice points in the
tocyclotope? One way to address this question might be via the algorithm in [AK06].



5
Rational Ehrhart Theory

The aim of this chapter is to study Ehrhart counting functions with a real dilation
parameter. However, as P is a rational polytope, it suffices to compute this counting
function at certain rational arguments to fully understand it; we will (quantify and)
make this statement precise shortly (Corollary 5.6 below). We define the rational
Ehrhart counting function

ehrQ(P;λ) :=
∣∣∣λP ∩ Zd

∣∣∣ ,

where λ ∈ Q. To the best of our knowledge, Linke [Lin11] initiated the study of the
rational (and real) counting function from the Ehrhart viewpoint. She proved several
fundamental results starting with the fact that ehrQ(P;λ) is a quasipolynomial in
the rational (equivalently, real) variable λ, that is,

ehrQ(P;λ) = cd(λ) λ
d + cd−1(λ) λ

d−1 + · · · + c0(λ)

where c0, c1, . . . , cd : Q → Q are periodic functions. The least common period of
c0(λ), . . . , cd(λ) is the period of ehrQ(P;λ). For x ∈ R, let ⌊x⌋ (resp. ⌈x⌉) denote
the largest integer ≤ x (resp. the smallest integer ≥ x), and {x} := x− ⌊x⌋. Here is
a first example, which we will revisit below:

ehrQ([1, 2];λ) = ⌊2λ⌋ − ⌈λ⌉ + 1

=


n+ 1 if λ = n for some n ∈ Z>0 ,

n if n < λ < n+ 1
2 for some n ∈ Z>0 ,

n+ 1 if n+ 1
2 ≤ λ < n+ 1 for some n ∈ Z>0 .

Rearranging gives the quasipolynomial in the format of the definition:

ehrQ([1, 2];λ) = vol([1, 2])λ+ c0(λ) = λ+ ({λ} − {2λ}) .

Linke views the coefficient functions of the rational Ehrhart quasipolynomial as
piecewise-defined polynomials, which allows her, among many other things, to estab-
lish differential equations relating the coefficient functions. Essentially concurrently,
Baldoni–Berline–Köppe–Vergne [Bal+13], inspired by [Bar06], developed an algo-
rithmic theory of intermediate sums for polyhedra, which includes ehrQ(P;λ) as
a special case. We also mention more recent work of Royer [Roy17a; Roy17b], which,
among many other things, also studies rational Gorenstein polytopes (see below).
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Our goal is to add a generating-function viewpoint to [Bal+13; Lin11], one that is
inspired by [Sta08; Sta17]. To set it up, we need to make a definition. Suppose the
rational d-polytope P ⊆ Rd is given by the irredundant half-space description

P =
{

x ∈ Rd : A x ≤ b
}

, (5.1)

where A ∈ Zf×d and b ∈ Zf such that the greatest common divisor of bi and
the entries in the ith row of A equals 1, for every i ∈ {1, . . . ,n}.1 We define the
codenominator r of P to be the least common multiple of the nonzero entries of
the right hand side b:

r := lcm(b) .

As we assume that P is full dimensional, the codenominator is well-defined. Our
nomenclature arises from determining r using polar duality, as follows. Recall that P◦

denotes the relative interior of P. Recall that for a rational polytope P ⊆ Rd such that
0 ∈ P◦, the polar dual polytope is P∨ := {x ∈ (Rd)∨ : ⟨x, y⟩ ≥ −1 for all y ∈
P}, and the codenominator r = min{q ∈ Z>0 : q P∨ is a lattice polytope}; see,
e.g., [Bar02].

We will see in Section 5.1 that ehrQ(P;λ) is fully determined by evaluations at
rational numbers with denominator 2r (see Corollary 5.6 below for details); if 0 ∈ P
then we actually need to know only evaluations at rational numbers with denomi-
nator r. Thus we associate two generating series to the rational Ehrhart counting
function, the rational Ehrhart series, to a full-dimensional rational polytope P
with codenominator r:

EhrQ(P; t) := 1 +
∑

n∈Z>0

ehrQ

(
P; n
r

)
t

n
r

and the refined rational Ehrhart series

Ehrref
Q (P; t) := 1 +

∑
n∈Z>0

ehrQ

(
P; n2r

)
t

n
2r .

Continuing our comment above, we typically study EhrQ(P; t) for polytopes such
that 0 ∈ P, and Ehrref

Q (P; t) for polytopes such that 0 /∈ P. Our first main result is
as follows.

Theorem 5.7. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let
m ∈ Z>0 such that m

r P is a lattice polytope. Then

EhrQ(P; t) =
h∗

Q(P; t;m)(
1 − t

m
r

)d+1

where h∗
Q(P; t;m) is a polynomial in Z[t

1
r ] with nonnegative integral coefficients.

Consequently, ehrQ(P;λ) is a quasipolynomial and the period of ehrQ(P;λ) divides m
r ,

i.e., this period is of the form j
r with j | m.

1 If P is a lattice polytope then we do not need to include bi in this gcd condition.



From this we recover Linke’s result [Lin11, Corollary 1.4] that ehrQ(P;λ) is a
quasipolynomial with period dividing q, where q is the smallest positive rational
number such that qP is a lattice polytope.

Section 5.1 contains structural theorems about these generating functions: ratio-
nality and its consequences for the quasipolynomial ehrQ(P;λ) (Theorem 5.7 and
Theorem 5.13), nonnegativity (Corollary 5.12), connections to the h∗

Z-polynomial
in classical Ehrhart theory (Corollary 5.15), and combinatorial reciprocity theorems
(Corollary 5.17 and Corollary 5.18).

One can find a precursor of sorts to our generating functions EhrQ(P; t) and
Ehrref

Q (P; t) in work by Stapledon [Sta08; Sta17], and in fact this work was our initial
motivation to look for and study rational Ehrhart generating functions. We explain
the connection of [Sta17] to our work in Section 5.2. In particular, we deduce that
in the case 0 ∈ P◦ the generating function EhrQ(P; t) exhibits additional symmetry
(Corollary 5.28).

A (d+ 1)-dimensional, pointed, rational cone C ⊆ Rd+1 is called Gorenstein if
there exists a point (p0, p) ∈ C ∩ Zd+1 such that C◦ ∩ Zd+1 = (p0, p) + C ∩ Zd+1

(see, e.g., [BB97; BR07; Sta78]). The point (p0, p) is called the Gorenstein point of
the cone. Recall that the homogenization hom(P) ⊆ Rd+1 of a rational polytope
P = {x ∈ Rd : A x ≤ b} is defined as

hom(P) := cone({1} × P) :=
{
(x0, x) ∈ Rd+1 : Ax ≤ x0b , x0 ≥ 0

}
and that for a cone C ⊆ Rd+1, the polar dual cone C∨ ⊆ (Rd+1)∨ is

C∨ :=
{
(y0, y) ∈ (Rd+1)∨ : ⟨(y0, y), (x0, x)⟩ ≥ 0 for all (x0, x) ∈ C

}
.

Another equivalent way of defining Gorenstein for a lattice polytope P ⊆ Rd

(compare Theorem 2.8) is that the homogenization hom(P) of P is a Gorenstein cone;
in the special case where the Gorenstein point of that cone is (1, q), for some q ∈ Zd,
we call P reflexive [Bat94; Hib92]. Recall that reflexive polytopes can alternatively
be characterized as those lattice polytopes (containing the origin) whose polar duals
are also lattice polytopes, i.e., they have codenominator 1. This definition has a
natural extension to rational polytopes [FK08]. Gorenstein and reflexive polytopes
(and their rational versions) play an important role in Ehrhart theory, as they have
palindromic h∗

Z-polynomials. In Section 5.3 we give the analogous result in rational
Ehrhart theory without reference to the polar dual:

Theorem 5.29. Let P = {x ∈ Rd : A x ≤ b} be a rational d-polytope with code-
nominator r and 0 ∈ P, as in Equation (5.1) and Equation (5.6) Then the following
are equivalent for g,m ∈ Z≥1 and m

r P a lattice polytope:

(i) P is r-rational Gorenstein with Gorenstein point (g, y) ∈ hom( 1
r P).

(ii) There exists a (necessarily unique) integer solution (g, y) to

−⟨aj , y⟩ = 1 for j = 1, . . . , i
bj g− r ⟨aj , y⟩ = bj for j = i+ 1, . . . ,n .
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(iii) h∗
Q(P; t;m) is palindromic:

t(d+1)m
r

− g
r h∗

Q

(
P; 1
t
;m
)

= h∗
Q(P; t;m) .

(iv) (−1)d+1t
g
r EhrQ(P; t) = EhrQ

(
P; 1

t

)
.

(v) ehrQ(P; n
r ) = ehrQ(P◦; n+g

r ) for all n ∈ Z≥0.

(vi) hom( 1
r P)∨ is the cone over a lattice polytope, i.e., there exists a lattice point

(g, y) ∈ hom( 1
r P)◦ ∩ Zd+1 such that for every primitive ray generator (v0, v)

of hom( 1
r P)∨

⟨(g, y) , (v0, v)⟩ = 1 .

The equivalence of (i) and (vi) is well known (see, e.g., [BN08, Definition 1.8]
or [BG09, Exercises 2.13 and 2.14]). We will see that there are many more ratio-
nal Gorenstein polytopes than among lattice polytopes; e.g., any rational polytope
containing the origin in its interior is rational Gorenstein (Corollary 5.30).

We mention the recent notion of an l-reflexive polytope P (“reflexive of higher
index”) [KN12]. A lattice point x ∈ Zd is primitive if the gcd of its coordinates
is equal to one. The l-reflexive polytopes are precisely the lattice polytopes of
the form Equation (5.1) with b = (l, l, . . . , l) and primitive vertices; note that this
means P has codenominator l and 1

l P has denominator l.
We conclude with two short sections further connecting our work to the ex-

isting literature. Section 5.4 exhibits how one can deduce a theorem of Betke–
McMullen [BM85] (and also its rational analogue [BBV22]) from rational Ehrhart
theory.

Ehrhart’s theorem (Theorem 2.2) gives an upper bound for the period of the
quasipolynomial ehrZ(P;n), namely, the denominator of P. When the period of
ehrZ(P;n) is smaller than the denominator of P, we speak of period collapse.
One can witness this phenomenon most easily in the Ehrhart series, as period col-
lapse means that the rational function expression of the Ehrhart series (see Equa-
tion (2.14)) factors in such a way that one realizes there are no nontrivial roots of
unity that are poles. It is an interesting question whether/how much period collapse
happens in rational Ehrhart theory, and how it compares to the classical scenario.
In Section 5.5, we offer some data points for period collapse for both rational and
classical Ehrhart quasipolynomials.

This chapter is joint work with Matthias Beck and Sophia Elia [BER23].

5.1 Rational Ehrhart Dilations

We assume throughout this chapter that all polytopes are full-dimensional, and call
a d-dimensional polytope in Rd a d-polytope. Recall that, consequently, the leading
coefficient of ehrZ(P;n) is constant (namely, the volume of P), and thus the rational
generating function EhrZ(P; t) has a unique pole of order d+ 1 at t = 1. So we could
write the rational generating function EhrZ(P; t) with denominator (1 − t)(1 − tk)d;
in other words, h∗

Z(P; t) always has a factor (1 + t+ · · · + tk−1). Recall, for λ ∈ R,



(a) hom(P0) = hom([0, 1]) (b) hom(P1) = hom([1, 2]) = hom(P0 + 1)

Figure 5.1: The rational Ehrhart counting function is not invariant under lattice translation:
ehrQ(P0;λ) is monotone, ehrQ(P1;λ) is not monotone. See Example 5.1.

let ⌊λ⌋ (resp. ⌈λ⌉) denote the largest integer ≤ λ (resp. the smallest integer ≥ λ),
and {λ} = λ− ⌊λ⌋.

Example 5.1. We feature the following line segments as running examples. First,
we compute the rational Ehrhart counting function.

(0) P0 = [0, 1], codenominator r = 2,

ehrQ(P0;λ) = ⌊λ⌋ + 1
= n+ 1 if n ≤ λ < n+ 1 for some n ∈ Z>0 .

See Figure 5.1(a).

(i) P1 :=
[
−1, 2

3

]
, codenominator r = 2,

ehrQ(P1;λ) = ⌈λ⌉ +
⌈

2
3λ
⌉
+ 1

=



5
3n+ 1 if n ≤ λ < n+ 1

2 for some n ∈ 3Z>0 ,
5
3n+ 1 if n+ 1

2 ≤ λ < n+ 1 for some n ∈ 3Z>0 ,
5
3n+ 2 if n+ 1 ≤ λ < n+ 3

2 for some n ∈ 3Z>0 ,
5
3n+ 3 if n+ 3

2 ≤ λ < n+ 2 for some n ∈ 3Z>0 ,
5
3n+ 4 if n+ 2 ≤ λ < n+ 5

2 for some n ∈ 3Z>0 ,
5
3n+ 4 if n+ 5

2 ≤ λ < n+ 3 for some n ∈ 3Z>0 .

(ii) P2 :=
[
0, 2

3

]
, codenominator r = 2,

ehrQ(P2;λ) =
⌊

2
3λ
⌋
+ 1

= 2
3n+ 1 if n ≤ λ < n+ 3

2 for some n ∈ 3
2Z>0 .
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(iii) P3 := [1, 2], codenominator r = 2,

ehrQ(P3;λ) = ⌊2λ⌋ − ⌈λ⌉ + 1

=


n+ 1 if λ = n for some n ∈ Z>0 ,

n if n < λ < n+ 1
2 for some n ∈ Z>0 ,

n+ 1 if n+ 1
2 ≤ λ < n+ 1 for some n ∈ Z>0 .

See Figure 5.1(b).

(iv) P4 := 2P3 = [2, 4], codenominator r = 4,

ehrQ(P4;λ) = ⌊4λ⌋ − ⌈2λ⌉ + 1 = ⌊4λ⌋ + ⌊−2λ⌋ + 1
= 2λ+ 1 − {4λ} + {−2λ}

=


2n+ 1 if λ = n for some n ∈ 1

2Z>0 ,

2n if n < λ < n+ 1
4 for some n ∈ 1

2Z>0 ,

2n+ 1 if n+ 1
4 ≤ λ < n+ 1

2 for some n ∈ 1
2Z>0 .

Remark 5.2. If P is a lattice polytope, then the denominator of 1
r P divides r. On

the other hand, the denominator of 1
r P need not equal r, as can be seen in the case

of P4 above.

Remark 5.3. If 1
r P is a lattice polytope, its Ehrhart polynomial is invariant under

lattice translations. Unfortunately, this does not clearly translate to invariance of
ehrQ(P;λ), as Linke already noted. Consider the line segment [−1, 1] and its transla-
tion P4 = [2, 4]. For any λ ∈ (0, 1

4 ), we have ehrQ([−1, 1];λ) = 1 and ehrQ(P4;λ) = 0.
This observation raises the following two related questions. First, is there an example
of a polytope and a translate with the same codenominator? We expect the answer
is “no” in dimension one. Second, given a rational polytope P, for which r and P̃
could P = 1

r P̃? Royer shows in [Roy17a] that for every rational polytope P there is a
integral translation vector v such that the functions ehrQ(kv+ P;λ) are all distinct
for k ∈ Z≥0. Moreover, polytopes can be uniquely identified by knowing the rational
Ehrhart counting function for each integral translate of the polytope.

Lemma 5.4. Let P ⊆ Rd be a rational d-polytope. If 0 ∈ P, then ehrQ(λ) is mono-
tone for λ ∈ Q≥0.

Proof. Let λ < ω be positive rationals. Suppose x ∈ Rd and x ∈ λP. Then x satisfies
all n facet-defining inequalities of λP: ⟨ai, x⟩ ≤ λbi for all i ∈ [n]. If bi = 0, then
⟨ai, x⟩ ≤ λ · 0 = ω · 0. Otherwise, bi > 0, and ⟨ai, x⟩ ≤ λbi < ωbi. So x ∈ ωP.

Proposition 5.5. Let P ⊆ Rd be a rational d-polytope with codenominator r.

(i) The number of lattice points in λP is constant for λ ∈ (n
r , n+1

r ), n ∈ Z≥0.

(ii) If 0 ∈ P, then the number of lattice points in λP is constant for λ ∈ [n
r , n+1

r ),
n ∈ Z≥0.



Proof. (i). Suppose there exist two rationals λ and ω such that n
r < λ < ω < n+1

r ,
and ehrQ(λ) ̸= ehrQ(ω). Then there exists x ∈ Zd such that either (x ∈ ωP and x /∈
λP) or (x ∈ λP and x /∈ ωP). Suppose (x ∈ ωP and x /∈ λP). Then there exists a
facet F with integral, reduced inequality ⟨a, v⟩ ≤ b of P such that

⟨a, x⟩ ≤ ωb, ⟨a, x⟩ > λb, and ⟨a, x⟩ ∈ Z .

As λ < ω, this implies b > 0. We have

b
n

r
< λb < ⟨a, x⟩ ≤ ωb <

n+ 1
r

b.

As r = bk, with k ∈ Z>0, this is equivalent to

n < λr < k⟨a, x⟩ ≤ ωr < n+ 1. (5.2)

This is a contradiction because k⟨a, x⟩ is an integer. The second case is proved
analogously: Assume (x /∈ ωP and x ∈ λP). Then there exists again a facet F with
integral, reduced inequality ⟨a, v⟩ ≤ b of P such that

⟨a, x⟩ > ωb, ⟨a, x⟩ ≤ λb, and ⟨a, x⟩ ∈ Z.

As λ < ω, this implies b < 0. We have

n+ 1
r

|b| > ω|b| > −⟨a, x⟩ ≥ λ|b| > n

r
|b| .

As r
|b| ∈ Z>0, this is equivalent to

n+ 1 > ωr > − r

|b|
⟨a, x⟩ ≥ λr > n . (5.3)

This leads to the same contradiction.
(ii) If 0 ∈ P we know that b ≥ 0. So in the proof above only the first case applies.

(This can also be seen as a consequence of Lemma 5.4.) Allowing n
r ≤ λ leads, with

the same computations, to the following weakened version of Equation (5.2):

n ≤ λr < k⟨a, x⟩ ≤ ωr < n+ 1 ,

which is still strong enough for the contradiction. Note that this is not the case in
Equation (5.3).

We define the real Ehrhart counting function

ehrR(P;λ) :=
∣∣∣λP ∩ Zd

∣∣∣ ,
for λ ∈ R. It follows that we can compute the real Ehrhart function ehrR from the
rational Ehrhart function ehrQ:
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Corollary 5.6. Let P ⊆ Rd be a rational d-polytope with codenominator r. Then

ehrR(P;λ) =

ehrQ(P;λ) if λ ∈ 1
r Z≥0 ,

ehrQ(P; ⌊λ⌉) if λ /∈ 1
r Z≥0 ,

(5.4)

where
⌊λ⌉ :=

2j + 1
2r for

∣∣∣∣λ− 2j + 1
2r

∣∣∣∣ < 1
2r and j ∈ Z .

In words, ⌊λ⌉ is the element in 1
2r Z with odd numerator that has the smallest Eu-

clidean distance to λ on the real line. Furthermore, if 0 ∈ P then

ehrR(P;λ) = ehrQ

(
P; ⌊rλ⌋

r

)
.

In light of this Corollary, any statement about the rational Ehrhart counting
function ehrQ(λ) in this paper generalizes to the real Ehrhart counting function
ehrR(λ) and we omit the latter versions for simplicity. We proceed to prove one of
the main results.

Theorem 5.7. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let
m ∈ Z>0 such that m

r P is a lattice polytope. Then

EhrQ(P; t) :=
∑

n∈Z≥0

ehrQ

(
P; n
r

)
t

n
r =

h∗
Q(P; t)(

1 − t
m
r

)d+1

where h∗
Q(P; t) is a polynomial in Z[t

1
r ] with nonnegative integral coefficients. Conse-

quently, the rational Ehrhart counting function ehrQ(P;λ) is a quasipolynomial and
the period of ehrQ(P;λ) divides m

r , i.e., this period is of the form j
r with j | m.

Proof. Our conditions imply that 1
r P is a rational polytope with denominator divid-

ing m. Thus by standard Ehrhart theory,

EhrQ(P; t) = EhrZ

(
1
r P; t

1
r

)
=

h∗
Z

(
1
r P; t 1

r

)
(
1 − t

m
r

)d+1 ,

and h∗
Z(

1
r P; t) has nonnegative integral coefficients.

Remark 5.8. Our implicit definition of h∗
Q(P; t) depends on m. We will sometimes

use the notation h∗
Q(P; t;m) to make this dependency explicit. Naturally, one of-

ten tries to choose m minimal, which gives a canonical definition of h∗
Q(P; t), but

sometimes it pays to be flexible.

Remark 5.9. Via Corollary 5.6, ehrR(P;λ) is a quasipolynomial and the period of
ehrR(P;λ) divides m

r , i.e., this period is of the form j
r with j | m.

Remark 5.10. By usual generatingfunctionology [Wil94], the degree of h∗
Q(P; t;m)

is less than or equal to m(d+ 1) − 1 as a polynomial in t
1
r .

We also recover the following result of Linke [Lin11].



Corollary 5.11. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let
m ∈ Z>0 such that m

r P is a lattice polytope. Then the period of the quasipolynomial
ehrZ(P;λ) divides m

gcd(m,r) .

Proof. Viewed as a function of the integer parameter n, the function ehrQ(P; n
r ) has

period dividing m. Thus ehrZ(P;n) = ehrQ(P;n) has period dividing m
gcd(m,r) .

Corollary 5.12. Let P ⊆ Rd be a lattice d-polytope with codenominator r. Then

EhrQ(P; t) =
h∗

Q(P; t; r)
(1 − t)d+1

where h∗
Q(P; t; r) is a polynomial in Z[t

1
r ] with nonnegative coefficients.

For polytopes that do not contain the origin, the following variant of Theorem 5.7
is useful.
Theorem 5.13. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let
m ∈ Z>0 such that m

2r P is a lattice polytope. Then

Ehrref
Q (P; t) := 1 +

∑
n∈Z>0

ehrQ

(
P; n2r

)
t

n
2r =

h∗ref
Q (P; t;m)(
1 − t

m
2r

)d+1

where h∗ref
Q (P; t;m) is a polynomial in Z[t

1
2r ] with nonnegative coefficients.

The proof of Theorem 5.13 is virtually identical to that of Theorem 5.7. Similarly,
many of the following assertions come in two versions, one for EhrQ(P; t) and one for
Ehrref

Q (P; t). We typically write an explicit proof for only one version, as the other is
analogous.

We recover another result of Linke [Lin11].
Corollary 5.14. Let P ⊆ Rd be a lattice d-polytope. The rational Ehrhart function,
ehrQ(P,λ), is given by a quasipolynomial of period 1.

Corollary 5.15. If m
r (resp. m

2r ) in Theorem 5.7 (resp. Theorem 5.13) is integral
we can retrieve the h∗

Z-polynomial from the h∗
Q-polynomial (resp. h∗ref

Q -polynomial)
by applying the operator Int that extracts from a polynomial in Z[t

1
r ] the terms with

integer powers of t: h∗
Z(P; t) = Int(h∗

Q(P; t)) (resp. h∗
Z(P; t) = Int(h∗ref

Q (P; t))).
Example 5.16 (continued). Here are the (refined) rational Ehrhart series of the
running examples. Recall that the rational Ehrhart series of P in the variable t can
be computed as the Ehrhart series of 1

r P in the variable t 1
r (resp. the refined rational

Ehrhart as the Ehrhart series of 1
2r P in the variable t 1

2r ).
(i) P1 := [−1, 2

3 ], r = 2, m = 6,

EhrQ(P1; t) = 1 + t
1
2 + t+ t

3
2 + t2

(1 − t)
(
1 − t

3
2
)

=
1 + t

1
2 + 2t+ 3t 3

2 + 4t2 + 4t 5
2 + 4t3 + 4t 7

2 + 3t4 + 2t 9
2 + t5 + t

11
2

(1 − t3)2 .
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Figure 5.2: The cone hom(P3) over P3 = [1, 2]. The lattice points in the fundamental paral-
lelepiped with respect to the lattice 1

4 Z × Z are (0, 0), ( 1
2 , 1), ( 3

4 , 1), ( 5
4 , 2).

(ii) P2 := [0, 2
3 ], r = 2, m = 3,

EhrQ(P2; t) =
1(

1 − t
1
2
) (

1 − t
3
2
) =

1 + t
1
2 + t(

1 − t
3
2
)2 .

(iii) P3 := [1, 2], r = 2. 1
4P3 = [ 1

4 , 1
2 ] and m = 4, so m

2r = 1. See Figure 5.2.

Ehrref
Q (P3; t) =

1 + t
1
2 + t

3
4 + t

5
4

(1 − t)2 =

(
1 + t

3
4
) (

1 + t
1
2
)

(1 − t)2 .

(iv) P4 := [2, 4], r = 4. Then 1
8P4 = [ 1

4 , 1
2 ] and m = 4, so m

2r = 1
2 . See Figure 5.3.

Ehrref
Q (P4; t) = 1 + t

1
4 + t

3
8 + 2t 1

2 + t
5
8 + 2t 3

4 + 2t 7
8 + t+ 2t 9

8 + t
5
4 + t

11
8 + t

13
8

(1 − t)2

=
1 + t

1
4 + t

3
8 + t

5
8

(1 − t
1
2 )2

.

Choosing m to be minimal means h∗ref
Q (P4; t; 4) = (1+ t

3
8 )(1+ t

1
4 ) = 1+ t

1
4 +

t
3
8 + t

5
8 = h∗ref

Q

(
P3; t 1

2 ; 4
)
. The rational Ehrhart counting function agrees with

a quasipolynomial for λ ∈ 1
2r Z.

From the (refined) rational Ehrhart series of these examples, we can recompute the
quasipolynomials found earlier. For example, for P3:

Ehrref
Q (P3; t) = 1 + t

1
2 + t

3
4 + t

5
4

(1 − t)2 =
(
1 + t

1
2 + t

3
4 + t

5
4
)∑

j≥0
(j + 1) tj

=
∑
j≥0

(j + 1) tj +
∑
j≥0

(j + 1) tj+
1
2 +

∑
j≥0

(j + 1) tj+
3
4 +

∑
j≥0

(j + 1) tj+
5
4 .



Figure 5.3: The cone hom(P4) over P4 = [2, 4]. The lattice points in the fundamental paral-
lelepiped with respect to the lattice 1

8 Z × Z are shown in the figure.

With a change of variables we compute for λ ∈ 1
4Z

ehrQ(λ) =



λ+ 1 if λ ∈ Z,

λ− 1
4 if λ ≡ 1

4 mod 1,

λ+ 1
2 if λ ≡ 1

2 mod 1,

λ+ 1
4 if λ ≡ 3

4 mod 1.

Next we recover the reciprocity result for the rational Ehrhart function of rational
polytopes proved by Linke [Lin11, Corollary 1.5].

Corollary 5.17. Let P ⊆ Rd be a rational d-polytope. Then (−1)d ehrQ(P; −λ)
equals the number of interior lattice points in λP, for any λ > 0.

Proof. Let P ⊆ Rd be a rational d-polytope with codenominator r. The fact that
ehrQ(P;λ) is a quasipolynomial allows us to extend Equation (5.4) to the negative
(and therefore all) rational numbers via

ehrQ(P;λ) = ehrQ(P; ⌊λ⌉) if λ /∈ 1
r Z .

By standard Ehrhart–Macdonald Reciprocity, (−1)d ehrQ(P; − n
2r ) = ehrZ(

1
2r P; −n)

equals the number of lattice points in the interior of n
2r P. The result now follows

from ⌊−λ⌉ = −⌊λ⌉.

Let P ⊆ Rd be a rational d-polytope, let P◦ denote its interior and ehrQ(P◦;λ) :=
|λP◦ ∩ Zd|. We define the (refined) rational Ehrhart series of the interior of a polytope
as follows:

EhrQ(P◦; t) :=
∑

λ∈ 1
r

Z>0

ehrQ(P◦;λ) tλ ,

Ehrref
Q (P◦; t) :=

∑
λ∈ 1

2r
Z>0

ehrQ(P◦;λ) tλ ,

where r as usual denotes the codenominator of P.
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Corollary 5.18. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let
m ∈ Z>0 be such that m

r P is a lattice polytope.

(i) The rational Ehrhart series of the open polytope P◦ has the rational expression

EhrQ(P◦; t) =
h∗

Q(P◦; t;m)(
1 − t

m
r

)d+1

where h∗
Q(P◦; t;m) is a polynomial in Z[t

1
r ].

(ii) The rational Ehrhart series fulfills the reciprocity relation

EhrQ(P◦; t) = (−1)d+1 EhrQ

(
P; 1
t

)
.

(iii) The h∗
Q-polynomial of the polytope P and its interior P◦ are related by

h∗
Q(P◦; t;m) =

(
t

m
r

)d+1
h∗

Q

(
P; 1
t
;m
)

.

Proof. Identity (i) follows from Ehrhart–Macdonald reciprocity (see, e.g., [BR15,
Theorem 4.4]) and Remark 5.10:

EhrQ(P◦; t) =
∑

λ∈ 1
r

Z>0

ehrQ(P◦;λ)tλ =
∑

n∈Z>0

ehrZ

(1
r

P◦;n
)
t

n
r = EhrZ

(1
r

P◦; t
1
r

)

= (−1)d+1 EhrZ

(1
r

P; t−
1
r

)
= (−1)d+1 h∗

Z

(
1
r P; t− 1

r

)
(
1 − t−

m
r

)d+1

=

(
t

m
r

)d+1
h∗

Z

(
1
r P; t− 1

r

)
(
1 − t

m
r

)d+1 .

For identities (ii) and (iii) we again apply Ehrhart–Macdonald reciprocity:(
t

m
r

)d+1
h∗

Q

(
P; 1

t ;m
)

(
1 − t

m
r

)d+1 =
(−1)d+1 h∗

Q

(
P; 1

t ;m
)

(
1 −

(
1
t

)m
r

)d+1 = (−1)d+1 EhrQ

(
P; 1
t

)

= (−1)d+1 EhrZ

(1
r

P; 1
t

1
r

)
= EhrZ

(1
r

P◦; t
1
r

)
=

∑
λ∈Z>0

ehrZ

(1
r

P◦;λ
)
t

λ
r =

∑
λ∈ 1

r
Z>0

ehrQ

(
P◦; λ

r

)
t

λ
r

= EhrQ(P◦; t) =
h∗

Q(P◦; t;m)(
1 − t

m
r

)d+1 .



As usual there is a refined version:

Corollary 5.19. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let
m ∈ Z>0 be such that m

2r P is a lattice polytope.

(i) The refined rational Ehrhart series of the open polytope P◦ have the rational
expressions

Ehrref
Q (P◦; t) =

h∗ref
Q (P◦; t;m)(
1 − t

m
2r

)d+1 ,

where h∗ref
Q (P◦; t;m) is a polynomial in Z[t

1
2r ].

(ii) The refined rational Ehrhart series fulfills the reciprocity relation

Ehrref
Q (P◦; t) = (−1)d+1 Ehrref

Q

(
P; 1
t

)
.

(iii) The h∗ref
Q -polynomial of the polytope P and its interior P◦ are related by

h∗ref
Q (P◦; t;m) =

(
t

m
2r

)d+1
h∗ref

Q

(
P; 1
t
;m
)

.

Remark 5.20. The codegree of a lattice polytope is defined as dim(P) + 1 −
deg(h∗(t)). Analogously, in the rational case, we define the rational codegree of
h∗

Q(P; t;m) to be
m

r
(dim(P) + 1) − deg(h∗

Q(P; t;m)) ,

where the degree of h∗
Q(P; t;m) is its (possibly fractional) degree as a polynomial in

t. Likewise, the rational codegree of h∗ref
Q (P; t;m) is defined as m

2r (dim(P) + 1)−
deg(h∗ref

Q (P; t;m)). As in the integral case, the rational codegree of h∗
Q(P; t;m) is the

smallest integral dilate of 1
r P containing interior lattice points. The proof requires

no new insights and we omit it here.

5.2 Relation to Stapledon’s work

We recall the setup from [Sta17]. Let P ⊆ Rd be a lattice d-polytope with codenom-
inator r and 0 ∈ P. Let ∂ ̸=0(P) denote the union of facets of P that do not contain
the origin. In order to study all rational dilates of the boundary of P, Stapledon
introduces the generating function

WEhr(P; t) := 1 +
∑

λ∈Q>0

∣∣∣∂ ̸=0(λP) ∩ Zd
∣∣∣ tλ =

h̃(P; t)
(1 − t)d

, (5.5)

where h̃(P; t) is a polynomial in Z[t
1
r ] with fractional exponents. The generating

function WEhr is closely related to the (rational) Ehrhart series: the truncated sum
1+∑ω

λ∈Q>0 |∂ ̸=0(λP)∩ Zd| equals the number of lattice points in ωP. Proposition 5.5
allows us to discretize this sum:
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Corollary 5.21. Let P ⊆ Rd be a lattice d-polytope with codenominator r and 0 ∈ P.
The number of lattice points in λP equals 1 +∑ω∈ 1

r
Z>0, ω<λ |∂ ̸=0(ωP) ∩ Zd|.

Proof. As 0 ∈ P, every nonzero lattice point in λP occurs in ∂ ̸=0(ωP) for some
unique ω ∈ Q where 0 < ω ≤ λ. Using Lemma 5.4,

λP ∩ Zd = 0 ∪
λ⊔

ω∈Q>0

(∂̸=0(ωP) ∩ Zd) .

By Proposition 5.5, the union ⊔λ
ω∈Q>0(∂ ̸=0(ωP) ∩ Zd) is discrete and disjoint.

Similarly, the polynomial h̃(P; t) is related to h∗
Z(

1
r P; t 1

r ) and to h∗
Q(P; t;m), as

we show in Lemma 5.22 and Corollary 5.25. Recall that we use h∗
Q(P; t;m) to keep

track of the denominator of EhrQ(P; t) = h∗
Q
(P;t;m)

(1−t
m
r )d+1 .

Lemma 5.22. Let P ⊆ Rd be a lattice d-polytope with codenominator r such that
0 ∈ P. Let k be the denominator of 1

r P. Then

h∗
Z

(1
r

P; t
1
r

)
=

(
1 − t

k
r

)d+1(
1 − t

1
r

)
(1 − t)d

h̃(P; t) .

Proof. Applying classical Ehrhart theory, Proposition 5.5 and Corollary 5.21, we
compute

h∗
Z

(
1
r P; t 1

r

)
(
1 − t

k
r

)d+1 = EhrZ

(1
r

P; t
1
r

)
= 1 +

∑
n∈Z>0

ehrZ

(1
r

P;n
)
t

n
r

= 1 +
∑

n∈Z>0

1 +
n∑

j=1

∣∣∣∣∂ ̸=0

(
j

r
P
)

∩ Zd

∣∣∣∣
 tn

r

= 1 +
∑

n∈Z>0

t
n
r +

∑
j>0

∑
n≥j

∣∣∣∣∂ ̸=0

(
j

r
P
)

∩ Zd

∣∣∣∣ tn
r

= 1 + t
1
r

1 − t
1
r

+
∑
j>0

∣∣∣∣∂̸=0

(
j

r
P
)

∩ Zd

∣∣∣∣∑
n≥j

t
n
r

=
1 − t

1
r + t

1
r +

∑
j>0

∣∣∣∂ ̸=0
(

j
r P
)

∩ Zd
∣∣∣ t j

r

1 − t
1
r

=
WEhr(P; t)

1 − t
1
r

=
h̃(P; t)(

1 − t
1
r

)
(1 − t)d

.



Remark 5.23. The factor multiplying h̃(P; t) in Lemma 5.22 can be rewritten in
terms of finite geometric series. Let the codenominator r = ks for some s ∈ Z≥1 (by
Remark 5.2). Rewriting yields(

1 − t
k
r

)d+1(
1 − t

1
r

)
(1 − t)d

=

(
1 − t

k
r

)
(
1 − t

1
r

)

(
1 − t

k
r

)
(1 − t)

d

=

(
1 − t

1
s

)
(
1 − t

1
ks

) ( 1
1 + t

1
s + · · · + t

s−1
s

)d

=
1 + t

1
r + · · · + t

k−1
r(

1 + t
1
s + · · · + t

s−1
s

)d
.

If k = r, this simplifies to (1 + t
1
r + · · · + t

r−1
r ).

Remark 5.24. Lemma 5.22 corrects [Sta17, Remark 3], which was missing the
factor between h∗

Z(
1
r P; t 1

r ) and h̃(P; t).

Corollary 5.25. Let P ⊆ Rd be a lattice d-polytope with codenominator r such that
0 ∈ P. Let k be the denominator of 1

r P. Then

h∗
Q(P; t; k) = h∗

Z

(
1
r P; t

1
r

)
=

(
1 − t

k
r

)d+1(
1 − t

1
r

)
(1 − t)d

h̃(P, t) .

Remark 5.26. In [Sta08, Equation (14)] and [Sta17, Equation (6)], Stapledon
shows that h∗

Z(P; t) = Ψ(h̃(P; t)), where Ψ :
⋃

r∈Z>0 R[t
1
r ] → R[t] is defined by

Ψ(tλ) = t⌈λ⌉. In the case of a lattice polytope with m
r ∈ Z we give a different

construction to recover the h∗
Z-polynomial from the h∗ref

Q - and h∗
Q-polynomial by ap-

plying the operator Int (see Corollary 5.15). Corollary 5.25 shows that, after a bit
of computation, these two constructions are equivalent.

Remark 5.27. For a lattice d-polytope P ⊆ Rd with codenominator r, 0 ∈ P, and
denominator of 1

2r P equal to k, we can relate h∗ref
Q (P; t; k) and h∗

Z(
1
2r P; t 1

2r ) in a
similar way. We again write h∗ref

Q (P; t; k) to emphasize that it is the numerator of
h∗ref

Q
(P;t;k)

(1−t
k
2r )d+1

. Then

h∗ref
Q (P; t; k) = h∗

Z

( 1
2rP; t

1
2r

)
=

(
1 − t

k
2r

)d+1(
1 − t

1
2r

)
(1 − t)d

h̃(P; t) .

Corollary 5.28. Let P ⊆ Rd be a lattice d-polytope with 0 ∈ P◦. Let r be the
codenominator of P and k be the denominator of 1

r P. Then h∗
Q(P; t; k) is palindromic.

Proof. From [Sta08, Corollary 2.12] we know that h̃(P; t) is palindromic if 0 ∈ P◦.
We compute, using Corollary 5.25,
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h∗
Q

(
P; t−1; k

)
=

(
1 − t

−k
r

)d+1(
1 − t

−1
r

)
(1 − t−1)d

h̃
(
P; t−1

)

=
t

−(d+1)k
r

t
−1
r

(
1 − t

k
r

)d+1(
1 − t

1
r

)
(1 − t)d

h̃(P; t) = 1
t

k(d+1)−1
r

h∗
Q(P; t; k) .

Note that this implies, since the constant term of h∗
Q(P; t; k) is 1, that the degree of

h∗
Q(P; t; k) (measured as a polynomial in t

1
r ) equals k(d+ 1) − 1.

This suggests that there is a 3-step hierarchy for rational dilations: 0 ∈ P◦ comes
with extra symmetry, 0 ∈ P comes with Proposition 5.5 (ii) and so we “only” have
to compute h∗

Q(P; t; k) ∈ Z[t
1
r ], and 0 /∈ P means we have to compute h∗ref

Q (P; t; k) ∈
Z[t

1
2r ]. Corollary 5.28 is related to Gorenstein properties of rational polytopes, which

we consider in the next section.

5.3 Gorenstein Musings

Our main goal in this section is to extend the notion of Gorenstein polytopes for
lattice polytopes from Section 2.2 to the rational case. A rational d-polytope P ⊆ Rd

is γ-rational Gorenstein if hom( 1
γ P) is a Gorenstein cone. See Figure 5.6 for

an example. In this paper we explore this definition for parameters γ = r and
γ = 2r, other parameters are still to be investigated. The archetypal r-rational
Gorenstein polytope is a rational polytope that contains the origin in its interior,
see Corollary 5.30. The definition of γ-rational Gorenstein does not require that the
origin is contained in the polytope, hence, it does not require the existence of a polar
dual. A lattice polytope P is 1-rational Gorenstein if and only if it is a Gorenstein
polytope in the classical sense.

Analogous to the lattice case (compare Theorem 2.8), the following theorem shows
that a polytope containing the origin is r-rational Gorenstein if and only if it has a
palindromic h∗

Q-polynomial. Let P = {x ∈ Rd : A x ≤ b} be a rational d-polytope,
as in Equation (5.1). We may assume that there is an index 0 ≤ i ≤ n such that
bj = 0 for j = 1, . . . , i and bj ̸= 0 for j = i+ 1, . . . , f ; thus we can write P as follows:

P =

{
x ∈ Rd :

⟨aj , x⟩ ≤ 0 for j = 1, . . . , i
⟨aj , x⟩ ≤ bj for j = i+ 1, . . . , f

}
, (5.6)

where aj are the rows of A.

Theorem 5.29. Let P = {x ∈ Rd : A x ≤ b} be a rational d-polytope with code-
nominator r and 0 ∈ P, as in Equation (5.1) and Equation (5.6). Then the following
are equivalent for g,m ∈ Z≥1 and m

r P a lattice polytope:

(i) P is r-rational Gorenstein with Gorenstein point (g, y) ∈ hom( 1
r P).



(ii) There exists a (necessarily unique) integer solution (g, y) to

−⟨aj , y⟩ = 1 for j = 1, . . . , i
bj g− r ⟨aj , y⟩ = bj for j = i+ 1, . . . , f .

(iii) h∗
Q(P; t;m) is palindromic:

t(d+1)m
r

− g
r h∗

Q

(
P; 1
t
;m
)

= h∗
Q(P; t;m) .

(iv) (−1)d+1t
g
r EhrQ(P; t) = EhrQ

(
P; 1

t

)
.

(v) ehrQ(P; n
r ) = ehrQ(P◦; n+g

r ) for all n ∈ Z≥0.

(vi) hom( 1
r P)∨ is the cone over a lattice polytope, i.e., there exists a lattice point

(g, y) ∈ hom( 1
r P)◦ ∩ Zd+1 such that for every primitive ray generator (v0, v)

of hom( 1
r P)∨

⟨(g, y) , (v0, v)⟩ = 1 .

The equivalence of (i) and (vi) is well known (see, e.g., [BN08, Definition 1.8] or
[BG09, Exercises 2.13, 2.14]); for the sake of completeness we include a proof below.

Corollary 5.30. Let P ⊆ Rd be a rational d-polytope with codenominator r. If
0 ∈ P◦, then P is r-rational Gorenstein with Gorenstein point (1, 0, . . . , 0) and
h∗

Q(P; t;m) is palindromic.

Before we prove Theorem 5.29, we compute some examples.

Example 5.31 (continued). We check the Gorenstein criterion for the running
examples such that 0 ∈ P.

(i) P1 :=
[
−1, 2

3

]
, r = 2, m = 6,

h∗
Q(P1; t; 6) = 1+ t

1
2 + 2t+ 3t

3
2 + 4t2 + 4t

5
2 + 4t3 + 4t

7
2 + 3t4 + 2t

9
2 + t5 + t

11
2 .

The polynomial h∗
Q(P1; t; 6) is palindromic and therefore (by Theorem 5.29),

P1 is 2-rational Gorenstein. This is to be expected; as 0 ∈ P◦, Lemma 5.22
shows that h∗

Q(P1; t; 6) must be palindromic.

(ii) P2 :=
[
0, 2

3

]
, r = 2, m = 3,

h∗
Q(P2; t; 3) = 1 + t

1
2 + t .

The polynomial h∗
Q(P2; t; 3) is palindromic and P2 is 2-rational Gorenstein with

Gorenstein point (g, y) = (4, 1) ∈ hom( 1
2P2).

Example 5.32. The triangle ∇ := conv{(0, 0), (0, 1), (3, 1)} has codenominator 1.
It is not 1-rational Gorenstein as |∇◦ ∩ Z2| = 0 and |(2∇)◦ ∩ Z2| = 2.
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Figure 5.4: The triangle ∆ := conv{(0, 0), (2, 0), (0, 2)} from Example 5.33 and some of
its dilates demonstrating the property of being 2-rational Gorenstein but not
Gorenstein in the classical setting.

Example 5.33. The Haasenlieblingsdreieck ∆ := conv{(0, 0), (2, 0), (0, 2)} is not a
Gorenstein polytope in the classic (integral) setting, but it is 2-rational Gorenstein
(see Figure 5.4): we compute

EhrQ(P; t) =
1(

1 − t
1
2
)3 =

1 + 3t 1
2 + 3t+ t

3
2

(1 − t)3 .

Example 5.34 (A polytope that is not γ-rational Gorenstein for any γ). Let ∇ be
the triangle as in Figure 5.5, i.e.,∇ = conv{(0, 0), (0, 2), (5, 2)}. Then the inequality
description is

∇ =
{
(x1,x2) ∈ R2 : − x1 ≤ 0 , x2 ≤ 2 , 2x1 − 5x2 ≤ 0

}
.

We can read off the codenominator r = 2 and compute its rational Ehrhart series
with m chosen minimally as

EhrQ(∇; t) =
1 + 4t 1

2 + 7t+ 6t 3
2 + 2t2

(1 − t)2 .

Hence, h∗
Q(∇; t; 2) = 1+ 4t 1

2 + 7t+ 6t 3
2 + 2t2 is not palindromic and ∇ is not rational

Gorenstein.2

Figure 5.5: The triangle ∇ = conv{(0, 0), (0, 2), (5, 2)}, which is not rational Gorenstein.
The cone hom( 1

γ ∇) contains two interior lattice points at lowest height, hence
it does not posses a Gorenstein point.

2 We thank Esme Bajo for suggesting this example and helping with computing it. See [BB23] for
symmetric decompositions and boundary h∗-polynomials.



Proof of Theorem 5.29.

( i i i ) ⇔ ( i v ) ⇔ ( v ) We compute using reciprocity (see Corollary 5.18):

1 +
∑

λ∈ 1
r Z>0

ehrQ(P;λ)tλ =
h∗

Q(P; t;m)(
1 − t

m
r

)(d+1) =
t(d+1)m

r
− g

r h∗
Q

(
P; 1

t ;m
)

(
1 − t

m
r

)(d+1)

= t−
g
r

h∗
Q(P◦; t;m)(

1 − t
m
r

)(d+1) = t−
g
r

∑
λ∈ 1

r Z>0

ehrQ(P◦;λ)tλ .

That is equivalent to

t
g
r EhrQ(P; t) = t

g
r

1 +
∑

λ∈ 1
r Z>0

ehrQ(P;λ)tλ

 =
∑

λ∈ 1
r Z>0

ehrQ(P◦;λ)tλ

= EhrQ(P◦; t) = (−1)d+1 EhrQ

(
P; 1
t

)
.

Comparing coefficients gives the third equivalence:

ehrQ

(
P; n
r

)
= ehrQ

(
P; n+ g

r

)
for n ∈ Z≥0 .

( v ) ⇒ ( i ) Since

ehrQ

(
P; n
r

)
= ehrQ

(
P; n+ g

r

)
for n ∈ Z≥0

it suffices to show one inclusion:

hom
(1
r

P
)◦

∩ Zd+1 ⊇
(
(g, y) + hom

(1
r

P
))

∩ Zd+1 ,

where y is the unique interior lattice point in g
r P◦. Indeed, for a point (g, y) ∈

hom( 1
r P)◦ ∩ Zd+1 it follows that the point (g, y) + z ∈ hom( 1

r P)◦ ∩ Zd+1 for
all z ∈ hom( 1

r P) ∩ Zd+1.

( i ) ⇒ ( i i i ) By the definition of P being r-rational Gorenstein,

hom
(1
r

P
)◦

∩ Zd+1 = (g, y) + hom
(1
r

P
)

∩ Zd+1.

Computing integer point transforms gives:

σhom( 1
r

P)
◦ (z) = z(g,y)σhom( 1

r
P) (z) .

Applying reciprocity (see, e.g., [BR15, Theorem 4.3]) yields

σhom( 1
r

P)
◦ (z) = (−1)d+1 σhom( 1

r
P)

(1
z

)
= z(g,y)σhom( 1

r
P) (z) . (5.7)
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By specializing z = (t
1
r , 1, . . . , 1) in Equation (5.7) we obtain the following

relation between Ehrhart series for 1
r P in the variable t 1

r and t−
1
r :

(−1)d+1 EhrZ

(1
r

P, 1
t

1
r

)
= t

g
r EhrZ

(1
r

P, t
1
r

)
. (5.8)

From (the proof of) Theorem 5.7 we know that

EhrZ

(1
r

P, t
1
r

)
= EhrQ(P; t) =

h∗
Q(P; t;m)(

1 − t
m
r

)d+1 ,

where m is an integer such that 1
r P is a lattice polytope. Substituting this into

Equation (5.8) yields

(
t

m
r

)d+1 h∗
Q

(
P; 1

t ;m
)

(
1 − t

m
r

)d+1 = (−1)d+1 h∗
Q

(
P; 1

t ;m
)

(
1 − 1

t
m
r

)d+1 = t
g
r

h∗
Q(P; t;m)(

1 − t
m
r

)d+1

and thus
t
(d+1)m

r
− g

r h∗
Q

(
P; 1
t
;m
)

= h∗
Q(P; t;m) .

( i i ) ⇔ ( v i ) The primitive ray generators of hom( 1
r P)∨ are the primitive facet

normals of hom( 1
r P), that is,

(0, −aj) for j = 1, . . . , i and
(

1, − r

bj
aj

)
for j = i+ 1, . . . , f .

Note that, since 0 ∈ P, bj ≥ 0 for all j = 1, . . . , f . The statement follows.

( v i ) ⇒ ( i ) Since (g, y) ∈ hom( 1
r P)◦ ∩ Zd+1 is an interior point of the cone, it

follows directly that (g, y) + hom( 1
r P) ⊆ hom( 1

r P)◦. Let (x0, x) ∈ hom( 1
r P)◦,

then for any primitive ray generator (v0, v) of hom( 1
r P)∨ (being the primitive

facet normals of hom( 1
r P)),

⟨(x0, x) − (g, y) , (v0, v)⟩ = ⟨(x0, x) , (v0, v)⟩︸ ︷︷ ︸
>0

− ⟨(g, y) , (v0, v)⟩︸ ︷︷ ︸
=1

≥ 0 .

Hence, (x0, x) − (g, y) ∈ hom( 1
r P) and (x0, x) ∈ (g, y) + hom( 1

r P).

( i ) ⇒ ( v i ) From the definition of Gorenstein point we know that (g, y) ∈ hom( 1
r P)◦

and hence
⟨(g, y) , (v0, v)⟩ > 0

for all primitive facet normals (v0, v) of hom( 1
r P). Since the facet normals

(v0, v) are primitive, i.e., gcd((v0, v)) = 1, there exists an integer point in the
shifted hyperplane H defined by

H =
{
(x0, x) ∈ Rd+1 : ⟨(v0, v), (x0, x)⟩ = 1

}



and hence H contains a d-dimensional sublattice. Since the intersection H ∩
hom( 1

r P)◦ contains a pointed cone (e.g., the shifted recession cone), it contains
a lattice point (z0, z) ∈ hom( 1

r P)◦.

So, for any facet of hom
(

1
r P
)

there exists a lattice point (z0, z) in the interior
of hom( 1

r P) at lattice distance one from the facet. Since (g, y) + hom( 1
r P) =

hom( 1
r P)◦, there exists a point (r0, r) ∈ hom( 1

r P) such that

(g, y) + (r0, r) = (z0, z) .

Then,

1 = ⟨(z0, z) , (v0, v)⟩ = ⟨(g, y) , (v0, v)⟩︸ ︷︷ ︸
>0

+ ⟨(r0, r) , (v0, v)⟩︸ ︷︷ ︸
≥0

and ⟨(g, y) , (v0, v)⟩ = 1.

As usual we state a version of Theorem 5.29 for the refined rational Ehrhart series
and the h∗ref

Q -polynomial. Here, the polytopes under consideration are not required
to contain the origin. This means that in the description of the polytope as in
Equation (5.6) the vector b ∈ Zn might have negative entries and we use absolute
values when multiplying inequalities or facet normals with entries of b. Except for
this small difference, the proof is the same as that of Theorem 5.29 so we omit it.

Theorem 5.35. Let P = {x ∈ Rd : A x ≤ b} be a rational d-polytope with codenom-
inator r, as in Equation (5.1) and Equation (5.6). Then the following are equivalent
for g,m ∈ Z≥1 and m

2r P a lattice polytope:

(i) P is 2r-rational Gorenstein with Gorenstein point (g, y) ∈ hom( 1
2r P).

(ii) There exists a (necessarily unique) integer solution (g, y)

−⟨aj , y⟩ = 1 for j = 1, . . . , i
bj g− 2r ⟨aj , y⟩ = |bj | for j = i+ 1, . . . , f .

(iii) h∗ref
Q (P; t;m) is palindromic:

t(d+1) m
2r

− g
2r h∗ref

Q

(
P; 1
t
;m
)

= h∗ref
Q (P; t;m) .

(iv) (−1)d+1t
g

2r Ehrref
Q (P; t) = Ehrref

Q

(
P; 1

t

)
.

(v) ehrQ(P; n
2r ) = ehrQ(P◦; n+g

2r ) for all n ∈ Z≥0.

(vi) hom( 1
2r P)∨ is the cone over a lattice polytope, i.e., there exists a lattice point

(g, y) ∈ hom( 1
2r P)◦ ∩ Zd+1 such that for every primitive ray generator (v0, v)

of hom( 1
2r P)∨

⟨(g, y) , (v0, v)⟩ = 1 .
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Theorem 5.35 could be generalized to ℓr-rational Gorenstein polytopes for ℓ ∈ Z>0.
However it is not clear that computationally this would provide any new insights to
the (rational) Ehrhart theory of the polytopes.

Corollary 5.36.

(i) If 0 ∈ P◦, then P is also 2r-rational Gorenstein with the same Gorenstein point
(1, 0 . . . , 0) (see Corollary 5.30).

(ii) If 0 ∈ P and P is r-rational Gorenstein, then P is also 2r-rational Gorenstein.

(iii) If P is 2r-rational Gorenstein and the first coordinate g of the Gorenstein point
(g, y) is even, then P is also r-rational Gorenstein.

Proof of (ii). Since 0 ∈ P we know that ehrQ is constant on [n
r , n+1

r ) and we compute

Ehrref
Q (P; t) = 1 +

∑
n∈Z>0

ehrQ

(
P; n2r

)
t

n
2r

= 1 + ehrQ

(
P, 1

2r

)
t

1
2r

+
∑

n∈Z>0

 ehrQ

(
P; 2n

2r

)
t

2n
2r + ehrQ

(
P; 2n+ 1

2r

)
︸ ︷︷ ︸

=ehrQ(P; n
r )

t
2n+1

2r



= 1 + t
1

2r +
∑

n∈Z>0

ehrQ

(
P; n
r

)
t

n
r

(
1 + t

1
2r

)
=
(
1 + t

1
2r

)
EhrQ(P; t) ,

where we also use that ehrQ(P, 0) = ehrQ

(
P, 1

2r

)
= 1.

Example 5.37. (continued) We check the Gorenstein criterion for the running ex-
amples such that 0 /∈ P.

Figure 5.6: The cone hom( 1
4P3) = hom( 1

8P4) with Gorenstein
point (3, 1) highlighted in dark blue. The other lat-
tice points hom( 1

4P3)◦ ∩ Z2 are marked in blue. Ob-
serve that (3, 1) + hom( 1

4P3) ∩ Z2 = hom( 1
4P3)◦ ∩

Z2.



(iii) P3 := [1, 2], r = 2, m = 4, h∗ref
Q (P3; t; 4) = 1 + t

2
4 + t

3
4 + t

5
4 .

(iv) P4 := [2, 4], r = 4, m = 4, h∗ref
Q (P4; t; 4) = 1 + t

1
4 + t

3
8 + t

5
8 .

Both polynomials h∗ref
Q (P4; t; 4) and h∗ref

Q (P3; t; 4) are palindromic and therefore P3
is 4-rational Gorenstein and P4 is 8-rational Gorenstein. In fact, 1

4P3 = 1
8P4 and so

hom( 1
4P3) = hom( 1

8P4). The Gorenstein point is (g, y) = (3, 1).

Example 5.38 (A polytope that is not 2r-rational Gorenstein). Let P5 = [1, 4].
Then r = 4 and 2r = 8, so 1

2r P5 = [ 1
8 , 1

2 ]. The first lattice point in the interior
of hom( 1

8P5) is (g, y) = (3, 1). However, (3, 1) does not satisfy Condition (ii) from
Theorem 5.29; it is at lattice distance 5 from one of the facets of hom( 1

8P5).

Remark 5.39. Bajo and Beck [BB23, Section 5] essentially showed that the h∗
Z-

polynomial of a rational polytope P is palindromic if and only if hom(P) is a Goren-
stein cone. Hence, polytopes with palindromic h∗

Z-polynomials, h∗
Q-polynomials, or

h∗ref
Q -polynomials are fully classified. This implies, in particular, that polytopes with

palindromic h∗
Z-polynomials also have palindromic h∗

Q and h∗ref
Q -polynomials.

5.4 Symmetric Decompositions

We now use the stipulations of the last section to give a new proof of the following
theorem. As we will see, our proof will also yield a rational version (Theorem 5.42
below).

Theorem 5.40 (Betke–McMullen [BM85]). Let P ⊆ Rd be a lattice d-polytope that
contains a lattice point in its interior. Then there exist polynomials a(t) and b(t)

with nonnegative coefficients such that

h∗
Z(P; t) = a (t) + t b (t) , td a

(
1
t

)
= a (t) , td−1 b

(
1
t

)
= b (t) .

Proof. Suppose P is a lattice d-polytope with codenominator r. If P contains a lattice
point in its interior, we might as well assume it is the origin (the h∗

Z-polynomial is
invariant under lattice translations). Then Corollary 5.30 says

td+1− 1
r h∗

Q

(
P; 1
t
; r
)

= h∗
Q(P; t; r) . (5.9)

Note, since P is a lattice polytope we can choose m = r. On the other hand, as we
noted in the beginning of Section 5.1, the h∗

Z-polynomial of a rational d-polytope
always has a factor, that carries over (by the proof of Theorem 5.7) to

h∗
Q(P; t; r) =

(
1 + t

1
r + · · · + t

r−1
r

)
h̃(P; t)

for some h̃(P; t) ∈ Z[t1/r] (which is, of course, very much related to Section 5.2).
Moreover, by Equation (5.9) this polynomial satisfies td h̃(P; 1

t ) = h̃(P; t). Note that

EhrQ(P; t) =

(
1 + t

1
r + · · · + t

r−1
r

)
h̃(P; t)

(1 − t)d+1 =
h̃(P; t)(

1 − t
1
r

)
(1 − t)d

(5.10)
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and the Gorenstein property of 1
r P imply that h̃(P; t) equals the h∗-polynomial (in

the variable t 1
r ) of the boundary of 1

r P. Indeed, the rational Ehrhart series of ∂P is

EhrQ(P; t) − EhrQ(P◦; t) =
h∗

Q(P; t; r)
(1 − t)d+1 −

td+1h∗
Q

(
P; 1

t ; r
)

(1 − t)d+1

=
h∗

Q(P; t; r)
(1 − t)d+1 −

t
1
r h∗

Q(P; t; r)
(1 − t)d+1

=
(1 − t

1
r )h∗

Q(P; t; r)
(1 − t)d+1 =

h̃(P; t)
(1 − t)d

.

The (triangulated) boundary of a polytope is shellable [Zie98, Chapter 8], and this
shelling gives a half-open decomposition of the boundary, which yields nonnegativity
of the h∗

Z-vector. Hence, h̃(P; t) has nonnegative coefficients.
Recall that Int is the operator that extracts from a polynomial in Z[t

1
r ] the terms

with integer powers of t. Thus

a(t) := Int
(
h̃(P; t)

)
is a polynomial in Z[t] with nonnegative coefficients satisfying td a( 1

t ) = a(t).
(Note that a(t) can be interpreted as the h∗-polynomial of the boundary of P; see,
e.g., [BB23].) Again, because we could choose m = r, we compute using Equa-
tion (5.10):

h∗
Z(P; t) = Int

((
1 + t

1
r + · · · + t

r−1
r

)
h̃(P; t)

)
= a(t) + Int

((
t

1
r + t

2
r + · · · + t

r−1
r

)
h̃(P; t)

)
.

Since β(t) :=
(
t

1
r + t

2
r + · · · + t

r−1
r

)
h̃(P; t) satisfies td+1 β

(
1
t

)
= β(t), the polyno-

mial
b(t) :=

1
t

Int
((
t

1
r + t

2
r + · · · + t

r−1
r

)
h̃(P; t)

)
satisfies td−1 b

(
1
t

)
= b(t), and h∗

Z(P; t) = a(t) + t b(t) by construction.

Remark 5.41. We could have started the proof of Theorem 5.40 with Equation (5.5)
and then used Stapledon’s result [Sta17] that h̃(P; t) is palindromic and nonnegative.

The rational version of this theorem is a special case of [BBV22, Theorem 4.7].

Theorem 5.42. Let Q ⊆ Rd be a rational d-polytope with denominator k that
contains a lattice point in its interior. Then there exist polynomials a(t) and b(t)

with nonnegative coefficients such that

h∗
Z(Q; t) = a(t) + t b(t) , tk(d+1)−1 a

(
1
t

)
= a (t) , tk(d+1)−2 b

(
1
t

)
= b(t) .



Proof. We repeat our proof of Theorem 5.40 for P := kQ, except that instead of the
operator Int, we use the operator Ratk which extracts the terms with powers that
are multiples of 1

k . So now

a(t) := Ratk(h̃(P; t)),

b(t) :=
1
t

1
k

Ratk

((
t

1
r + t

2
r + · · · + t

r−1
r

)
h̃(P; t)

)
, and

h∗
Z(P; t) = a(tk) + t b(tk) .

We conclude by remarking that there is a generalization of the Betke–McMullen
theorem due to Stapledon [Sta09]; here the assumption of an interior lattice point
is dropped, but the symmetric decomposition happens now with a modified h∗

Z-
polynomial. A rational version is the afore-mentioned [BBV22, Theorem 4.7]; see
also [BB23].

5.5 Period Collapse

One of the classic instances of period collapse in integral Ehrhart theory is the
triangle

∆ := conv{(0, 0), (1, p−1
p ), (p, 0)} (5.11)

where p ≥ 2 is an integer [MW05]; see also [CLS19] for an irrational version. Here

EhrZ(∆; t) =
1 + (p− 2) t
(1 − t)3

and so, while the denominator of ∆ equals p, the period of ehrZ(∆;n) collapses to
1: the quasipolynomial ehrZ(∆;n) = p−1

2 n2 + p+1
2 n+ 1 is a polynomial.

As mentioned in the Introduction, we offer data points towards the question of
whether or how much period collapse happens in rational Ehrhart theory, and how
it compares to the classical scenario.

Example 5.43. We consider the triangle ∆ defined in Equation (5.11) with p = 3.
Note that both denominator and codenominator of ∆ equal 3. We compute

EhrQ(∆; t) =
1 + t

5
3(

1 − t
1
3
)2

(1 − t3)
.

Note that the accompanying rational Ehrhart quasipolynomial ehrQ(P;λ) thus has
period 3. We can retrieve the integral Ehrhart series from the rational by rewriting

EhrQ(∆; t) =

(
1 + t

5
3
) (

1 + t
1
3 + t

2
3
)2

(1 − t)2 (1 − t3)
=

(
1 + t

5
3
) (

1 + 2t 1
3 + 3t 2

3 + 2t+ t
4
3
)

(1 − t)2 (1 − t3)
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and then disregarding the fractional powers in the numerator, which gives

EhrZ(∆; t) =
1 + 2t+ 2t2 + t3

(1 − t)2 (1 − t3)
=

1 + t

(1 − t)3 .

Hence the classical Ehrhart quasipolynomial exhibits period collapse while the ra-
tional does not.

Example 5.44. The recent paper [Fer+21] studied certain families of polytopes
arising from graphs, which exhibit period collapse. One example is the pyramid

P5 := conv
{
(0, 0, 0) ,

(
1
2 , 0, 0

)
,
(
0, 1

2 , 0
)

,
(

1
2 , 1

2 , 0
)

,
(

1
4 , 1

4 , 1
2

)}
.

which has denominator 4 and codenominator 1. In particular, its rational Ehrhart
series equals the standard Ehrhart series, and

EhrQ(P5; t) = EhrZ(P5; t) =
1 + t3

(1 − t) (1 − t2)3

shows that ehrZ(P5;n) and ehrQ(P5;λ) both have period 2, i.e., they both exhibit
period collapse.

Example 5.45. Recall the running examples P1 = [−1, 2
3 ] and P2 = [0, 2

3 ]. Re-
stricting the rational Ehrhart quasipolynomial from page 93 to positive integers we
retrieve the Ehrhart quasipolynomials:

ehrZ(P1;n) =


5
3n+ 1 if n ≡ 0 mod 3,
5
3n+

1
3 if n ≡ 1 mod 3,

5
3n+

2
3 if n ≡ 2 mod 3,

ehrZ(P2;n) =


2
3n+ 1 if n ≡ 0 mod 3,
2
3n+

1
3 if n ≡ 1 mod 3,

2
3n+

2
3 if n ≡ 2 mod 3.

We can observe the period 3 here for both functions. Recall the rational Ehrhart
series from page 97:

EhrQ(P1; t) =
1 + t

1
2 + t+ t

3
2 + t2

(1 − t)
(
1 − t

3
2
) ,

EhrQ(P2; t) =
1(

1 − t
1
2
) (

1 − t
3
2
) =

1 + t
1
2 + t(

1 − t
3
2
)2 .

We can read off from the series that ehrQ(P1;λ) has rational period 3, whereas 3
2 is

the rational period of ehrQ(P2;λ). Both P1 and P2 have codenominator r = 2, but
mP1 = 6 and mP2 = 3 (see computations on page 97). So the expected period is
6
2 = 3 for P1 and 3

2 for P2. Thus here neither the rational Ehrhart quasipolynomials
nor the integral Ehrhart quasipolynomials exhibit period collapse.



We do not know any examples of polytopes with period collapse in their rational
Ehrhart quasipolynomials but not in their integral Ehrhart quasipolynomials. The
question about possible period collapse of an Ehrhart quasipolynomial is only one
of many one can ask for a given rational polytope. For example, there are many
interesting questions and conjectures on when the h∗

Z-polynomial is unimodal. One
can, naturally, extend any such question to rational Ehrhart series. Finally, our re-
sults generalize to polynomial-weight counting functions of rational polytopes (see,
e.g., [Bal+13]), where ehrQ(P;λ) gets replaced by ∑x∈λP∩Zd p(x) for a fixed poly-
nomial p(x) ∈ C[x1, . . . ,xd].





6
Poset Permutahedra

Order polytopes [Sta86] provide a powerful link between polyhedral geometry and
finite posets. Harnessing this connection resulted in many important results includ-
ing the computation of order polynomials, the fundamental result that computing
the volume of a polytope is ♯P-Hard [BW91], and that certain statistics on linear
extensions are log-concave [Sta81]. Since the foundational work of Stanley, other
poset polytopes have been introduced including marked poset polytopes [ABS11],
double poset polytopes [CFS17], and poset associahedra [Gal24]. In this chapter
we introduce another class of poset polytopes which provides a unified perspective
of polytopes that have been studied recently. This is joint work with Alexander E.
Black and Raman Sanyal (unpublished, extended abstract to appear in [ASR]).

Let P = ([d], ⪯) be a finite poset. The order polytope O(P) is the intersec-
tion of the 0/1-hypercube [0, 1]d with the order cone C(P) = {x ∈ Rd : xa ≤
xb for all a ⪯ b}. This is a polytope with vertices in {0, 1}d with remarkable combi-
natorics as we recalled in Section 2.5.5. For our construction, recall that the standard
permutahedron Πd ⊂ Rd is the convex hull of all d! permutations of (1, 2, . . . , d).
We define the poset permutahedron ΠP as the intersection of Πd with the order
cone C(P), i.e.,

ΠP := Πd ∩ C(P) = Πd ∩ {x ∈ Rd : xa ≤ xb for all a ⪯ b} . (6.1)

This is an (d− 1)-dimensional polytope with half-integral vertices (see Corollary 6.21
below). See Figure 6.1 and Figure 6.2 for examples.

Poset permutahedra provide a unified construction principle for polytopes that
have occurred in disparate areas. What follows is a non-exhaustive list:

Figure 6.1: Poset permutahedra for posets on three elements are two-dimensional polytopes
in R3. The boundary of the permutahedron Π3 in orange, the poset permuta-
hedron in dark blue and the Hasse diagram of the corresponding poset in black.
Up to symmetry those are all of the two dimensional poset permutahedra other
than the permutahedron itself.
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Figure 6.2: Two examples of three dimensional poset permutahedra, for a chain on four
elements (left) and a poset on four elements with two linear extensions (right).

(i) If P is the antichain, then ΠP = Πd.

(ii) If P is a chain, then 2ΠP is unimodularly equivalent to the Newton polytope
of the discriminant [GKZ08, Section III.12.2].

(iii) If P is a chain, then the lattice points in ΠP − 1 are the well-studied score
sequences introduced by Landau [Lan53]; see below for more.

(iv) If P arises from the antichain by adjoining a maximial element, then ΠP is
combinatorially equivalent to the stellahedron [PRW08, Section 10.4].

(v) If P is the disjoint union of two chains of length m and n, respectively, then
the face lattice of ΠP is ismorphic to the poset of colorful subdivisions of an
(m+ n+ 2)-gon with bicolored vertices (cf. [AMV24]) and extends the combi-
natorial description of the Newton polytope of the classical resultant [GKZ08,
Chapter 12].

(vi) If P is the disjoint union of k chains of lengths m1,m2, . . . ,mk, then ΠP is
the type-A partitioned permutahedron introduced and studied in [Hor+24b;
Hor+24a] in the context of Hessenberg varieties and representation theory; see
Section 6.5 for more.

Our key observation is that ΠP is a fiber polytope in the sense of Billera–Sturmfels
[BS92]. More precisely, poset permutahedra are (translates of) monotone path poly-
topes of order polytopes, see Theorem 6.16. We will give detailed and formal defini-
tions of monotone path polytopes in Section 6.1.2 below and a quick intuition here.
For a (generic enough) linear functional φ a φ-monotone path in the polytope P
is a vertex-edge path in P from the vertex minimizing φ to the vertex maximizing
φ so that along each edge in the monotone path the value of φ increases. Then the
vertices of the monotone path polytope Σφ(P) correspond to the monotone paths in
the polytope P. See Figure 6.3 and Figure 6.6 for examples. For a polytope P and a
non-constant linear function φ on P, the notion of cellular strings (defined in detail
below) generalizes that of maximal φ-monotone paths in the graph of P oriented by
φ. The collection of cellular strings ordered by inclusion (i.e., one cellular string is
contained within another if the union of cells of one is a subset of the union of cells
of the other) is the Baues poset of (P,φ) from algebraic topology; see [BKS94].



⇝

Figure 6.3: The four 1-monotone path from 0 to 1 in the order polytope O(C) of a three-
chain C (left) correspond to the four vertices of the poset permutahedron ΠC

(right). Monotone paths in O(C) corresponding to vertices connected by an edge
in ΠC share a 2-face in the order polytope O(C).

While Baues posets can be rather wild, the subposet of coherent cellular strings is
isomorphic to the face poset of the monotone path polytope Σφ(P). The following
theorem is our main tool to study poset permutahedra.

Theorem 6.16. Let P = ([d], ⪯) be a poset. Then the poset permutahedron ΠP is
a translate of the monotone path polytope of the order polytope O(P) with respect to
the linear functional 1(x) = x1 + · · · + xd, i.e., ΠP = Σ1(O(P)) + 1

21.

It is typically nontrivial to determine if a cellular string is coherent. In our situa-
tion, however, it turns out that all cellular strings are coherent.

Corollary 6.10. Let P = ([d], ⪯) be a poset. Then all 1-cellular strings of the order
polytope O(P) are coherent. In particular the face lattice of ΠP is isomorphic to the
Baues poset of (O(P), 1).

Corollary 6.10 allows us to prove the following results about poset permutahedra:

(i) Vertices of ΠP are in bijection with chains of filters ∅ = F0 ⊊ F1 ⊊ · · · ⊊
Fk = P such that the poset Fi+1 \Fi is connected for all i = 0, 1, . . . , k (Theo-
rem 6.19).

(ii) Theorem 6.22 gives a combinatorial characterization of edges and the corre-
sponding edge directions.

(iii) Facets of ΠP are in bijection with the set of proper filters of P and the cover
relations of P (Corollary 6.17).

(iv) Corollary 6.24 yields the vertex-facet-incidences of ΠP, and Theorem 6.25
shows that ΠP is simple if and only if the undirected Hasse diagram of P

is a forest.

(v) Analogous to order polytopes, ΠP is subdivided by the set of all ΠT, where
T ranges over the linear extensions L(P) (Theorem 6.26). This allows us to
compute the volume of ΠP as |L(P)|dd−2

d! (Corollary 6.27).

(vi) For every poset P, the scaled poset permutahedron 2 · ΠP is a lattice polytope
that has the integer decomposition property, that is, if p ∈ m · 2ΠP is
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a lattice point, then there are lattice points p1, . . . , pm ∈ 2ΠP with p = p1 +

· · · + pm; see Section 6.4.

Consider a tournament with teams 1, 2, . . . , d. Any two teams play against each other
and during each match n points are distributed between the two teams. This gives
rise to a score sequence (s1, s2, . . . , sd). We call (s1, s2, . . . , sd) a P-score sequence
if si ≤ sj whenever i ⪯P j in the poset P = ([d], ⪯P).

Theorem 6.32. The P-score sequences for n points are precisely the lattice points
in n · (ΠP − 1).

Corollary 6.17 gives a simple characterization of (P,n)-score sequences. If P is a
chain, then this characterization is classical and originally due to Landau [Lan53].
While the question of the number of score sequence for n = 1 and varying number
of teams d has received considerable attention (cf. [Cla+23] and entries A000571,
A007747, A047729-A047731, and A047733-A047737 in OEIS [OEI]), we are not
aware of results pertaining to the number of score sequences with fixed number
of teams d and varying the number of points n. Since ΠP − 1 is a half-integral poly-
tope it follows that this counting function is a quasipolynomial with period ≤ 2.
Computations for small d show that there is no period collapse.

In [Hor+24b] a toric orbifold is associated with a Weyl group W and a choice of
a parabolic subgroup WK . In type A, they call the associated moment polytope a
partitioned permutahedron Πd(K). It is shown that partitioned permutahedra are
simple and their h-vectors were determined by using the cohomology of regular
Hessenberg varieties.

Theorem 6.40 ([Hor+24b, Proposition 7.4]). The h-polynomial of the partitioned
permutahedron for K ⊆ [d− 1] is given by

hΠd(K)(x) =
∑

σv∈W (K)

xdes(σv),

where W (K) is the set of permutations σv such that σ−1
v (i)− σ−1

v (i+ 1) ≤ 1 for all
i ∈ K.

In Section 6.5, we show that Πd(K) is the poset permutahedron of a disjoint union
of chains, which implies simplicity by Theorem 6.25. We provide a bijective proof of
Theorem 6.40.

6.1 Preliminaries

We start by introducing and recalling properties of fiber polytopes and monotone
path polytopes. Monotone path polytopes are a special case of fiber polytopes. We
will briefly review the definition and some properties of fiber polytopes that will help
us to compute monotone path polytopes.

https://oeis.org/A000571
https://oeis.org/A007747
https://oeis.org/A047729
https://oeis.org/A047731
https://oeis.org/A047733
https://oeis.org/A047737


6.1.1 Fiber Polytopes

Fiber polytopes were introduced by Billera and Sturmfels [BS92] and further dis-
cussed in [BS94] and [BKS94]. For more recent introductions to fiber polytopes see,
e.g., [Zie98, chapter 9] or [Pou23] and [Bla24], as well as the references therein.

Let P ⊆ Rd be a polytope and π : P → Q be an affine projection. The fiber
polytope is intuitively speaking the average of the fibers π−1(x)∩ P of the projection
π : P → Q. We define a section as a continuous map γ : Q → P such that π ◦γ = idQ,
i.e., π(γ(x)) = x for all x ∈ Q. The fiber polytope is defined as the Minkowski
integral

Σ(P, Q) :=
1

vol(Q)

∫
Q
π−1(x) ∩ P dx (6.2)

:=
1

vol(Q)

{∫
Q
γ(x)dx : γ is a section of π

}
.

With this definition it is a priori not clear that the above set is a polytope. It turns
out it is. In fact, it can be computed as a finite Minkowski sum in the following way.

Theorem 6.1 ([BS92, Theorem 1.5]). Consider the subdivision that is the common
refinement induced by the images π(F) of faces F of P. Denote the maximal cells in
that subdivision by R1, . . . , Rk and their respective centroids by r1, . . . , rk. Then

Σ(P, Q) =
vol(R1)

vol(Q)
π−1(r1) +

vol(R2)

vol(Q)
π−1(r2) + · · · + vol(Rk)

vol(Q)
π−1(rk) ,

where π−1(ri) ⊆ P denotes the fiber of the projection π over ri. Moreover, the di-
mension of Σ(P, Q) is dim(P) − dim(Q).

In Section 6.1.2 we will define monotone path polytopes as a special case of fiber
polytopes, but omit the scaling factor of vol(Q)−1. Characterizing the face lattice is
a central tool we will use in this chapter. We first describe the face lattice of general
fiber polytopes before specializing everything to monotone path polytopes. In order
to do so, we dive into different types of subdivions of Q that arise from the projection
π : P → Q.

Recall the definition of subdivision on page 15. We now introduce classes of sub-
divisions constructed via projections of polytopes. Let π : P → Q be an affine
projection of polytopes. A polyhedral subdivision of a polytope Q is called induced
by π from P if there is a subset F of faces of P such that the subdivision is of the form
Sπ(F) = {RF = π(F) : F ∈ F} = π(F). Note that dim(π(F)) ≤ dim(F). We call an
induced subdivisions Sπ tight if dim(RF) = dim(F) for every cell RF ∈ Sπ = π(F).
We consider the cells in the π-induced subdivision Sπ(F) as labeled by the faces
F ∈ F , i.e., subdivisions that “look the same” in P = π(Q) but are induced by
different subsets of faces are considered different subdivisions.

We define a partial order on induced subdivisions by refinement, that is, for F1
and F2 two subsets of faces in P inducing subdivisions in Q we define

F1 ⪯ F2 :⇔
⋃

F∈F1

F ⊆
⋃

F∈F2

F .



122 poset permutahedra

For a linear functional ψ ∈ (Rd)∗ we now define ψ-coherent induced subdivisions
Sψπ . For every x ∈ Q consider first the fiber π−1(x)∩ P and then its subset maximized
by the linear functional ψ, i.e., (π−1(x) ∩ P)ψ. This is a subset of the polytope P
and hence, there is a unique minimal face Fx of P containing (π−1(x) ∩ P)ψ. Now
Sψπ is defined by the collection of those faces Fx, i.e.,

Sψπ :=
{
π(Fx) : x ∈ Q and Fx is the minimal face of P containing (π−1(x) ∩ P)ψ

}
.

This is well defined, since it can be checked that if y lies in the relative interior
π(Fx)◦, then Fy = Fx. See also [Zie98, Def 9.2] for an equivalent definition.

Theorem 6.2 ([BS92, Theorem 2.1]). The face lattice of the fiber polytope Σ(P, Q)

is isomorphic to the poset of all coherent subdivisions of Q. Here, the vertices of
Σ(P, Q) correspond to the tight coherent subdivisions of Q.

Remark 6.3. The proof for Theorem 6.2 essentially shows that a face F of the fiber
polytope Σ(P ,Q) is given by the linear functional ψ, i.e., F = Σ(P ,Q)ψ, if and only
if the corresponding π-induced subdivision is coherent with respect to ψ. That is,
fix a coherent π-induced subdivision Sπ and define the polyhedral cone

C(Sπ) := {ψ ∈ (Rd)∗ : Sπ is coherent w.r.t. ψ} .

Then the normal fan of the fiber polytope Σ(P ,Q) is given by the collection of the
cones C(Sπ) for all coherent π-induced subdivisions Sπ. Very broadly speaking this is
a consequence of the fact that Minkowski sums behave well under maximizing with
respect to a linear functional. (Compare [BS92, Corollary 1.4] and Equation (2.4).)

If the polytope Q = {q} is just a point, then the fiber polytope Σ(P, Q) is the
polytope P itself. Increasing the dimension of Q the next case is when Q is a line
segment, i.e., Σ(P, Q) is a monotone path polytope, which we discuss in the next
section.

6.1.2 Monotone Path Polytopes

In this section we define monotone path polytopes and discuss important properties
that we will need later on. Monotone path polytopes have connections to linear
programming since they encode shadow vertex rules for the simplex method, see,
e.g., [Pou23, Chapter 4] or [Bla24, Appendix].

A monotone path polytope is a special fiber polytope where the projection
π : P → Q ⊆ R has a one dimensional image [BS92, Section 5]. So, the linear
projection π is given by a linear functional φ ∈ (Rd)∗. We will assume φ to be
edge-generic with respect to P, i.e., for any two vertices u and v connected by an
edge in P we want φ(u) ̸= φ(v). For the definition of the monotone path polytope,
we will omit the scaling factor of vol(Q)−1 = vol(φ(P))−1 from the original definition



(6.2), i.e., if we denote the monotone path polytope of P with respect to φ by Σφ(P)
and for φ(P) =: [t1, t2], then

Σφ(P) := vol([t1, t2])Σ(P, [t1, t2]) =
∫

R
π−1(s) ∩ P ds . (6.3)

It follows from Theorem 6.1 that the monotone path polytope of P with respect to
edge generic φ has dimension dim(P) − 1.

A cellular string in P with respect to φ (we also say φ-cellular string) is a
sequence C = (F1, . . . , Fk) of faces Fi in P such that F−φ

1 = P−φ, Fφk = Pφ, and
Fφi−1 = F−φ

i for i = 2, . . . , k. We may assume that faces in a cellular string have
dimension at least one. That is, φ-cellular strings are precisely the φ-induced subdi-
visions of φ(P) (as defined in Section 6.1.1). The tight φ-induced subdivisions are
the φ-monotone paths in P, i.e., φ-cellular strings consisting only of edges.

In the same way that we defined a partial order on subdivisions, we define a
partial order on cellular strings by

(F1, . . . , Fk) ⪯ (G1, . . . , Gl) :⇔
k⋃

i=1
Fi ⊆

l⋃
j=1

Gj .

We then also say the cellular string (F1, . . . , Fk) is contained in (G1, . . . , Gl). Simi-
larly, we specialize the definition of coherence to cellular strings: a φ-cellular string
(F1, . . . , Fk) in P is ψ-coherent if for every x ∈ φ(Fi)

(φ−1(x) ∩ P)ψ ⊆ Fi

and Fi is the minimal face of P with that property. We also call those ψ-coherent
φ-cellular strings in P. Specializing Theorem 6.2 to monotone path polytopes, we
can describe their face lattice.

Corollary 6.4. The face lattice of a monotone path polytope Σφ(P) is isomorphic
to the poset of coherent φ-cellular strings in P.

This means that vertices of Σφ(P) correspond to smallest coherent φ-cellular
strings, i.e., to the coherent φ-monotone paths, which explains the name monotone
path polytope.

There are several equivalent and useful perspectives on coherent cellular strings,
see, e.g., [Pou23, Chapter 4] or [Bla24, Appendix]. One is to specialize Remark 6.3 to
monotone path polytope. Then the normal fan of monotone path polytopes is given
by grouping linear functionals according to the coherent cellular strings they define.
Recall that we assume φ to be generic with respect to the polytope P. Then P−φ is a
vertex v, equivalently, −φ is contained in the interior of the full-dimensional normal
cone NP(v)◦ in the normal fan N (P). This means for any linear functional ψ there is
a small enough ϵ > 0 such that ϵψ−φ is still contained in NP(v)◦, equivalently, for
any linear functional ψ there is a big enough λ− such that ψ− λφ is still contained
in NP(v)◦ for all λ ≥ λ−. Similarly, for +φ there is a λ+ such that ψ + λφ is still
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contained in the interior of the normal cone corresponding to Pφ for all λ ≥ λ+.
Then the line segment

{ψ + λφ ∈ (Rd)∗ : − λ− ≤ λ ≤ λ+}

starts in NP(P−φ)◦, it ends in NP(Pφ)◦ and intersects with normal cones in N (P)
corresponding to edges and vertices of P, due to the genericity assumption. In fact,
this corresponds to φ-monotone paths in P, which are ψ-coherent.

Lemma 6.5. Let P ⊂ Rd be a polytope and let C = (F1, . . . , Fk) be a φ-cellular
string of P. Then C = (F1, . . . , Fk) is a ψ-coherent if and only if

{Pψ+λφ : λ ∈ R} = {Fi : i = 1, . . . k} ∪ {F±φ
i : i = 1, . . . , k} .

In general it is a hard and interesting question to determine which monotone path
are coherent.

Example 6.6. Few examples of monotone path polytopes have been described:

(i) For P = [0, 1]d and the linear function 1(x) = x1 + · · ·+ xd, we get Σ1([0, 1]d)
is homothetic1 to the standard permutahedron Πd, as was observed in [BS92,
Example 5.4]. We will see a detailed computation for this in Example 6.14.

(ii) The monotone path polytopes of simplices are combinatorial cubes and were
described in the original paper on fiber polytopes by Billera and Sturmfels
[BS92].

(iii) The monotone path polytope of cross-polytopes was studied in [BD23].
(iv) The monotone path polytope of hypersimplices was described in [Pou24].
(v) The monotone path polytope of (poly)matroid independence polytopes [BS24].

We will now turn to 0/1-polytopes and see that there we are in a very special
situation.

6.1.3 Monotone Path Polytopes of 0/1-polytopes

We now shift our focus to monotone path polytopes of 0/1-polytopes. The following
results appeared in [Bla24]. We summarize the statements and give proofs, that we
will apply in the next section to order polytopes.

Lemma 6.7 ([Bla24, Lemma 3.4.0.2, Corollary 3.4.2] reformulated). Let Q ⊂ Rd

be a 0/1-polytope. If every edge direction u − v is of the form 1S for some subset
S ⊆ [d], then all 1-cellular strings of Q are coherent.

In order to prove Lemma 6.7 we will first return to general polytopes. We call Q
a subpolytope of P if vert(Q) ⊆ vert(P). For example, every 0/1-polytope, and in
particular order polytopes, are subpolytopes of the hypercube [0, 1]d.

Lemma 6.8 ([Bla24, Lemma 3.4.0.1]). Let P ⊂ Rd be a polytope, and let Q be a
subpolytope of P. Let φ ∈ (Rd)∗ be a linear functional and (G1, . . . , Gk) be a ψ-
coherent φ-cellular string on P for some ψ ∈ (Rd)∗. Suppose furthermore that there

1 that is, up to scaling and translation.



exist 1 ≤ i < j ≤ k such that Q−φ = G−φ
i , Qφ = Gφj and that Gφl and G−φ

l are
contained in Q for l = i, . . . , j.

Then (Gi ∩ Q, Gi+1 ∩ Q, . . . , Gj ∩ Q) is a ψ-coherent φ-cellular string on Q.

Proof. Recall form Lemma 6.5 that

{Pψ+λφ : λ ∈ R} = {Gl : l = 1, . . . k} ∪ {G±φ
l : l = 1, . . . , k} .

For l = i, . . . , j we know that Gl ∩ Q ̸= ∅. For λl ∈ R such that Gl = Pψ+λlφ we
have

∅ ̸= Gl ∩ Q = Pψ+λlφ ∩ Q = Qψ+λlφ .

Then
{Qψ+λφ : λ ∈ R} = {Gl ∩ Q : l = i, . . . j} ∪ {G±φ

l : l = i, . . . , j} .

Proof of Lemma 6.7. We assume 0 ∈ Q and 1 ∈ Q. This will spare us some technical
case distinctions in the following proof. Moreover, in this work, we want to apply
Lemma 6.7 only to order polytopes, which always contain 0 and 1. At the end of
the proof we will mention how it needs to be adapted for full generality.

Let C = (F1, . . . , Fk) be a 1-cellular string. Since every edge direction is of the
form 1S , the faces F1

i and F−1
i are vertices for i = 1, . . . , k. Define vi−1 := 1Ti−1 :=

F−1
i = F1

i−1 for i = 1, . . . , k and vk := 1Tk
:= F1

k = 1. Then ∅ = T0 ⊊ · · · ⊊ Tk = [d]

form a chain of subsets.
We now construct a 1-cellular string for the hypercube [0, 1]d as follows:

Gi := [0, 1]d ∩ {x ∈ Rd : xa = 1 for all a ∈ Ti−1 , xb = 0 for all b ∈ [d] \ Ti} (6.4)

for i = 1, . . . , k. Note that

G−1
1 = 0 ,
G1

k = vk = 1Tk
= 1

and for i = 1, . . . , k we have

G−1
i = G1

i−1 = 1Ti−1 = vi−1 .

Moreover, the faces Gi are the ones defined in Corollary 2.31, where the poset is
the antichain A = ([d],∅) and the filters are Ti−1 and Ti. Hence, (G1, . . . , Gk) is a
1-cellular string for the hypercube [0, 1]d.

We claim that (G1, . . . , Gk) is coherent with respect to the linear functional ψ ∈
(Rd)∗ defined by

ψ :=
k∑

i=1
(k− i)1Ti\Ti−1 . (6.5)
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Indeed, we can check that

([0, 1]d)ψ+λ1 =



0 for λ < −k+ 1

Gi for λ = −k+ i and i = 1, . . . , k

1Ti for − k+ i < λ < −k+ i+ 1 and i = 1, . . . , k− 1

1 for 0 < λ

and use Lemma 6.5.
From Lemma 6.8 it follows that (G1 ∩ Q, . . . , Gk ∩ Q) also is a ψ-coherent 1-cellular

string on Q. Recall that the face Gi contains all vertices 1R for Ti−1 ⊆ R ⊆ Ti. Since
G±1

i = F±1
i and every edge direction in Q is of the form 1S for some S ⊆ [d] it

follows that Fi ⊆ Gi ∩ Q. It is left to show that (F1, . . . , Fk) is also coherent.
We will do so by inductively perturbing the linear functional ψ0 := ψ, which

certified the coherence for (G1, . . . , Gk) and (G1 ∩ Q, . . . , Gk ∩ Q). Let m ∈ {1, . . . , k}
be the minimal index such that Fm ⊊ Gm ∩ Q and let ψm−1 be the linear functional
certifying coherence for the cellular string

(F1, . . . , Fm−1, Gm ∩ Q, . . . , Gk ∩ Q) .

Since Fm is a face of Gm ∩ Q there exists a linear functional

ωm ∈ {x ∈ Rd : xa = 1 for all a ∈ Tm−1 , xb = 0 for all b ∈ [d] \ Tm}

such that Fm = (Gm ∩ Q)ωm . Recall that

Gm ∩ Q = ([0, 1]d)ψm−1+λj1 ∩ Q = Qψm−1+λj1 .

Then there exists an ϵm > 0 small enough such that

Fm = (Gm ∩ Q)ωm = (Qψm−1+λj1)ωm = Qϵmωm+ψm−1+λj1

(see, e.g., [Grü03, Lemma 3.1.5]). We choose ϵm small enough so that also the largest
absolute value in ϵmωm is less than 1. Then we still have Gj = ([0, 1]d)ϵmωm+ψ+λj1

for j ̸= m, because adding ϵmωm adds a small constant ϵ to all entries in Tm−1 and
nothing to all entries in [d] \Tm, only entries in Tm \Tm−1 are changed substantially.
Hence (F1, . . . , Fm, Gm+1 ∩ Q, . . . , Gk ∩ Q) is a (ϵmωm + ψm−1)-coherent 1-cellular
string.

If 0 /∈ Q or 1 /∈ Q we need to add faces G0 or Gk+1 in Equation (6.4) to construct
a cellular string for the hypercube [0, 1]d and then adapt every following step in the
proof accordingly.

Remark 6.9. By [Edm+21, Theorem 2.1] we can relax the conditions on the linear
functional φ in Lemma 6.7: As long as the orientation on the edges of the 0/1-
polytope Q ⊂ Rd induced by a linear φ is the same as the orientation induced by 1,
the poset of cellular strings will remain isomorphic to the poset of coherent cellular
strings. Since we require every edge direction of Q to be parallel to 1S for some



subset S ⊆ [d], this is the case as long as φ is positive on the non-negative orthant
R≥0.

Little is known about polytopes for which all cellular strings are coherent for
some choice of linear functional φ. The above result adds to this list, which includes
simplices and hypercubes [BS92], (poly)matroid independence polytopes [BS24], and
certain zonotopes [Edm+21].

6.2 The Monotone Path Polytopes of Order Polytopes

The goal of this section is to show that poset permutahedra ΠP arise as monotone
path polytopes of order polytopes O(P) with respect to the linear functional 1 (up
to a translation), see Theorem 6.16. We will do so by deriving an irredundant in-
equality description of Σ1(O(P)). We first find a combinatorial description of the
facets of Σ1(O(P)) (Theorem 6.12), then a description as Minkowski sum (Proposi-
tion 6.13), to finally derive the correct translation of the facet-defining inequalities
(Proposition 6.15).

Corollary 6.10. Let P = ([d], ⪯) be a poset. Then all 1-cellular strings of the order
polytope O(P) are coherent.

Remark 6.11. Following Remark 6.9 we could generalize Corollary 6.10 to linear
functionals φ that are positive on Rd

≥0 and the resulting monotone path polytope
Σφ(O(P)) would have the same combinatorial structure. However, as we will see in
the remainder of this chapter with the linear functional 1 we get a nice geometric
realization, e.g., interesting interpretations for integer points (see Section 6.4).

To determine the facets of Σ1(O(P)) it suffices by Corollary 6.10 to determine
the coarsest, nontrivial cellular strings. Note that the coarsest (and trivial) cellular
string is (O(P)).

Theorem 6.12. The coarsest nontrivial cellular strings of O(P) with respect to 1
are of the following two forms:

(i) (F), where F is a facet of the order polytope O(P) corresponding to a cover
relation a ≺· b.

(ii) (F1, F2), where F1, F2 are faces of O(P) and there exists a filter F in P such
that all vertices in F1 correspond to filters contained in F and all vertices in
F2 correspond to filters containing F.

Proof. Recall that facets of the monotone path polytope correspond to inclusion
maximal nontrivial cellular strings, see Corollary 6.4. Consider an arbitrary cellular
string (F′

1, . . . , F′
k) in O(P).

If the cellular string consists of only one face F′, then F′ is a face containing the
vertices 0 and 1. Every face is contained in a facet and the only facets of O(P)

containing 0 and 1 are the ones defined by cover relations (see Equation (2.25)). So
let F be a facet containing F′ and defined by a cover relation in the poset P. Then
(F) forms a cellular string and since F is a facet the only face of O(P), it is contained
in, is O(P) itself. So (F) is a coarsest nontrivial cellular string as described in (i).
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Now we assume that the cellular string (F′
1, . . . , F′

k) consists of at least two faces,
i.e., k ≥ 2. In the proof of Lemma 6.7, see Equation (6.4), we have shown that every
such cellular string of a 0/1-polytope is contained in a cellular string of the form
(G1 ∩ O(P), . . . , Gk ∩ O(P)), where

Gi := [0, 1]d ∩ {x ∈ Rd : xa = 1 for all a ∈ Ti−1 , xb = 0 for all b ∈ [d] \ Ti}

for ∅ = T0 ⊊ · · · ⊊ Tk = [d].
For i ∈ {1, . . . , k − 1} we set F := Ti, let F1 be the face of O(P) containing

all vertices corresponding to filters contained in F and let F2 be the face of O(P)

containing all vertices corresponding to filters containing in F (as described in (ii)).
Then we have that for 1 ≤ l ≤ i− 1 the faces Gl ∩ Q are contained in F1 and for
i ≤ l ≤ k the faces Gl ∩ Q are contained in F2. Hence, the cellular string (G1 ∩
O(P), . . . , Gk ∩ O(P)) in turn is coarsened by the cellular strings of the form (F1, F2)

as just defined.
It is left to show that these cellular strings cannot be coarsened. First we observe

that F1 is the inclusion-maximal face in O(P) containing the vertices 0 and 1F,
similarly, F2 is the inclusion-maximal face containing the vertices 1F and 1. Hence
the cellular string (F1, F2) cannot be coarsened while retaining the vertex 1F as the
intersection point, i.e., there is no coarser cellular string with two cells.

Let us assume there is a cellular string (F) coarsening (F1, F2). Then F has to
contain F1 and F2. However, F1 ∪ F2 contains a sequence of vertices of O(P) corre-
sponding to a full chain of filters in P passing through F. Such a full chain of filters
defines a liner extension of P, since the difference of two consecutive filters is just
one element (see Section 2.5.5). Hence, these are the vertices of a full-dimensional
simplex in the triangulation of O(P) and the only face that can contain F1 ∪ F2 is
O(P). So the only cellular string coarsening (F1, F2) is the trivial string (O(P)).

We have shown that every cellular string is contained in (at least) one of the cellular
strings described in (i) and (ii), and they are the coarsest nontrivial ones.

Proposition 6.13. Let P = ([d], ⪯) be a partially ordered set. We can write the
monotone path polytope of the order polytope O(P) ⊂ Rd with respect to the linear
functional 1 as the following Minkowski sum:

Σ1(O(P)) =
d−1∑
i=1

(O(P) ∩ Hi) +
1
21 ,

where Hi := {x ∈ Rd : 1(x) = i}.

Proof. We apply Theorem 6.1. The image of 1 : O(P) → R is the line segment [0, d] ⊂
R and vertices of O(P) are mapped to i ∈ Z≥0 for i ≤ d. So, the maximal cells in
the subdivision induced by 1(F) for faces F of O(P) are intervals [i− 1, i] and their
centroids ri are ri =

2i−1
2 for i ∈ {1, . . . , d} and the fibers 1−1(ri) = O(P) ∩ H 2i−1

2
.



⇝

Figure 6.4: Order simplex O(C) (left) and the intersection with the hyperplanes H1 and H2
highlighted in dark blue. The Minkowski sum of those two slices is the poset
permuathedron ΠC (right).

Recall from Equation (6.3) that we defined the monotone path polytope as a dilate
of the original fiber polytope. Then

Σ1(O(P)) = vol([0, d])Σ(O(P), [0, d])

= vol([0, d])
d∑

i=1

vol([i− 1, i])
vol([0, d])

(
O(P) ∩ H 2i−1

2

)

=
d∑

i=1

(
O(P) ∩ H 2i−1

2

)
.

We claim that:

O(P) ∩ H 2i−1
2

= conv
(
(O(P) ∩ Hi−1) ∪ (O(P) ∩ Hi)

)
∩ H 2i−1

2
(6.6)

=
1
2 (O(P) ∩ Hi−1) +

1
2 (O(P) ∩ Hi) . (6.7)

For Equation (6.6), first note that

O(P) ⊇ (O(P) ∩ Hi−1) ∪ (O(P) ∩ Hi) .

This proves one inclusion. For the other inclusion, recall that the vertices of O(P)

are 0/1-vectors and therefore all the vertices are contained in the hyperplanes Hi

for i = 0, 1, . . . , d. Then

O(P) ∩ H 2i−1
2

⊆ H≥
i−1 ∩ O(P) ∩ H≤

i ,

with H≥
i−1 := {x ∈ Rd : 1(x) ≥ i − 1} and H≤

i := {x ∈ Rd : 1(x) ≤ i}. Now,
H≥

i−1 ∩ O(P) ∩ H≤
i defines a polytope, again with all vertices contained in Hi−1 and

Hi. This proves the other inclusion and hence Equation (6.6).
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For Equation (6.7), let x ∈ conv
(
(O(P) ∩ Hi−1) ∪ (O(P) ∩ Hi)

)
∩ H 2i−1

2
be arbi-

trary. Then there are points p1, . . . , pk ∈ O(P) ∩ Hi−1 and q1, . . . , ql ∈ O(P) ∩ Hi,
as well as λ1, . . . ,λk ≥ 0, µ1, . . . ,µl ≥ 0 such that

x =
k∑

j=1
λjpj +

l∑
j=1

µjqj and
k∑

j=1
λj +

l∑
j=1

µj = 1 .

We compute

2i−1
2 = 1(x) =

k∑
j=1

λj1(pj) +
l∑

j=1
µj1(qj) = (i− 1)

k∑
j=1

λj + i
l∑

j=1
µj

= i

(
k∑

j=1
λj +

l∑
j=1

µj︸ ︷︷ ︸
=1

)
−

k∑
j=1

λj = i−
k∑

j=1
λj .

This implies
k∑

j=1
λj =

1
2 =

l∑
j=1

µj .

Then x = 1
2p + 1

2q, where

p :=
k∑

j=1
2λjpj ∈ O(P) ∩ Hi−1 and q :=

l∑
j=1

2µjqj ∈ O(P) ∩ Hi .

Hence, x ∈ 1
2 (O(P)∩ Hi−1) +

1
2 (O(P)∩ Hi). The other inclusion follows from similar

computations.
With Equations (6.6) and (6.7) we have

Σ1(O(P)) =
d∑

i=1

(
O(P) ∩ H 2i−1

2

)
=

d∑
i=1

(1
2 (O(P) ∩ Hi−1) +

1
2 (O(P) ∩ Hi)

)

=
d−1∑
i=1

(O(P) ∩ Hi) +
1
21

Example 6.14. The order polytope of the antichain on d elements is the unit cube
[0, 1]d. With Proposition 6.13 we have:

Σ1([0, 1]d) + 1
21 =

d∑
i=1

(
[0, 1]d ∩ Hi

)
= Πd .

The Minkowski sum of hypersimplices [0, 1]d ∩ Hi is yet another representation of
the standard permutahedron Πd, see, e.g., [Pos09, Section 16].



Proposition 6.15. An irredundant half-space description for the translated mono-
tone path polytope of the order polytope Σ1(O(P)) + 1

21 is given by the following
(in-)equalities:

1(x) =
(
d+ 1

2

)
, (6.8)

1F(x) ≤ fd(F) , for every proper non-empty filter F in P , (6.9)
xa ≤ xb , for all cover relations a ≺· b in P , (6.10)

where fd : 2[d] → R is defined by fd(S) := |S|d− (|S|
2 ).

Proof. We first check that the linear functionals 1F and 1{a} − 1{b} giving the inequal-
ities, are the facet normals for the monotone path polytope of the order polytope
Σ1(O(P)) + 1

21.
Recall from Theorem 6.12 the two types of cellular strings defining facets. Let us

first consider a cellular strings of the form (F1, F2) given by a filter F in P such that
all vertices in F1 correspond to filters contained in F and all vertices in F2 correspond
to filters containing F. From the proof of Lemma 6.7, in particular Equation (6.5), we
get that (F1, F2) is coherent with respect to ψ = 1F. (Here, the perturbation part is
not needed, since Fi = Gi ∩ O(P) for i = 1, 2.) Therefore, following Remark 6.3, the
corresponding facet of the monotone path polytope is given by (Σ1(O(P)) + 1

21)1F .
Similarly, we consider a cellular string of the form (F), where F is a facet of

O(P) given by a cover relation a ≺· b in P. The proof of Lemma 6.7, in particular
Equation (6.5) implies that ψ = 0. However, in this case we need to perturb ψ and
then (F) is coherent with respect to ψ + ϵ(1{a} − 1{b}) = ϵ(1{a} − 1{b}).

Hence, the facet normals are precisely the ones used in the inequalities (6.9) and
(6.10). It is left to check that every point in Σ1(O(P)) + 1

21 fulfills the inequalities
and that for every inequality there are some points that achieve equality.

From Proposition 6.13 we have

Σ1(O(P)) + 1
21 =

d−1∑
i=1

(O(P) ∩ Hi) + 1 ,

where Hi := {x ∈ Rd : 1(x) = i}.
Let x ∈ Σ1(O(P)) + 1

21 be arbitrary. Then there are points pi ∈ O(P) ∩ Hi for
i = 1, . . . , d− 1 such that

x =
d−1∑
i=1

pi + 1 .

Since every point pi ∈ O(P) fulfills the inequalities in (6.10), every finite sum of
points in O(P) does so too (adding 1 does not alter that). For a fixed cover relation,
the facet O(P) ∩ {xa = xb} intersects every hyperplane Hi for i = 1, . . . , d− 1. So
the inequalities in (6.10) are tight. We compute further

1(x) =
d−1∑
i=1

1(pi) + d =
d−1∑
i=1

i+ d =

(
d+ 1

2

)
,
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⇝

Figure 6.5: Order polytope O(P) of a tree poset on three elements (left) and the intersection
with the hyperplanes H1 and H2 highlighted in dark blue. The Minkowski sum
of those two slices is the poset permuathedron ΠP (right).

verifying (6.8), and for arbitrary proper, non-empty filters F

1F(x) =
d−1∑
i=1

1F(pi) + |F|

≤
|F|∑
i=1

i+
d−1∑

i=|F|+1
|F| + |F| =

|F|(|F| + 1)
2 + |F|(d− |F|)

=
|F|(|F| + 1 + 2d− 2|F|)

2 =
|F|(2d− |F| + 1)

2 = |F|d−
(

|F|
2

)
,

verifying the inequalities in (6.9). Again, for a fixed filter, let F1, F2 be the faces
as defined Theorem 6.12(ii). Then F1 ∪ F2 intersects every hyperplane Hi for i =
1, . . . , d− 1 nontrivially, proving the tightness of the inequalities given in (6.9).

Now we are ready to prove the goal of this section: poset permutahedra are (trans-
lates of) monotone path polytopes of order polytopes.

Theorem 6.16. Let P = ([d], ⪯) be a poset. Then the monotone path polytope
of the order polytope with respect to the linear function 1(x) = x1 + · · · + xd is a
translation of the poset permutahedron, i.e., Σ1(O(P)) + 1

21 = ΠP.

Proof. By Proposition 6.15, the translated monotone path polytope of the order
polytope Σ1(O(P)) has the following inequality description:

Σ1(O(P)) + 1
21 = {x ∈ Rd : 1(x) = (d+1

2 )}

∩ {x ∈ Rd : 1Fi
(x) ≤ |F|d− (|F|

2 ) for all proper non-empty filters F}

∩ {x ∈ Rd : xa ≤ xb for all cover relations a ≺· b ∈ P} .



By the definition of the poset permutahedron in Equation (6.1) and the inequality
description of the permutahedron (see Equation (2.17)),

ΠP = Πd ∩ CP = {x ∈ Rd : 1(x) = (d+1
2 )}

∩ {x ∈ Rd : 1T (x) ≤ (d+1
2 ) − (|T |+1

2 ) for all T ⊆ [d]}
∩ {x ∈ Rd : xa ≤ xb for all cover realtions a ≺· b ∈ P}

One can easily check that for any subset T ⊆ [d] and its complement TC := [d] \ T(
d+ 1

2

)
−
(

|T | + 1
2

)
=

(
d+ 1

2

)
−
(
d− |TC | + 1

2

)
= |TC |d−

(
|TC |

2

)
.

Hence, ΠP ⊆ Σ1(O(P)) + 1
21. At the same time, using Example 6.14, we have

Σ1(O(P)) + 1
21 =

d∑
k=1

O(P) ∩ Hk ⊆
d∑

k=1
[0, 1]d ∩ Hk = Σ1([0, 1]d) + 1

21 = Πd .

It follows then that

Σ1(O(P)) = Σ1(O(P)) ∩ {x ∈ Rd : xa ≤ xb for all cover realtions a ≺· b ∈ P}
⊆ Πn ∩ {x ∈ Rd : xa ≤ xb for all cover realtions a ≺· b ∈ P} = ΠP .

Therefore, both inclusions have been shown so that Σ1(O(P)) + 1
21 = ΠP as desired.

6.3 The Face Structure of Poset Permutahedra

In this section we will use the interpretation of poset permutahedra as monotone
path polytopes to describe their face structures. We start by recording a direct
consequence from Proposition 6.15 and Theorem 6.16.

Corollary 6.17. Let P = ([d], ⪯) be a poset. A point x ∈ Rd is contained in ΠP if
and only if

xa ≤ xb for all cover relations a ≺· b (6.11)
1F(x) ≤ fd(F) for all proper, non-empty filters F ⊊ P (6.12)
1(x) = fd([d]) = (d+1

2 ) ,

where fd : 2[d] → R is defined by fd(S) := |S|d− (|S|
2 ). The description is irredundant

and the inequalities are facet defining. Facets defined by (6.11) are called cover facet
and facets defined by (6.12) are called filter facet.

Proposition 6.18. The function fd(S) = |S|d− (|S|
2 ) defined in Proposition 6.15 is

a submodular set function.

Proof. We want to show that for X ⊆ Y ⊆ [d] and x ∈ [d] \ Y

f(X ∪ {x}) − f(X) ≥ f(Y ∪ {x}) − f(Y ) .
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⇝

Figure 6.6: The five 1-monotone path from 0 to 1 in the order polytope O(P) of a tree-poset
P (left) correspond to the five vertices of the poset permutahedron ΠP (right).
Monotone paths in O(P) corresponding to vertices connected by an edge in ΠP

share a 2-face in the order polytope O(P).

Indeed,

f(X ∪ {x}) − f(X) = (|X| + 1)d−
(

|X| + 1
2

)
− |X|d+

(
|X|
2

)

= d+
−(|X| + 1)(|X| + 2) + (|X| + 1)(|X|)

2
= d+ |X| + 1
≥ d+ |Y | + 1 = f(Y ∪ {x}) − f(Y ) .

Recall, for A ⊆ [d], we write AC = [d] \A for the complement.

Theorem 6.19. The vertices of ΠP are in bijection to connected chains of filters F

in P. For F : ∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fk = P, the corresponding vertex is

v(F) =
1
2

k∑
i=1

(
|FC

i | + |FC
i−1| + 1

)
1Fi\Fi−1 . (6.13)

Example 6.20. We consider the example from Figure 6.6. The vertex of ΠP located
at the barycenter of the permutahedron Π3 corresponds to the chain of filters ∅ ⊊ [3].
The two vertices of ΠP that coincide with vertices of Π3 correspond to the full
chains of filters ∅ ⊊ {1} ⊊ {1, 2} ⊊ [3] and ∅ ⊊ {1} ⊊ {1, 3} ⊊ [3], i.e., they
correspond to the two linear extensions. The two vertices of ΠP located on the
edges of Π3 correspond to the connected two chains of filters ∅ ⊊ {1, 2} ⊊ [3] and
∅ ⊊ {1, 3} ⊊ [3].

Proof of Theorem 6.19. From Corollary 2.29 we have that vertices 1F1 and 1F2 of
the order polytope are connected by an edge if and only if F1 ⊆ F2 and the induced
subgraph of the Hasse diagram by F2 \F1 is connected. Such an edge is 1-improving
from F1 to F2, so monotone paths correspond exactly to connected chains of filters.
By Lemma 6.7, all monotone paths are coherent.



The vertex coordinates then follow from direct computation: From Proposition 6.13
and Theorem 6.16 we know that

ΠP = Σ1(O(P)) +
1
21 =

d−1∑
i=1

(O(P) ∩ Hi) + 1 .

Fix a connected chain of filters F : ∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fk = P = [d]. Then there
is a linear functional ψ ∈ Rd certifying coherence for the corresponding monotone
path and the corresponding vertex v(F) is

v(F) = Πψ
P =

d−1∑
i=1

(O(P) ∩ Hi)
ψ + 1 ,

where we use Equation (2.4). Then (O(P) ∩ Hi)
ψ is a point for every i = 1, . . . , d− 1.

If i = |Fl| for some l = 1, . . . , k − 1, then the corresponding vertex in the slice
O(P)∩ Hi is precisely 1Fi

. If |Fl−1| ≤ i ≤ |Fl|, then the vertex added in the Minkowski
sum will be the convex combination

|Fl| − i

|Fl \Fl−1|
1Fl−1 +

i− |Fl−1|
|Fl \Fl−1|

1Fl
= 1Fl−1 +

i− |Fl−1|
|Fl \Fl−1|

1Fl\Fl−1 . (6.14)

Note that the latter description holds in all the cases. In order to compute the vertex
v(F) = Πψ

P we add the vertices given in (6.14) for every i = 1, . . . , d− 1. We ignore
the shift by +1 in the following computation and add it in the end.

k−1∑
l=1

 |Fl|∑
i=|Fl−1|+1

(
1Fl−1 +

i− |Fl−1|
|Fl| − |Fl−1|

1Fl\Fl−1

)
+

d−1∑
i=|Fk−1|+1

(
1Fk−1 +

i− |Fk−1|
d− |Fk−1|

1[d]\Fk−1

)

=
k−1∑
l=1

(|Fl| − |Fl−1|) 1Fl−1 +
|Fl|−|Fl−1|∑

i=1

i

|Fl| − |Fl−1|
1Fl\Fl−1


+ (d− |Fk−1| − 1)1Fk−1 +

d−1−|Fk−1|∑
i=1

(
i

d− |Fk−1|
1[d]\Fk−1

)

=
k−1∑
l=1

(
(|Fl| − |Fl−1|) 1Fl−1 +

|Fl| − |Fl−1| + 1
2 1Fl\Fl−1

)

+ (d− |Fk−1| − 1)1Fk−1 +
d− 1 − |Fk−1|

2 1[d]\Fk−1

(*)
=

k−1∑
l=1

(
(d− 1 − |Fl|)1Fl\Fl−1

)
+

k−1∑
l=1

( |Fl| − |Fl−1| + 1
2 1Fl\Fl−1

)
+
d− 1 − |Fk−1|

2 1[d]\Fk−1

=
k∑

l=1

(d− |Fl|) + (d− |Fl−1|) − 1
2 1Fl\Fl−1 ,
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P

F1
...

Fj

F̃

Fj+1
...

Fk

(a) refining edge

P

F1
...

Fi−1

Fi

Fi+1
...

Fk

(b) coarsening edge

P

F1
...

Fi−1

Fi F̃i

Fi+1
...

Fk

(c) swapping edge

Figure 6.7: Schematic picture of connected chains of filters that correspond to neighboring
vertices of v(F).

where we used
k−1∑
l=1

(
(|Fl| − |Fl−1|)1Fl−1

)
+ (d− 1 − |Fk−1|)1Fk−1 =

k−1∑
l=1

(d− 1 − |Fl|)1Fl\Fl−1

for equality (*). Adding the shift of +1 gives the desired result.

Corollary 6.21. Poset permutahedra are half-integral polytopes. The poset permu-
tahedron ΠP is a lattice polytope if and only if the poset P is an antichain.

Proof. Recall that the poset permutahedron of an antichain is the standard permu-
tahedron, hence a lattice polytope. Let P be a poset with at least one cover relation,
i.e., not an antichain. Choose an element b ∈ P that is maximal and has another
element a ̸= b below it, i.e., a ≺· b is a cover relation and b is a maximal element.
Now consider the filter

Fa := {c ∈ P : a ⪯ c} .

We make a case distinction:
If |Fa| is even, then let ∅ = F0 ⊊ Fa ⊊ . . . be the start of a chain of filters. Note

that Fa \∅ = Fa is connected. Choose the remaining filters so that ∅ = F0 ⊊ Fa ⊊
F2 ⊊ · · · ⊊ Fk = P is a connected chain of filters. Using Equation (6.13) it follows
that the corresponding vertex is half-integral.

If |Fa| is odd, then let ∅ = F0 ⊊ {b} ⊊ Fa ⊊ . . . be the start of a chain of
filters. Note that Fa \ {b} is connected. Similarly, choose the remaining filters so
that ∅ = F0 ⊊ {b} ⊊ Fa ⊊ F3 ⊊ · · · ⊊ Fk = P is a connected chain of filters and
Equation (6.13) implies half-integrality of the corresponding vertex.

We move on to characterizing which vertices v, u ∈ vert(ΠP) are connected by an
edge and computing the edge vector v − u ∈ Rd.

Theorem 6.22. Let ΠP be a poset permutahedron and F : ∅ = F0 ⊊ F1 ⊊ · · · ⊊
Fk = P a connected chain of filters. Then v(F) is adjacent to a vertex v(F′) if and
only if one of the following three cases holds:



(i) there is an 1 ≤ j ≤ k− 1 such that |Fj+1 \ Fj | ≥ 2 and there is a filter F̃ with
Fj ⊊ F̃ ⊊ Fj+1 such that Fj+1 \ F̃ as well as F̃ \ Fj are again connected and
F′ is

F′ : ∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fj ⊊ F̃ ⊊ Fj+1 ⊊ · · · ⊊ Fk = P .

We call these edges refining edges and the corresponding edge vector is

v(F′) − v(F) = 1
2
((

|Fj+1| − |F̃|
)

1
F̃\Fj

+
(
|Fj | − |F̃|

)
1
Fj+1\F̃

)
(6.15)

(ii) there is an 1 ≤ i ≤ k− 1 such that Fi+1 \Fi−1 is connected and F′ is

F′ : ∅ = F0 ⊊ · · · ⊊ Fi−1 ⊊ Fi+1 ⊊ · · · ⊊ Fk = P . (6.16)

We call these edges coarsening edges and the corresponding edge vector is

v(F′) − v(F) = 1
2
(
(|Fi| − |Fi+1|) 1Fi\Fi−1 + (|Fi| − |Fi−1|) 1Fi+1\Fi

)
.

(iii) there is an 1 ≤ i ≤ k − 1 such that Fi+1 \ Fi−1 consists of two connected
components and F′ is

F′ : ∅ = F0 ⊊ · · · ⊊ Fi−1 ⊊ Fi−1 ∪ (Fi+1 \Fi) ⊊ Fi+1 ⊊ · · · ⊊ Fk = P .
(6.17)

We call these edges swapping edges and the corresponding edge vector is

v(F′) − v(F) = (|Fi| − |Fi+1|) 1Fi\Fi−1 + (|Fi| − |Fi−1|) 1Fi+1\Fi
. (6.18)

Proof. Note that every refining edge from v(F) to v(F′) is a coarsening edge from
v(F′) to v(F). Therefore, it is enough to show that coarsening and swapping as
described above actually define edges in the poset permutahedron ΠP and vice versa
that every edge in the poset permutahedron ΠP is either a coarsening edge or a
swapping edge.

Let F : ∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fk = P be a connected chain of filters. Note
that Fi+1 \ Fi−1 = (Fi+1 \ Fi) ∪ (Fi \ Fi−1) is a union of two subposets, each one
being connected. So the number of connected components in Fi+1 \ Fi−1 is either
one or two. The vertex v(F) is given by the cellular string, i.e., monotone path,
C = (f1, . . . , fk), where fi = conv(1Fi−1 , 1Fi

).

0

f1
1F1 1Fi−2

fi−1

1Fi−1

fi

1Fi

Fi

f̂i

fi+1

1Fi+1

fi+2

1Fi+2 1Fk−1

fk
1

Figure 6.8: Schematic picture of cellular strings defining a coarsening edge: two cellular
strings C = (f1, . . . , fk) and C′ = (f1, . . . , fi−1, f̂i, fi+2, . . . , fk) corresponding to
vertices v(F) and v(F′) in ΠP that are connected by a coarsening edge, which
corresponds to the cellular string Ci = (f1, . . . , fi−1, Fi, fi+2, . . . , fk).
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0
f1

1F1 1Fi−2

fi−1
1Fi−1

fi

1Fi

Gi

f̂i
1
F̃i

f̂i+1

fi+1

1Fi+1

fi+2
1Fi+2 1Fk−1

fk
1

Figure 6.9: Schematic picture of cellular strings defining a swapping edge: two cellular strings
C = (f1, . . . , fk) and C′ = (f1, . . . , fi−1, f̂i, f̂i+1, fi+2, . . . , fk) corresponding to ver-
tices v(F) and v(F′) in ΠP that are connected by a swapping edge, which cor-
responds to the cellular string Di = (f1, . . . , fi−1, Gi, fi+2, . . . , fk). Recall that
F̃i := Fi−1 ∪ (Fi+1 \Fi).

First assume that 1 ≤ i ≤ k− 1 is such that Fi+1 \Fi−1 is connected. Then there
is a 2-face Fi = conv(1Fi−1 , 1Fi

, 1Fi+1). Indeed, this 2-face is given by the connected
and compatible partition {Fi−1 ∪ {1̂},Fi \Fi−1,Fi+1 \Fi, (P \Fi+1)∪ {0̂}} (compare
Theorem 2.25). Now, we define a the cellular string Ci = (f1, . . . , fi−1, Fi, fi+2, . . . , fk).
See Figure 6.8 for a schematic illustration. Clearly, the cellular string C = (f1, . . . , fk)
is contained in Ci. The vertex v(F′) defined by the coarser chain of filters F′ in
Equation (6.16) is given by the cellular string C′ = (f1, . . . , fi−1, f̂i, fi+2, . . . , fk), where
f̂i = conv(1Fi−1 , 1Fi+1) and the remaining edges are as in C. Again, the cellular string
C′ is contained in Ci. Moreover, C and C′ are the only cellular strings refining Ci. Then
v(F) and v(F′) are the only vertices in the face given by the cellular string Ci, so this
face is an edge as claimed.

Second, assume that 1 ≤ i ≤ k − 1 is such that Fi+1 \ Fi−1 consists of two con-
nected components. We denote F̃i := Fi−1 ∪ (Fi+1 \Fi). Then there exists a 2-face
Gi = conv(1Fi−1 , 1Fi

, 1
F̃i

, 1Fi+1). Indeed, this 2-face is given by the connected and
compatible partition {Fi−1 ∪ {1̂} , Fi \Fi−1 , Fi+1 \Fi , (P \Fi+1)∪ {0̂}} (see Theo-
rem 2.25). As above, we define a the cellular string Di = (f1, . . . , fi−1, Gi, fi+2, . . . , fk).
See Figure 6.9 for a schematic illustration. Clearly, the cellular string C = (f1, . . . , fk)
is contained in Di. The vertex v(F′) defined by the chain of filters F′ as defined in
Equation (6.17) is given by the cellular string C′ = (f1, . . . , fi−1, f̂i, f̂i+1, fi+2, . . . , fk),
where f̂i = conv(1Fi−1 , 1

F̃i
) and f̂i+1 = conv(1

F̃i
, 1Fi+1) and the remaining edges are

as in C. Again, the cellular string C′ is contained in Di. Moreover, C and C′ are the
only cellular strings refining Di. Then v(F) and v(F′) are the only vertices in the
face given by the cellular string Di, so this face is an edge as claimed.

Vice versa, every edge in the montone path polytope of an order polytope Σ1(O(P))

arises that way. Indeed, let C = (F1, . . . , Fk) be a cellular string in O(P) that cor-
responds to an edge in the monotone path polytope. Then C contains precisely two
cellular strings Cv, Cu refining it and they correspond to the two vertices v, u of
the edge f in the monotone path polytope Σ1(O(P)) + 1

21, hence the two cellular
strings Cv, Cu are monotone paths. Therefore Cf contains exactly one 2-face Fi for
one i ∈ {1, . . . , k} and the remaining faces Fj for j ̸= i are edges. This 2-face Fi is
either a triangle or a quadrilateral (Corollary 2.30), giving rise to the two cases as
described.



Finally we compute the edge vectors using Equation (6.13). For refining edges (i)
we compute v(F′) − v(F):

1
2

( j∑
l=1

(n− |Fl| + n− |Fl−1| + 1) 1Fl\Fl−1 + (n− |F̃| + n− |Fj | + 1)1
F̃\Fj

+ (n− |Fj+1| + n− |F̃| + 1)1
Fj+1\F̃ +

k∑
l=j+2

(n− |Fl| + n− |Fl−1| + 1) 1Fl\Fl−1

)

− 1
2

k∑
l=1

(n− |Fl| + n− |Fl−1| + 1) 1Fl\Fl−1

=
1
2

((
n− |F̃| + n− |Fj | + 1

)
1
F̃\Fj

+
(
n− |Fj+1| + n− |F̃| + 1

)
1
Fj+1\F̃

− (n− |Fj+1| + n− |Fj | + 1) 1Fj+1\Fj

)

=
1
2
((

|Fj+1| − |F̃|
)

1
F̃\Fj

+
(
|Fj | − |F̃|

)
1
Fj+1\F̃

)
,

where we use that Fj+1 \Fj = (Fj+1 \ F̃) ⊔ (F̃ \Fj) is a disjoint union.
For coarsening edges (ii) we compute v(F′) − v(F):

1
2

(
i−1∑
l=1

(n− |Fl| + n− |Fl−1| + 1) 1Fl\Fl−1 +
k∑

l=i+2
(n− |Fl| + n− |Fl−1| + 1) 1Fl\Fl−1

+ (n− |Fi+1| + n− |Fi−1| + 1) 1Fi+1\Fi−1

)
− 1

2

k∑
l=1

(n− |Fl| + n− |Fl−1| + 1) 1Fl\Fl−1

=
1
2

(
(n− |Fi+1| + n− |Fi−1| + 1) 1Fi+1\Fi−1

− (n− |Fi| + n− |Fi−1| + 1) 1Fi\Fi−1 − (n− |Fi+1| + n− |Fi| + 1) 1Fi+1\Fi

)

=
1
2
(
(|Fi| − |Fi+1|) 1Fi\Fi−1 + (|Fi| − |Fi−1|) 1Fi+1\Fi

)
.

where we use that Fi+1 \Fi−1 = (Fi+1 \Fi) ⊔ (Fi \Fi−1) is a disjoint union.
To compute edge vectors for swapping edges (iii) we denote F̃i := Fi−1 ∪ (Fi+1 \Fi)

and note that

F̃i \Fi−1 = Fi+1 \Fi and Fi+1 \ F̃i = Fi \Fi−1 .
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Now we compute v(F′) − v(F)

1
2

(
i−1∑
l=1

(n− |Fl| + n− |Fl−1| + 1) 1Fl\Fl−1

+
(
n− |F̃i| + n− |Fi−1| + 1

)
1
F̃i\Fi−1

+
(
n− |Fi+1| + n− |F̃i| + 1

)
1
Fi+1\F̃i

+
k∑

l=i+2
(n− |Fl| + n− |Fl−1| + 1) 1Fl\Fl−1

)
− 1

2

k∑
l=1

(n− |Fl| + n− |Fl−1| + 1) 1Fl\Fl−1

=
1
2

((
n− |F̃i| + n− |Fi−1| + 1

)
1
F̃i\Fi−1

+
(
n− |Fi+1| + n− |F̃i| + 1

)
1
Fi+1\F̃i

− (n− |Fi| + n− |Fi−1| + 1) 1Fi\Fi−1 − (n− |Fi+1| + n− |Fi| + 1) 1Fi+1\Fi

)

=
1
2

((
|Fi| + |Fi−1| − |Fi+1| − |F̃i|

)
1Fi\Fi−1 +

(
|Fi+1| + |Fi| − |F̃i| − |Fi−1|

)
1Fi+1\Fi

)

= (|Fi| − |Fi+1|) 1Fi\Fi−1 + (|Fi| − |Fi−1|) 1Fi+1\Fi

Example 6.23. We revisit the example from Figure 6.6, see also Example 6.20. The
vertices v(∅ ⊊ {1} ⊊ {1, 2} ⊊ [3]) and v(∅ ⊊ {1} ⊊ {1, 3} ⊊ [3]) are connected
by a swapping edge. Note, in higher dimensions swapping edges do not necessarily
coincide with edges of the standard permutahedron Πd. A coarsening resp. refining
edge can be found, e.g., between the vertices v(∅ ⊊ [3]) and v(∅ ⊊ {1, 2} ⊊ [3]).

From Theorem 6.12 and Corollary 6.17 we can also derive explicit vertex-facet
incidences for the poset permutahedron ΠP.

Corollary 6.24. A vertex given by the connected chain of filters ∅ = F0 ⊊ F1 ⊊
· · · ⊊ Fk = P is contained in the facets corresponding to

1. the proper non-empty filters F1, . . . ,Fk−1 and

2. cover relations a ≺· b such that a, b ∈ Fi+1 \Fi for some i ∈ {0, 1, . . . , k− 1}.

Applying this characterization together with a counting argument enables us to
characterize the simple poset permutahedra.

Theorem 6.25. A poset permutahedron ΠP is a simple polytope if and only if the
undirected Hasse diagram of P is a forest.

Proof. Suppose first that ΠP is simple, i.e., every vertex is contained in exactly
|P| − 1 = d− 1 facets. Let P1, . . . ,Pc denote the connected components of P and
define Fi =

⋃i
l=1 Pi for i = 0, . . . , c. Then F : ∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fc is a connected

chain of filters and the poset permutahedron has a corresponding vertex v(F). The
Hasse diagram of Pi has at least |Pi| − 1 edges (since it is connected), so Pi contains



at least |Pi| − 1 cover relations. The vertex v(F) is contained in facets corresponding
to the cover relations in every connected component Pi, i.e., at least

c∑
l=1

(|Pi| − 1) = −c+
c∑

l=1
|Pi| = |P| − c

facets corresponding to cover relations. Moreover, the vertex v(F) is contained in
precisely c− 1 facets corresponding to the proper non-empty filters in F. In total
these are at least |P| − 1 facets, since ΠP is simple, the vertex v(F) is contained in
exactly |P| − 1 = d− 1 facets. Hence, every Hasse diagram of a connected component
Pi has the minimum number of edges and therefore is a tree.

For the other direction, suppose that P is a forest. Let ∅ = F0 ⊆ F1 ⊆ · · · ⊆
Fk = P be an arbitrary connected chain of filters corresponding to vertex v of ΠP.
We count cover facets and filter facets separately (see Corollary 6.17). First observe
that the number of filter facets containing v is k − 1. Then the set of cover facets
containing v corresponds precisely to the set of cover relations in Fi \ Fi−1 for each
i = 1, . . . , k. Since the Hasse diagram of Fi \ Fi−1 is connected, it is a tree and has
precisely |Fi| − |Fi−1| − 1 edges. Therefore, the number of cover facets containing
v is exactly ∑k

i=1 |Fi| − |Fi−1| − 1 = |Fk| − |F0| − k = d− k. This means that v is
contained in total in d− k+ k− 1 = d− 1 facets, as desired.

6.4 Subdivision, Volumes and Integer Points

In this section we will see a beautiful subdivision of poset permutahedra into combi-
natorial cubes, use this to compute volumes and give combinatorial interpretations
for the integer points in poset permutahedra.

Recall that a linear extensions T of P is a refinement of ⪯ to a total order [d] and
that we denote the set of linear extensions of P by L(P). Recall from Section 2.5.5
that the order polytope of a linear extension T is a simplex. Recall furthermore that
{C(T) : T ∈ L(P)} forms a subdivision of the order cone C(P) and that this induces
a triangulation {O(T) : T ∈ L(P)} of O(P). This argument carries over to poset
permutahedra.

Theorem 6.26. For any poset P, the set {ΠT : T ∈ L(P)} is a subdivision of ΠP.

Note that from the monotone path polytope perspective, this is a non-obvious
statement. See Figure 6.10 and Figure 6.11 for illustrations in low dimensions. As
mentioned in Example 6.6(ii), monotone path polytopes of simplices are combinato-
rial cubes, so the subdivision in Theorem 6.26 consists of combinatorial cubes, hence
it is a cubical subdivision. However, the cells are far from being zonotopes.

If P is the antichain on d elements, then the symmetric group Sd acts sim-
ply transitively2 on L(P) and shows that any two ΠT are isometric. In particular
vol(ΠT) = 1

d! vol Πd. The volume of Πd is famously known to be the number of
spanning trees of the complete graph on d nodes, i.e., dd−2.

2 I.e., for any two T1,T2 ∈ L(P) there exists a unique σ ∈ Sd such that T1 = σ ↷ T2.
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Figure 6.10: Up to symmetry all the poset permutahedra for posets on three elements (except
the permutahedron itself) with their subdivisions induced by linear extensions
of the poset.

Figure 6.11: A chain permutahedron (left) and a poset permutahedron for a poset on four
elements with two linear extensions and the induced subdivision into two chain
permutahedra.

Corollary 6.27. For a poset P on [d], the volume of ΠP is dd−2

d! |L(P)|. In particular,
the probability that a random point of Πd is in ΠP is precisely the probability that a
random permutation is a linear extension of P.

In this section we want to analyse the number and structure of integer points in
poset permutahedra and their dilates. We start with the chain permutahedron and
show that in that case the integer points are related to score sequences.

A score sequence is an integer sequence 0 ≤ s1 ≤ · · · ≤ sd ≤ n− 1 that is
a possible result of an d-team round-robin tournament, that is, every team plays
against each other team and gets one point if it wins. For d = 2 the only score
sequence is 0 ≤ 1 and for d = 3 we have two score sequences: 0 ≤ 1 ≤ 2 and 1 ≤ 1 ≤ 1.
Equivalently, a score sequence is a non-decreasingly ordered indegree sequence of a
directed complete graph on d-nodes, such a graph is called a tournament Td. Note
that there are non-isomorphic tournaments that result in the same score sequence.
For a more detailed introduction to score sequences see, e.g., [Moo13].

The following theorem is a classical result by Landau (1953) to characterize score
sequences.

Theorem 6.28 ([Lan53]). A sequence s1 ≤ · · · ≤ sd of integers is a score sequence
of a tournament if and only if

d∑
i=1

si =

(
d

2

)
and

d∑
i=k+1

si ≤
(
d

2

)
−
(
k

2

)
. (6.19)



Figure 6.12: Chain permutahedra for chains on three elements (left) and four elements
(right), together with their two, resp. four, integer points corresponding to the
score sequences of tournaments with three, resp. four, teams in yellow.

Corollary 6.29. The integer points in the translated chain permutahedron ΠCd
− 1

are precisely the score sequences of length d.

Proof. With Corollary 6.17 we can easily compute that a point is in ΠCd
− 1 if and

only if it fulfills the (in-)equalities in (6.19):

fd([d]) − d =

(
d+ 1

2

)
− d =

(
d

2

)

and since filters in the d-chain are precisely sets of the form {k + 1, . . . , d} for k =

0, . . . , d− 1 we compute

f({k+ 1, . . . , d}) − 1{k+1,...,d}(1) = (d− k)d−
(
d− k

2

)
− (d− k) =

(
d

2

)
−
(
k

2

)
.

A score vector is a tuple of integers t = (t1, . . . , td), where ti records the number
of points that team i wins during the tournament. For d = 2 there are two score
vectors: (0, 1) and (1, 0); for d = 3 we have 7 score vectors: (1, 1, 1) and the six
permutations of (0, 1, 2). Note that the score vectors of length d are precisely the
integer points in the translated permutahedron Πd − 1.

For a poset P on [d] we define a P-score vector as a tuple of integers (s1, . . . , sd) ∈
{0, 1, . . . , d− 1}d that is a possible result of a d-team round-robin tournament under
the condition that si ≤ sj whenever i ⪯P j is a relation in the poset P. Hence for a
chain C the C-score vectors are precisely the score sequences and for an antichain A

the A-score vectors are all possible permutations of score sequences, i.e., the score
vectors.

Corollary 6.30. The integer points in a poset permutahedron ΠP − 1 correspond
to P-score vectors.

Proof. This follows from subdividing the poset poermutahedron ΠP according to its
linear extensions (Theorem 6.26).
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Figure 6.13: Poset permutahedra for posets on three elements (left) and four elements (right)
with two linear extensions, together with their three, resp. six, integer points
corresponding to the P-score vectors highlighted in yellow.

Proposition 6.31. The integer points in the n-th dilate of the chain permutahedron
n · (ΠCd

− 1) ∩ Zd correspond to score sequences of an d-team round-robin tourna-
ment, where in each game n points are distributed between the two teams.

Proof. First note that integer points in n · ΠCd
are in bijection with points in ΠCd

∩
1
n · Zd. We can now apply a result by John Moon [Moo63]: Consider a generalized
tournament, that is, in the game between team i and team j for i < j we award
a score of αij to team i and a score of 1 − αij to team j for some real number
αij ∈ [0, 1]. Now a sequence of real numbers (s1 ≤ s2 ≤ · · · ≤ sd) is the resulting
score sequence of a generalized tournament if and only if the conditions in (6.19)
hold true. So any real point in ΠC is a score sequence of a generalized tournament as
described above. Hence the claim follows from restricting values for αij to integral
multiples of 1

n .

Combinatorially we can interpret integer points in n · ΠCd
as indegree sequences

of graphs with n arcs between any pair of the d nodes in the graph. For n ∈
{1, 2, . . . , 10} the number of integer points in n · ΠCd

for increasing d are recorded
on the On-Line Encyclopedia of Integer Sequences [OEI] entries A000571, A007747,
A047729-A047731, and A047733-A047737.

Theorem 6.32. For a finite poset P the integer points in the n-th dilate of the
poset permutahedron n · (ΠP − 1) ∩ Zd correspond to P-score vector of a d-team
round-robin tournament, where in each game n points are distributed between the
two teams.

A polytope P is said to have the integer decomposition property (idp) if for
every integer point p ∈ nP in the n-th dilate of the polytope, n ∈ Z>0, there are n
points q1, . . . , qn ∈ P ∩ Zd such that p = q1 + · · · + qn.

From Theorem 6.32 one might think that ΠP has the integer decomposition prop-
erty. However, this is not (quite) true, see Corollary 6.33 below. We will give two
explanations for that, one geometric and one combinatorial:

Poset permutahedra (except the permutahedron itself) are rational polytopes
(Corollary 6.21) and rational polytopes can never have the idp. Indeed, for a ra-
tional polytope P ⊂ Rd, let v ∈ vert(P) be a rational vertex of P. Then there
exists n ∈ Z>0 such that nv ∈ nP ∩ Zd. If P had the idp, then there would be

https://oeis.org/A000571
https://oeis.org/A007747
https://oeis.org/A047729
https://oeis.org/A047731
https://oeis.org/A047733
https://oeis.org/A047737


q1, . . . , qn ∈ P ∩ Zd such that nv = q1 + · · ·+ qn. Then v = 1
n (q1 + · · ·+ qn) would

be a nontrivial convex combination, contradicting v being a vertex of P.
Combinatorially, we can consider score sequences for a game with two points

awarded. Here, a tie is possible, but this cannot be expressed as the sum score
sequences of two games with only one point awarded if we do not allow both players to
win, as is the case for score sequences, i.e., integer points in the chain permutahedron.

Corollary 6.33. Let P be a poset. Then 2(ΠP − 1) (equivalently 2ΠP) has the
integer decomposition property (idp).

Proof. By Theorem 6.26 it is enough to show the claim for chain permutahedra
ΠT. Recall that we can interpret integer points in nΠT as score sequences of multi-
tournaments, i.e., indegree sequences of graphs with n directed edges between any
two nodes. Therefore we can decompose every such multi-tournament for 2n into n
tournaments with two directed edges between any pair of nodes.

We end this section by briefly discussing strong tournaments and their potential
connections. A tournament Td on d nodes is called strongly connected or strong
if between any two distinct nodes there exists a directed path. Let s1 ≤ · · · ≤ sd be
the score sequence of a tournament Td, then the tournament Td is reducible if and
only if ∑k

i=1 si = (k
2) holds for some k ∈ [d− 1]. See also [SB12].

Theorem 6.34 ([Moo13, Theorem 2]). A tournament is strong if and only if it is
irreducible.

Corollary 6.35. A score sequence s1 ≤ · · · ≤ sd corresponds to a strong tournament
if and only if the integer point (s1, . . . , sd) is not contained in any filter facet of the
chain permutahedron ΠCd

.

For increasing dimension, i.e., increasing number of teams d in the tournament the
number of strong score sequences is recorded in [OEI, A351822]. See also [Cla+23].

Conjecture 6.36. The number of irreducible score sequences for a tournament with
d teams equals the leading h∗

Z-coefficient of ΠCd
.

6.5 Partitioned Permutahedra

In a recent paper, Horiguchi, Masuda, Shareshian, and Song [Hor+24b] defined par-
titioned permutahedra. They study these polytopes in the context of cohomology
rings of the associated toric variety and regular Hessenberg varieties. In [Hor+24b]
the setting is slightly more general, including parabolic subgroups of Weyl groups
associated with Coxeter root systems of type An, Bn, Cn, and Dn.

In this section we show how partitioned permutahedra (in type A) are a special
case of our poset permutahedra and recover some of the results in [Hor+24b] using
only combinatorial and polyhedral techniques.

To define partitioned permutahedra, Horiguchi, Masuda, Shareshian, and Song
first define a linear half-space for each a ∈ [d− 1] given by

H(a) := {x ∈ Rd : xa ≤ xa+1} .

https://oeis.org/A351822
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For each subset K ⊆ [d− 1], they define the partitioned permutahedron Πd(K)

via
Πd(K) := Πd ∩

⋂
a∈K

H(a).

However, in [Hor+24b] the permutahedron ΠSd
(in type A) is defined more general

as the convex hull of the Sd-orbit of a point x = (x1, . . . , xd) with xi ̸= xj for
every i ̸= j. We choose a particularly nice geometric realization with x = (1, . . . ,n)
here. All of the geometric realizations are normally, and hence also combinatorially,
equivalent. Except for Corollary 6.43 every statement in this section is about the
combinatorial structure of partitioned permutahedra.

For every such subset K ⊆ [d− 1], we associate the poset P(K) = ([d], ⪯) with
cover relations given by a ≺· a+ 1 if a ∈ K. The following proposition is a direct
consequence of our definition of poset permutahedra and P(K).

Proposition 6.37. For every K ⊆ [d− 1], we have Πd(K) = ΠP(K).

Now results on facets, vertices and incidences in [Hor+24b] are recovered by The-
orem 6.19, Corollary 6.17, and Corollary 6.24. From the observation that P(K) is
a disjoint union of chains and Theorem 6.25 we directly obtain the following Corol-
lary 6.38. This was also noted in [Hor+24b, page 84].

Corollary 6.38. Partitioned permutahedra are simple polytopes.

In [Hor+24b, Proposition 7.4] the authors give a description of the h-vector of
Πd(K) in terms of descent statistics restricted to the permutations σ of [d] with
σ−1(a) − σ−1(a+ 1) ≤ 1 for all a ∈ K. This is shown by applying results on the co-
homology of Hessenberg varieties. We give a combinatorial proof using the geometry
of poset permutahedra (proof of Theorem 6.40). We start by establishing a bijection
between the vertices of the partitioned permutahedron ΠP(K) and the permutations
in W (K).

Proposition 6.39. For K ⊆ [d− 1], there exists a bijection between the following
sets:

1. The set of vertices of the partitioned permutahedron Πd(K) = ΠP(K).

2. The set

W (K) := {σ ∈ Sd : σ−1(a) − σ−1(a+ 1) ≤ 1 for all a ∈ K} . (6.20)

Proof. We first construct a map from the set of connected chains in P(K) to the
subset W (K) of permutation on [d] as defined in Equation (6.20). Let F : ∅ = F0 ⊊
F1 ⊊ · · · ⊊ Fk = P(K) be a connected chain of filters, i.e.,

Fi \Fi−1 = {ai, ai + 1, . . . , ai + fi − 1} with |Fi| =: fi (6.21)



is a connected part of a chain. We construct a permutation σ in the following way:

σ(d) := a1,
σ(d− 1) := a1 + 1,

...
σ(d− f1 + 1) := a1 + f1 − 1

σ(d− f1) := a2,
σ(d− f1 − 1) := a2 + 1,

...
σ(d− f1 − f2 + 1) := a2 + f2 − 1

σ(d− f1 − f2) := a3

...
σ(d− f1 − · · · − fk−1 + 1) := ak−1 + fk−1 + 1,

σ(d− f1 − · · · − fk−1) := ak,
σ(d− f1 − · · · − fk−1 − 1) := ak + 1,

...
σ(1) = σ(d− f1 − · · · − fk + 1) := ak + fk − 1 .

(6.22)

For every a ∈ K we need to check that

σ−1(a) − σ−1(a+ 1) ≤ 1 .

If {a, a+ 1} ⊆ Fi \ Fi−1 for some i = 1, . . . , k the we have σ−1(a) − σ−1(a+ 1) = 1
by the construction in Equation (6.22). If {a, a+ 1} ⊈ Fi \Fi−1 for every i = 1, . . . , k,
then, since a ≺· a+ 1 is a cover relation in P(K), we have that a ∈ Fi and a+ 1 ∈ Fj

for some i > j. Then we have σ−1(a) < σ−1(a+ 1) again by the construction in
Equation (6.22). So, we have a well-defined map from the set of connected chains in
the poset P(K) into the permutations in W (K). It is easy to see that this map is
injective.

We now construct an inverse map, i.e., for a permutation σ ∈ Sd, we build a chain
of filters in P(K) inductively. See Figure 6.14 for an example. We set F0 = ∅. For
i ≥ 0, as long as Fi ̸= [d] = P(K), let b be maximal such that σ(b) /∈ Fi and let Fi+1
be the unique (inclusion-)minimal filter containing σ(b) ∪ Fi. Note that Fi ⊊ Fi+1
and since [d] = P is finite, this induction terminates after (say) k steps. We need
to check, that this defines a connected chain of filters, i.e., that for i = 1, . . . , k we
have that Fi \ Fi−1 is connected. Indeed, for i = 1, we consider σ(d) =: a1. Then
the unique smallest filter containing σ(d) = a1 is

F1 = {a ∈ P(K) : a1 ⪯ a}

and F1 \F0 = F1 is trivially connected.
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1 = σ(3)

2 = σ(2)

3 = σ(1)

4 = σ(5)

5 = σ(4)

Figure 6.14: Pictured is an illustration of the bijection g used in the proofs of Proposition 6.39
and Theorem 6.40 for the permutation 32154. First consider σ(5) = 4. Then
the smallest filter containing it is {4, 5}. The largest element whose image is not
covered is 3. Since σ(3) = 1, and the smallest remaining filter containing 1 is the
whole chain. This yields the resulting chain fo filters ∅ ⊊ {4, 5} ⊊ {1, 2, 3, 4, 5}.

For i ≥ 1, let b be maximal such that ai+1 := σ(b) /∈ Fi. Then the unique minimal
filter containing σ(b) ∪Fi is

Fi+1 = {a ∈ P(K) \Fi : ai+1 ⪯ a} ∪ Fi .

We have Fi+1 \Fi = {a ∈ P(K) \Fi : ai+1 ⪯ a} and this is connected. Note that, this
map is well-defined on every permutation σ ∈ Sd, however it is not injective on Sd and
we will only use it on W (K) = {σ ∈ Sd : σ−1(a) − σ−1(a+ 1) ≤ 1 for all a ∈ K}.

It is left to check that these two constructions are indeed inverses of each other.
Start with a connected chain of filters as defined in Equation (6.21) and construct
the permutation σ ∈ W (K) as given in Equation (6.22). Now apply the construction
given to define a chain of filters, then we have

F1 = {a ∈ P(K) : a1 ⪯ a} = {a1, a1 + 1, . . . , a1 + f1 − 1}

and for i ≥ 1

Fi+1 = {a ∈ P(K) \Fi : ai+1 ⪯ a} ∪ Fi = {ai, ai + 1, . . . , ai + fi − 1} ∪ Fi

as desired. Similar arguments hold for the reverse concatenation of constructions.
Hence, this defines a bijection.

Recall that a descent in a permutation σ ∈ Sd is a position b ∈ [d] such that
σ(b) > σ(b+ 1). Similarly, an ascent in a permutation σ ∈ Sd is a position b ∈ [d]

such that σ(b) < σ(b+ 1). We denote the number of descents in a permutation σ

by des(σ), i.e., des(σ) := |{b ∈ [d− 1] : σ(b) > σ(b+ 1)}|.

Theorem 6.40 ([Hor+24b, Proposition 7.4]). The h-polynomial of the partitioned
permutahedron for K ⊆ [d− 1] is given by

hΠd(K)(t) =
∑

σ∈W (K)

tdes(σ) ,



where W (K) is the set of permutations σ such that σ−1(a)− σ−1(a+ 1) ≤ 1 for all
a ∈ K and des(σ) denotes the number of descents in σ.

Proof. Recall from Equation (2.1) in Section 2.1 that we can compute the h-vector
of a simple polytope by choosing an edge-generic linear functional ω : Rd → R,
which induces an acyclic orientation on the graph of the polytope P and counting
the number of vertices with i adjacent vertices that are ω-improving.

After applying Proposition 6.39, it is left to show that there exists a linear func-
tional ω such that the out-degree for every vertex v ∈ ΠP(K) equals the num-
ber of descents in the corresponding permutation σv ∈ W (K). We claim that
ω(x) :=

∑d
l=1 2lxl for is such a linear functional.

Let us fix an arbitrary vertex v, the corresponding chain of connected filters
Fv : ∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fk = P(K) with filters defined as in Equation (6.21), and
the corresponding permutation σv ∈ W (K) as defined in Equation (6.22).

Recall that ΠP(K) is simple and (d − 1)-dimensional and hence very vertex is
incident to d− 1 edges. Recall also from Theorem 6.22 the three different types of
edges: refining, coarsening, and swapping. With a similar counting argument as in
the proof of Theorem 6.25 we can argue that these d− 1 edges are given by

(i) d− k refining edges, one for each cover relation ā ≺· ā+ 1 contained in some
Fj+1 \Fj for j = 0, . . . , k− 1,

(ii)&(iii) k− 1 coarsening or swapping edges, one for every i ∈ {1, . . . , k− 1}, where the
type depends on the number of connected components in Fi+1 \Fi−1.

We can map every edge bijectively to a unique position in [d− 1] in the permuta-
tion σv in the following way:

(i) for every cover relation ā ≺· ā+ 1 contained in a filter, we map the refining
edge to position σ−1

v (ā+ 1),

(ii)&(iii) for every i ∈ {1, . . . , k− 1} we map the coarsening or swapping edge to position
σ−1

v (ai+1) (recall Equation (6.21)).

Note that we do not use position d = σ−1(a1) but every other position exactly once,
so this is a well defined bijection as claimed.

We will now characterize those edges mapped to descent positions and those
mapped to ascent positions. Finally, we will compute for each edge whether it is
ω-improving and see that the ω-improving ones are precisely those mapped to de-
scent positions.

(i) Let ā ≺· ā+ 1 be a cover relation contained in a difference of filters Fj+1 \ Fj ,
i.e., {ā, ā+ 1} ⊆ Fj+1 \Fj = {aj+1, . . . , aj+1 + fj+1 − 1}. Then the correspond-
ing refining edge is mapped to the descent in the permutation σv at position
σ−1

v (ā+ 1), Equation (6.22).

(ii) If Fi+1 \Fi−1 is connected for some i = 1, . . . , k− 1, then deleting the filter Fi

from the chain of filters defines a coarsening edge (see Theorem 6.22(ii)). Then
this defines an ascent in σv at position σ−1

v (ai+1).
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Indeed, recall from Equation (6.22) that σv(d − f1 − · · · − fi) = ai+1 and
σv(d − f1 − · · · − fi + 1) = ai + fi − 1. Since Fi ⊊ Fi+1 and Fi+1 \ Fi−1 is
a connected chain, it follows that

ai+1 ≤ max(Fi+1\Fi
) = ai+1 + fi+1 − 1 < minFi = ai ≤ ai + fi − 1 .

Hence σv(d− f1 − · · · − fi) < σv(d− f1 − · · · − fi + 1) and the permutation σv
has an ascent at position d− f1 − · · · − fi = σ−1

v (ai+1).

(iii) If Fi+1 \Fi−1 has two connected components for some i = 1, . . . , k− 1, there is
a swapping edge as defined in Theorem 6.22(iii). Recall from Equation (6.22)
that σ−1

v (ai+1) = d− f1 − · · · − fi and that σv(d− f1 − · · · − fi + 1) = ai +

fi − 1 again we need to compare ai+1 and ai + fi − 1:
a) If ai+1 < ai, then also ai+1 < ai + fi − 1 and the permutation σv has an

ascent at position σ−1
v (ai+1) = d− f1 − · · · − fi.

b) If ai+1 > ai, then is also follows that ai+1 > ai + fi − 1 since {ai, . . . , ai +

fi − 1} is an interval of consecutive elements in [d− 1]. So, the permuta-
tion σv has a descent at position σ−1

v (ai+1) = d− f1 − · · · − fi.

We now check that exactly the edges mapped to descent positions are ω-improving:

(i) At this cover relation the connected chain of filters F can be refined to a chain
of filter F′ as follows:

∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fj ⊊ F̃ ⊊ Fj+1 ⊊ · · · ⊊ Fk = P(K) ,

where F̃ := {a ∈ P(K) : ā+ 1 ≤ a} ∪ Fj . Then,

F̃ \Fj = {ā+ 1, . . . , aj+1 + fj+1 − 1}

and Fj+1 \ F̃ = {aj+1, . . . , ā} .

Note, this is still a connected chain of filters and the edge vector is (see Equa-
tion (6.15))

1
2
((

|Fj+1| − |F̃|
)

1
F̃\Fj

+
(
|Fj | − |F̃|

)
1
Fj+1\F̃

)
.

Now we can easily check that this edge direction is ω-improving:

1
2
((

|Fj+1| − |F̃|
)
ω
(

1
F̃\Fj

)
+
(
|Fj | − |F̃|

)
ω
(

1
Fj+1\F̃

))
=

1
2

( |Fj+1| − |F̃|︸ ︷︷ ︸
≥1

) aj+1+fj+1−1∑
l=ā+1

2l +
(

|Fj | − |F̃|︸ ︷︷ ︸
≤−1

) ā∑
l=aj+1

2l

 ≥ 0 ,

since
aj+1+fj+1−1∑

l=ā+1
2l ≫

ā∑
l=aj+1

2l .

(ii) This also implies that every coarsening edge incident to v is not ω-improving.



(iii) For swapping edges, the edge direction (Equation (6.18)) is

(|Fj+1| − |Fj |) 1Fj\Fj−1 + (|Fj−1| − |Fj |) 1Fj+1\Fj
.

We compute again using Equation (6.21):

(|Fj | − |Fj+1|)ω
(

1Fj\Fj−1

)
+ (|Fj | − |Fj−1|)ω

(
1Fj+1\Fj

)
=
(

|Fj | − |Fj+1|︸ ︷︷ ︸
≤−1

)
ω

aj+fj−1∑
l=aj

2l

+
(

|Fj | − |Fj−1|︸ ︷︷ ︸
≥1

)
ω

aj+1+fj+1−1∑
l=aj+1

2l

 .

a) If σ−1
v (aj+1) is an ascent position, we have aj+1 < aj + fj − 1, which

implies
aj+fj−1∑

l=aj

2l ≫
aj+1+fj+1−1∑

l=aj+1

2l ,

hence these swapping edges are not ω-improving.
b) If σ−1

v (aj+1) is an descent position, we have aj+1 > aj + fj − 1, which
implies

aj+fj−1∑
l=aj

2l ≪
aj+1+fj+1−1∑

l=aj+1

2l ,

hence these swapping edges are ω-improving.

We also offer an alternative characterization of the vertices of partitioned permu-
tahedra ΠP(K). To do this, we require the notion of a high dimensional rook walk as
found in [KZ11]. In high dimensions, one can consider any sequence from (0, 0, . . . , 0)
to (n1,n2, . . . ,nc) such that at each step one can only increase (potentially by more
than one) in a single coordinate at a time. See Equation (6.23) below, for an example.

Recall that P(K) is a disjoint union of chains. Let c be the number of connected
components, i.e., the number of chains, and n1, . . . ,nc the number of elements in
those chains (n1 + · · · + nc = d). We can read those off as follows: KC = [d] \K =

{o1, . . . , oc} then ni = oi − oi−1 for i = 1, . . . , c (set o0 := 0, not that oc = d). Further
denote the minimal elements in the chains by m1, . . . ,mc (m1 = 1).

Proposition 6.41. For K ⊆ [d− 1], the following sets have the same cardinality:

1. The set of vertices of the partitioned permutahedron Πd(K).

2. The set of high dimensional rook walks from (0, 0, . . . , 0) to (n1, . . . ,nc),

The bijection is best understood from an example. Writing down a formal proof
is not to hard but heavy on notation. We give a sketch below, after an example.

Example 6.42. Let P({1, 2, 4, 5, 6}) = ([3], ≤) ⊔ ({4, . . . , 7}, ≤) the disjoint union
of a 3-chain and a 4-chain, i.e., we have two connected components with n1 = 3 and
n2 = 4. Let

∅ ⊊ {6, 7} ⊊ {3, 6, 7} ⊊ {1, 2, 3, 6, 7} ⊊ {1, 2, 3, 4, 5, 6, 7}
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be a connected chain of filters. Then the corresponding rook walk is

(0, 0) → (0, 2) → (1, 2) → (3, 2) → (3, 4) . (6.23)

Proof sketch of Proposition 6.41. We will build a bijection between connected chains
of filters of the poset P(K), which in turn correspond to the vertices of ΠP(K), and
the high-dimensional rook walks from (0, . . . , 0) to (n1, . . . ,nc).

For i = 1, . . . , k we define Fi \ Fi−1 from the ith step in the rook walk as follows:
If in the rook walk the ith step is from (x1, . . . ,xl, . . . ,xc) to (x1, . . . ,xl + fi, . . . ,xc)

then set Fi \Fi−1 := {d−nc − · · · −nl + 1+xl + 1, . . . , d−nc − · · · −nl + 1+xl + fi}.
This is a connected chain of filters. This process can easily be shown to be a bijection.

Thus vertices of ΠP(K) can be counted via high-dimensional rook walks. For this
there is an easy recurrence: Let vn1,n2,...,nc denote the number of high-dimensional
rook walks from (0, . . . , 0) to (n1, . . . ,nc). Then

vn1,n2,...,nc =
c∑

i=1

ni−1∑
l=0

vn1,n2,...,ni−1,l,ni+1,...,nc .

Indeed, this is the sum over all possible last steps: Assume the last step is in coordi-
nate i for i ∈ {1, . . . , c} and of length ni − l for l ∈ {0, . . . ,ni − 1}. For each possible
last step we need to sum up the number of possible rook walks before that last step,
i.e., vn1,n2,...,ni−1,l,ni+1,...,nc .

In [KZ11], Kauers and Zeilberger studied asymptotics and recurrences for the
sequence of high dimensional rook walks from (0, 0, . . . , 0) to (d, d, . . . , d), and our
results give a new perspective for arbitrary endpoints.

Finally, we note as a corollary of Corollary 6.27, we can compute the volumes of
the partitioned permutahedra in our particular geometric realization.

Corollary 6.43. The volume of the partitioned permutahedron Πd(K) for K ⊆
[d− 1] is given by

dd−2

d!

(
d

n1, . . . ,nc

)
with the same notation as above, i.e., ni = oi − oi−1 and [d] \K = {o1, . . . , oc}.

Proof. We need to compute the number of linear extensions of P(K). This is

d!
n1! · · · · · nc!

=

(
d

n1, . . . ,nc

)
.
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