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Abstract

Given a d-dimensional convex polytope Q with integral vertices, the number of integer points

contained in the dilation nQ is a polynomial in n, for n a nonnegative integer. We generalize

this result by fixing a linear form λ subject to certain conditions and considering weighted

sums of form
∑

x∈Zd∩nQ qλ(x). Each weighted sum is the evaluation of a polynomial in Q(q)[x]

at the q-integer [n]q. We now have two variables (q and x) instead of one; we choose this

generalization to retain the polynomial structure we encounter in the single-variable case.

The main results of this generalization are due to Chapoton [3]. We prove the q-polynomial

statement and a related reciprocity result via Brion’s theorem, which allows us to encode

the lattice points of a polytope using its vertex cones. We then state and prove analogous

results for polytopes with rational vertices.



v

Acknowledgments

I am thankful for every one of the math faculty at San Francisco State. I appreciate my

teachers and my graduate cohort for inspiring me through my journey here. I thank Drs.
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Chapter 1

Introduction

This thesis is situated in an area of mathematics called combinatorics, the study of

counting. In general, counting is nontrivial, particularly if there are many objects to be

counted or if the objects do not follow some predictable pattern. To further complicate

matters, as combinatorialists, we are not satisfied by merely counting up the objects in a

specific instance (e.g., how many bananas there are in a given bunch). We would like to

know if there is some formula that, when given some information about a circumstance,

outputs the number of objects to be found in that circumstance (e.g., how many bananas

there are in any bunch, provided we know the weight of the bunch). This thesis hinges on

the existence of such formulas for a special kind of object (lattice points) considered in a

special kind of environment (convex polytopes).

Counting lattice points in polytopes is a fundamental problem in combinatorics. In

the 1960s, Eugène Ehrhart proved several results in the study of lattice point enumeration;

for t ∈ Z>0, he showed that the number of lattice points in the tth dilate of a polytope with
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integral vertices is a polynomial in t. Ehrhart proved a more general version of this theorem

for polytopes with rational vertices. In the 2010s, Frédéric Chapoton generalized Ehrhart’s

ideas by introducing a new variable, q, on top of the dilation variable t. This generalization

came as part of a broader study of q-series and partition analysis. Chapoton proved an

analogous version of Ehrhart’s theorem in this q-context.

The object of this paper is to analyze certain results of Chapoton in this q-Ehrhart

theory. In pursuit of this goal, we first familiarize the reader with the central contents of

Ehrhart’s original theory in sections 2.1–2.2. In section 2.3, we present Brion’s theorem,

a tool that will allow us to prove certain theorems of Chapoton in new ways; the results

of sections 2.1–2.3 are from Beck and Robins [1]. In section 2.4, we give an overview of

Chapoton’s perspective; we define q-analogues for concepts encountered in the preceding

sections. The theory here is from Chapoton [3].

We conclude with our Brion-centered proofs. Our proof of Theorem 3.1 provides a new

approach to Theorem 2.46 of [3]: Chapoton’s proof involves the notion of q-Ehrhart series,

while ours relies on the relationship between a polytope and its vertex cones. This theorem

is a q-anologue of Ehrhart’s original statement for lattice polytopes; it asserts that, for a

positive integer n and a linear form subject to certain conditions, there is a special polynomial

corresponding to a polytope whose evaluation at the q-integer [n]q yields a weighted sum over

the lattice points in the polytope’s nth dilation. In proving Theorem 3.7, we give a reciprocity

statement that indicates what will happen if a q-integer of form [−n]q is inputted into the

q-Ehrhart polynomials of Theorem 3.1. With Theorem 3.8, we provide a novel generalization

of Theorem 3.1 to rational polytopes; similarly, we introduce a new reciprocity statement,
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Theorem 3.11, which generalizes Theorem 3.7 in the rational case.



4

Chapter 2

Background

2.1 Basic definitions and theorems.

We begin by defining an important class of objects that will enable us to encode certain

characteristics of polytopes.

Definition 2.1. A generating function for a sequence (ak)
∞
k=0 of complex numbers has

the form

F (z) =
∑
k≥0

akz
k.

Definition 2.2. A convex polytope is the convex hull of finitely many points in Rd.

We will use the term “polytope” to refer to a “convex polytope” here.

Definition 2.3. A hyperplane is a set H ⊂ Rd such that

H = {x ∈ Rd : a · x = b}
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for some vector a ∈ Rd \ {0} and some b ∈ R.

Let H be a hyperplane as above. H is a supporting hyperplane of a polytope P if P

lies entirely on one side of H; that is,

P ⊂ {x ∈ Rd : a · x ≤ b} or P ⊂ {x ∈ Rd : a · x ≥ b}.

A face of P is a set of the form P ∩H, where H is some supporting hyperplane of P . The

dimension of a face is the dimension of the affine space it spans. A vertex of P is a 0-

dimensional face of P . Unless otherwise specified, we work with full-dimensional polytopes;

that is, d-dimensional polytopes in Rd.

Definition 2.4. A vertex description of a polytope P is given by a set {v1, . . . ,vn} ⊂ Rd

such that P = conv{v1, . . . ,vn}.

Definition 2.5. A d-polytope with exactly d+ 1 vertices is called a d-simplex.

We say a polytope is integral (equivalently, that it is a lattice polytope) if its vertices

are integral. We say a polytope is rational if its vertices have rational coordinates. The

denominator of a rational polytope is the least common multiple of the denominators of

its vertex coordinates. We may dilate a polytope P by multiplying each point p ∈ P with

some number t.

Definition 2.6. The lattice-point enumerator of the tth dilate of a polytope P is defined

as

LP(t) ≡ #(tP ∩ Zd),

provided t ∈ Z>0.
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LP(t) is also known as the discrete volume of P .

Example 2.7. Let T be the 2-simplex with vertices (0, 0), (1, 0), and (0, 1). We have

LT (0) = 1, LT (1) = 3, and LT (2) = 6. Observing this pattern, one might conjecture

that LT (t) is the formula for the (t + 1)th triangular number; indeed, it turns out that

LT (t) = (t+1)(t+2)
2

. It might seem a happy coincidence that LT (t) is a polynomial in this

case, but we will soon see that LP(t) is a polynomial in t for any integral polytope.

1

1

Figure 2.1: Our triangle T .

Remark 2.8. We note that we have not defined LP at t = 0. It is in fact true that

the constant coefficient of the polynomial LP (t) is 1, but showing this requires an involved

approach outside the scope of this paper.

We now introduce a basic instance of a central definition of this paper.
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Definition 2.9. Let P be a polytope. Define the generating function

EhrP(z) ≡ 1 +
∑
t≥1

LP(t)z
t.

This generating function is called the Ehrhart series of P.

Example 2.10. Our triangle T has the Ehrhart series

1 + LT (1)z + LT (2)z
2 + · · · = 1 + 3z + 6z2 + 10z3 + · · · = 1

(1−z)3
.

We will sometimes work with the interiors of polytopes and cones.

Definition 2.11. The interior of a set S ⊆ Rd, denoted S◦, is the set of non-boundary

points in S; that is, S◦ is the set of x ∈ Rd for which r > 0 exists with a d-dimensional open

ball B(x, r) ⊆ S.

If P is a polytope, we define L◦
P(t) ≡ #(tP◦ ∩ Zd) for t ∈ Z>0.

Theorem 2.12 (Beck [1, Theorem 2.2]). Let △ be the convex hull of the d + 1 points

e1, . . . , ed and the origin, where ei is the unit vector with a 1 in the ith position; △ is called

the standard d-simplex. Then the following hold:

(a) L△(t) =
(
d+t
t

)
.

(b) Its evaluation at negative integers yields (−1)dL△(−t) = L◦
△(t).

(c) The Ehrhart series of △ is Ehr△(z) =
1

(1−z)d+1 .

Example 2.13. For our triangle T , (a) and (c) immediately hold by Examples 2.7 and

2.10. We convince ourselves of (b): we have (−1)dLT (−t) = (1−t)(2−t)
2

. By inspection,
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L◦
T (1) = 0, L◦

T (2) = 0, and L◦
T (3) = 1 (since this last dilate contains (1, 1)). Evaluating

(1−t)(2−t)
2

for t = 1, 2, 3 confirms that Theorem 2.12 holds in this instance.1

We will soon introduce some nice results for rational polytopes. Of course, we cannot

expect things will be as clean here as in the integral case.

Definition 2.14. A quasipolynomial Q is an expression of form

Q(t) = cn(t)t
n + · · ·+ c1(t)t+ c0(t),

where the c0, . . . , cn are periodic functions in t; i.e., for each i ∈ {0, 1, . . . , n}, there is

pi ∈ Z≥0 such that ci(t+ pi) = ci(t) for all t ∈ Z>0.

Provided cn(t) ̸= 0, the degree of Q above is n, and the least common multiple of

the periods of c0, c1, . . . , cn is the period of Q. One may view quasipolynomials from an

alternate perspective: if Q(t) is a quasipolynomial with period p, then there are polynomials

q0, q1, . . . , qp−1 such that Q(t) = qr(t) provided t ≡ r mod p for r ∈ {0, 1, . . . , p − 1}. The

polynomials q0, q1, . . . , qp−1 are the constituents of Q.

Definition 2.15. A triangulation of a convex d-polytope P is a finite collection T of

d-simplices such that the following hold:

(a) P =
⋃

△∈T △;

(b) For every △1,△2 ∈ T , the intersection △1 ∩△2 is a face common to both △1 and △2.

A triangulation of P uses no new vertices if every △ ∈ T has vertices belonging only

to the vertex set of P .
1Assuming L◦

△ is a quadratic polynomial in t.
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Theorem 2.16 (Beck [1, Theorem 3.1]). Every convex polytope can be triangulated using

no new vertices.

Definition 2.17. A (polyhedral) cone K ⊆ Rd is a set of the form

K = {v + λ1w1 + · · ·+ λmwm : λ1, . . . , λm ≥ 0},

where v,w1, . . . ,wm ∈ Rd.

The vector v in the above definition is called an apex of K, and the wk are called the

generators of K. The dimension of K is the dimension of the affine space spanned by K.

A cone is rational if we can choose v,w1, . . . ,wm ∈ Qd. A simplicial cone K is one of

dimension d having exactly d linearly independent generators.

Definition 2.18. A pointed cone K ⊆ Rd is a cone with apex v such that there is a

hyperplane H so that H ∩ K = {v}. In particular, K \ {v} lies strictly on one side of H.

Naturally, H is a supporting hyperplane for a pointed d-cone K if K lies entirely on

one side of H. The faces of a cone are defined analogously as in the polytope case.

Definition 2.19. A d-cone K can be triangulated with a collection T of simplicial d-cones

if we have the following:

(a) K =
⋃

S∈T S;

(b) For every S1,S2 ∈ T , S1 ∩ S2 is a face common to both S1,S2.

We say that K can be triangulated using no new generators if there exists a trian-

gulation T such that the generators of every S ∈ T are generators of K.
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Theorem 2.20 (Beck [1, Theorem 3.2]). Every pointed cone can be triangulated into sim-

plicial cones using no new generators.

This statement is simple but powerful. As we will see later on, it enables us to prove

a reciprocity theorem that we will use to prove another result for the q-Ehrhart case. We

obtain the following corollary.

Corollary 2.21. Every pointed cone K has integer-point transform equal to an inclusion-

exclusion sum of integer-point transforms of simplicial cones whose generators are a subset

of K’s.

Definition 2.22. Let S ⊆ Rd be a rational cone or a polytope. Define

σS(z) = σS(z1, . . . , zd) ≡
∑

m∈S∩Zd

zm,

where the notation zm signifies
∏

1≤i≤d z
mi
i . This generating function is the integer-point

transform of S.

The transform σS encodes the integer points of S; each corresponds to a Laurent mono-

mial term in σS.

Example 2.23. Our standard 2-simplex T has integer point transform

σT (z) = z01z
0
2 + z11z

0
2 + z01z

1
2 = 1 + z1 + z2.

Theorem 2.24 (Beck [1, Theorem 3.5]). Suppose K = {λ1w1+ · · ·+λdwd : λ1, . . . , λd ≥ 0}

is a simplicial d-cone with generators w1, . . . ,wd ∈ Zd. Then for v ∈ Rd, the integer-point
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transform σv+K of the shifted cone v +K is the rational function

σv+K(z) =
σv+Π(z)

(1− zw1) . . . (1− zwd)
,

where Π is the half-open parallelepiped

Π ≡ {λ1w1 + · · ·+ λdwd : 0 ≤ λ1, . . . , λd < 1}.

This parallelepiped Π is called the fundamental parallelepiped of K.

From Theorems 2.20 and 2.24, we obtain the following.

Corollary 2.25. For a pointed cone

K = {v + λ1w1 + · · ·+ λmwm : λ1, . . . , λm ≥ 0}

with v ∈ Rd, w1, . . . ,wm ∈ Zd, the integer-point transform σK(z) evaluates to a rational

function in the coordinates of z.

This result allows us to cleanly express certain integer-point transforms as rational func-

tions; we will later see instances where this equivalence is crucial. We next introduce the

first in a long line of significant lattice-point enumeration theorems that we will encounter

in this paper.

Theorem 2.26 (Ehrhart’s theorem for integral polytopes [4]). If P is an integral convex

d-polytope, then the lattice-point enumerator LP(t) is a polynomial in t of degree d.

Remark 2.27. We can now confirm our supposition that LT (t) = (t+1)(t+2)
2

, since by

Ehrhart’s theorem, LT (t) must be a polynomial of degree 2; it suffices to interpolate using 3

points, which is what we did in Example 2.7.
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We call LP the Ehrhart polynomial of P . We will later see more general cases of this

important theorem. The following is a generalization to rational polytopes.

Theorem 2.28 (Ehrhart’s theorem for rational polytopes [4]). If P is a rational convex

d-polytope, then LP(t) is a quasipolynomial in t of degree d. Further, the period of LP(t)

divides the denominator of P.

We conclude this section with an example involving this theorem.

Example 2.29. Consider the rational polytope 1
3
T . By Theorem 2.28, we know that L 1

3
T (t)

will be a quasipolynomial of degree 2 in t with period k dividing 3. If k = 1, then L 1
3
T (t)

would be a quadratic polynomial in t; noting that L 1
3
T (rt) = LT (t) when r ≡ 0 mod 3,

we would have L 1
3
T (t) =

( 1
3
t+1)( 1

3
t+2)

2
. However, this polynomial gives a non-integral output

for t = 1. Thus, k = 3. We proceed to compute the constituent polynomials p0, p1, and p2.

From above, we have

p0(t) =
(1
3
t+ 1)(1

3
t+ 2)

2
=

1

18
t2 +

1

2
t+ 1.

We now interpolate p1(t): by inspection, L 1
3
T (1) = 1, L 1

3
T (4) = 3, and L 1

3
T (7) = 6. The

quadratic that passes through these points is

p1(t) =
1

18
t2 +

7

18
t+

5

9
.

Finally, L 1
3
T (2) = 1, L 1

3
T (5) = 3, and L 1

3
T (8) = 6. The quadratic that passes through these

points is

p2(t) =
1

18
t2 +

5

18
t+

2

9
.
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Thus, we obtain

L 1
3
T (t) =



1
18
t2 + 1

2
t+ 1 if t ≡ 0 mod 3,

1
18
t2 + 7

18
t+ 5

9
if t ≡ 1 mod 3,

1
18
t2 + 5

18
t+ 2

9
if t ≡ 2 mod 3.

We can also represent this quasipolynomial in the form 1
18
t2 + c1(t)t+ c0(t), where

c1(t) =



1
2
if t ≡ 0 mod 3,

7
18

if t ≡ 1 mod 3,

5
18

if t ≡ 2 mod 3,

and

c0(t) =



1 if t ≡ 0 mod 3,

5
9
if t ≡ 1 mod 3,

2
9
if t ≡ 2 mod 3.

2.2 Reciprocity.

We introduce some of the main reciprocity theorems. The proofs of most of these are

given in [1].

Theorem 2.30 (Ehrhart–Macdonald reciprocity [5]). Suppose P is a convex rational poly-

tope. Then the evaluation of the quasipolynomial LP at negative integers yields

LP(−t) = (−1)dimPLP◦(t).
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Let p denote the period of LP , and let LP,0, LP,1, . . . , LP,p−1 denote its constituents. In

terms of these constituents, the above theorem states that, for integers of the form kp + r

for k ∈ Z and r ∈ {1, . . . , p− 1}, we have

LP,p−r(−(kp+ r)) = (−1)dLP◦, r(kp+ r),

since −r ≡ (p− r) mod p.

Theorem 2.31 (Stanley reciprocity [6]). Suppose K is a rational d-cone with the origin as

its apex. Then

σK

(
1

z1
, . . . ,

1

zd

)
= (−1)dσK◦(z1, . . . , zd).

We now prove a result that extends upon the above theorem. We will need this more

general version when we deal with reciprocity for rational polytopes.

Theorem 2.32 (Generalized Stanley reciprocity). Suppose K is a rational d-cone with the

origin as its apex, and let v ∈ Rd. Then the following equality of rational functions holds:

σv+K(z1, . . . , zd) = (−1)dσ−v+K◦

(
1

z1
, . . . ,

1

zd

)
.

Proof. We can triangulate K into simplicial d-cones K1, . . . ,Kn. By [1, Exercise 3.18], any

rational hyperplane H ⊂ Rd is some minimal distance away from Zd \ H. Thus, since

any pointed cone can be defined by an arrangement of bounding hyperplanes, for each i,

the boundary ∂Ki is some minimal distance from Zd \ ∂Ki. As there are n cones in the

triangulation, ∂K is some minimal distance away from Zd \ (
⋃n

i=1 ∂Ki). Hence, analogous

results hold for the translates v + K and −v + K; take α > 0 so that every lattice point is
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either in one of these cones’ boundaries or at least α away from both boundaries. Thus, we

can choose w ∈ Rd so that w = v + v′ for some small v′ ∈ K◦ so that ||w − v|| ≤ α and

(v +K◦) ∩ Zd = (w +K) ∩ Zd, (2.1)

(−v +K) ∩ Zd = (−w +K) ∩ Zd, (2.2)

and

∂(±w +Ki) ∩ Zd = ∅ for each i ∈ {1, . . . , n}. (2.3)

Hence, there are no lattice points on the boundary of ±w + K. By (2.3), for i ̸= j, the

cones ±w +Ki and ±w +Kj share no lattice points, so

σ−v+K(z) = σ−w+K(z) =
n∑

i=1

σ−w+Ki
(z) (2.4)

and

σv+K◦(z) = σw+K(z) =
n∑

i=1

σw+Ki
(z). (2.5)

By [1, Theorem 4.2], each summand σ−w+Ki
(z) on the right-hand side of (2.4) equals

(−1)dσw+Ki
(z−1) for i ∈ {1, . . . , n}. By comparison with the right-hand side of (2.5), the

result follows.

Definition 2.33. Let P be a rational polytope. The Ehrhart series of its interior is

defined

EhrP◦(z) ≡
∑
t≥1

LP◦(t)zt.

Theorem 2.34 (Ehrhart reciprocity [4]). Suppose P is a rational polytope. Then the eval-

uation of the rational function EhrP at 1
z
yields

EhrP

(
1

z

)
= (−1)dimP+1 EhrP◦(z).
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2.3 Brion’s theorem.

Definition 2.35. Let P be a polytope, and let F be one of its faces. We define a cone

KF ≡ {x+ λ(y − x) : x ∈ F ,y ∈ P , λ ∈ R≥0},

which is called the tangent cone of F .

Given a vertex v of P , the cone Kv is called a vertex cone. An oft-used strategy for

(0, 0) (1, 0)

(0, 1)

Figure 2.2: The vertex cones of our triangle T are K(0,0), K(1,0), and K(0,1).

proving results about a polytope P is to work via its vertex cones. We will employ this

method in the critical proofs of this paper. We now possess the necessary tools to discuss

Brion’s theorem.

Theorem 2.36 (Brion’s theorem [2]). Suppose P is a rational convex polytope. Then we
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have the following identity of rational functions:

σP(z) =
∑

v a vertex of P

σKv(z).

A proof of how Theorem 2.28 follows from Theorem 2.36 is given in [1]. We now state

a version of Brion’s theorem for open polytopes.

Theorem 2.37 (Brion’s theorem for open polytopes [2]). Suppose P is a rational convex

polytope. Then we have the following identity of rational functions:

σP◦(z) =
∑

v a vertex of P

σK◦
v
(z).

A proof of Theorem 2.37 is given in [1, Exercise 11.9].

2.4 The q-Ehrhart theory.

We now segue into the q-analogue of Ehrhart theory. We replace the number of lattice

points in a polytope P with a family of weighted sums, each of which is a polynomial in the

indeterminate q.

Definition 2.38. A linear form is a function λ : Qd → Q defined by

λ(x) = λ1x1 + · · ·+ λdxd,

where λ1, . . . , λd ∈ Z.

Given a d-dimensional polytope Q (or the interior of a polytope Q◦) and a linear form

λ, we consider the weighted sum

Wλ(Q, q) ≡
∑

x∈Q∩Zd

qλ(x). (2.6)
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This sum runs over the lattice points contained in Q. Thus, it is a q-analogue of the number

of lattice points in Q, obtained from (2.6) by evaluation at q = 1. We note that such sums

are not invariant under translation of Q in general. We require our linear forms λ to satisfy

the following conditions:

• positivity: for every vertex x of Q, we have λ(x) ≥ 0.

• genericity: for every edge x− y of Q, we have λ(x) ̸= λ(y).

Remark 2.39. The domain and codomain of λ are defined so that the phrase “λ satisfies

positivity and genericity on a rational polytope” makes sense. We will work with rational

polytopes in our generalizations.

Definition 2.40. Fix a linear form λ satisfying the positivity and genericity conditions. The

q-Ehrhart series of a lattice polytope Q is defined

EhrQ,λ(t, q) ≡
∑
n≥0

Wλ(nQ, q)tn.

Example 2.41. Consider the line segment from 0 to 1 and the linear form λ = 1. The

q-Ehrhart series is 1 + (1 + q)t+ (1 + q + q2)t2 + · · · = 1
(1−t)(1−qt)

.

Even in simple cases, the q-Ehrhart series can be difficult to compute as a rational

function. For more examples, see [3]. A related result follows.

Theorem 2.42 (Chapoton [3, Proposition 1.1]). Suppose λ satisfies the positivity and gener-

icity conditions on Q. Then the q-Ehrhart series EhrQ,λ is a rational function in t and q.

Its denominator is a product without multiplicities of factors 1− tqj for some integers j with
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0 ≤ j ≤ maxQ(λ). The factor with index j appears only if there is a vertex v of Q such that

λ(v) = j.

We proceed to describe the structure of the q-Ehrhart polynomial.

Definition 2.43. The q-integer at t is defined [t]q =
qt−1
q−1

.

From this definition, we know that (q − 1)[t]q + 1 = qt. Thus, qkt = ((q − 1)[t]q + 1)k.

Consequently, we obtain the following.

Lemma 2.44. qkt is a degree-k polynomial in the q-integer [t]q with coefficients in Q[q].

Let Pk = ((q − 1)[t]q + 1)k for k ≥ 1. Let cj denote the coefficient of [t]jq in Pk for

j ∈ {0, 1, . . . , k}.

Example 2.45. P3 has coefficients c3 = (q− 1)3 = q3 − 3q2 +3q− 1, c2 = 3q2 − 6q+3, c1 =

3q − 3, c0 = 1.

Now, we state one of the main q-Ehrhart theorems.

Theorem 2.46 (Chapoton [3, Theorem 2.1]). Let Q be a lattice polytope and λ a linear

form such that positivity and genericity hold. There is a polynomial LQ,λ ∈ Q(q)[x] such

that for any nonnegative integer n,

LQ,λ([n]q) = Wλ(nQ, q).

The degree of LQ,λ is m = maxQ(λ). The coefficients of LQ,λ have poles only at roots of

unity of order less than m.
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Example 2.47. The q-Ehrhart polynomial of our triangle T and the linear form λ = (1, 2)

is

LT ,λ(x) =
q3x2

q + 1
+

q(2q + 1)x

q + 1
+ 1.

We will verify this fact in the next section. For now, we note that the evaluation of LT ,λ

at q = 1 is LT , the classical Ehrhart polynomial from Example 2.7.
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Chapter 3

Main results

We now prove the first part of Theorem 2.46 via Brion’s theorem (Theorem 2.36). Our

approach is distinct from Chapoton’s method involving q-Ehrhart series.

Theorem 3.1. Let Q be a lattice polytope and λ a linear form such that positivity and gener-

icity hold. There is a polynomial LQ,λ ∈ Q(q)[x] such that for any nonnegative integer n,

LQ,λ([n]q) = Wλ(nQ, q).

Proof. Let Q be a d-polytope with integral vertices. Let λ = (λ1, . . . , λd) be a linear form

satisfying positivity and genericity over Q. Take t ∈ Z>0. Then

Wλ(tQ, q) =
∑

x∈tQ∩Zd

qλ(x) = σtQ(q
λ1 , . . . , qλd).

By Brion, we have

Wλ(tQ, q) =
∑

v a vertex of Q

σtKv(q
λ1 , . . . , qλd). (3.1)
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We write Kv = v + K̃v, where K̃v has apex at the origin. Thus, for each vertex v, we have

tKv = tv + K̃v, and so

σtKv(q
λ1 , . . . , qλd) = qλ(tv)σK̃v

(qλ1 , . . . , qλd). (3.2)

Applying Corollary 2.25, each summand on the right-hand side of (3.1) is the product of

some qλ(tv) = qtλ(v) with a fixed rational function independent of t. Applying Lemma 2.44,

each qλ(tv) is a polynomial in [t]q. Replacing each [t]q with the indeterminate x on the right-

hand side thus yields a polynomial in x. Therefore, the sum Wλ(tQ, q) is the evaluation of

the polynomial LQ,λ(x) at [t]q.

Remark 3.2. We rely on genericity in the proof of Theorem 3.1 when we evaluate the σK̃v
’s

at powers of q. When viewed as a rational function, such a transform may have denominator

of 0 if λ is equal on an adjacent pair of vertices. We require genericity in later proofs for

the same reason.

Example 3.3. Verifying Example 2.47, we compute the q-Ehrhart polynomial for our tri-

angle T using the proof of Theorem 3.1 above. Let t ∈ Z>0 and λ = (1, 2). Applying Brion,

we have

Wλ(tT , q) =
∑

v a vertex of T

σtKv(q, q
2).

From (3.2) in the proof, for each vertex v, we have two objectives: to express qλ(tv) = qtλ(v)

as a polynomial in [t]q, and to compute σK̃v
(q, q2) as a rational function in q. Employing the
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logic mentioned immediately before Lemma 2.44, we obtain

qtλ((0,0)) = q0 = 1,

qtλ((1,0)) = qt = (q − 1)[t]q + 1,

qtλ((0,1)) = q2t = ((q − 1)[t]q + 1)2.

To compute the σK̃v
(q, q2)’s, we recall Theorem 2.24:

σK̃(0,0)
(q, q2) =

1

(1− q)(1− q2)
,

σK̃(1,0)
(q, q2) =

1(
1− 1

q

)
(1− q)

,

σK̃(0,1)
(q, q2) =

1(
1− 1

q2

)(
1− 1

q

) .
Thus, replacing [t]q with x and summing up gives

LT ,λ(x) =
1

(1− q)(1− q2)
+

(q − 1)x+ 1(
1− 1

q

)
(1− q)

+
((q − 1)x+ 1)2(
1− 1

q2

)(
1− 1

q

)
=

q3x2

q + 1
+

q(2q + 1)x

q + 1
+ 1.

Remark 3.4. Continuing on the theme of Remark 3.2, let us choose a linear form failing

genericity on T : for instance, λ = (1, 1). We see that the denominator of σK̃(1,0)
(q, q) is 0.

The degree property follows.

Corollary 3.5. For a given polytope Q with integral vertices, the degree of its q-Ehrhart

polynomial is the maximum of λ on its vertices.
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Proof. This follows immediately from Equation (3.2) in the proof of Theorem 3.1, since

qλ(tv) = qtλ(v); by Lemma 2.44, this is a degree-λ(v) polynomial in [t]q. So the degree of the

q-Ehrhart polynomial is the maximum of the λ(v)’s, where v is a vertex of the polytope.

We now expand upon the last statement of Theorem 2.46; namely, that the coefficients

of LQ,λ have poles at roots of unity of order less than m = maxQ(λ). Brion’s theorem allows

us to infer properties of these roots.

Theorem 3.6. Let Q be a polytope with integral vertices, and let λ be a linear form satisfying

positivity and genericity on Q. Then any pole of a coefficient of LQ,λ is a |λ(g(w − v))|th

root of unity, where v and w are adjacent vertices of Q and g(w−v) is the primitive vector

from v in the direction of w.

Proof. Recalling the proof of Theorem 3.1, LQ,λ(t) =
∑

v q
λ(tv)σK̃v

(qλ1 , . . . , qλd). By Corol-

lary 2.21, each of the σK̃v
’s can be written as an inclusion-exclusion sum of integer-point

transforms of simplicial cones using no new generators. Applying Theorem 2.24 to these

summands, the reduced denominator of σK̃v
(qλ1 , . . . , qλd) is of form

∏
w

(
1− qλ(w)

)
, where

the product is taken over primitive generators of K̃v. Thus, this denominator divides∏
w:v,w adjacent

(
1− q|λ(g(w−v))|) as an element of Q(q) for each v. (There may be some can-

cellation when we express qλ(tv) as a polynomial in [t]q.) Combining the summands over one

denominator gives the result.

Using Brion and Stanley reciprocity, we provide a new proof of the following theorem

given in [3].
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Theorem 3.7. Let Q be a d-polytope with integral vertices. For every integer t ∈ Z>0,

LQ,λ([−t]q) = (−1)d Wλ

(
tQ◦,

1

q

)
.

Proof. Let Q be a d-polytope with integral vertices. Set K◦
v = v + K̃◦

v. Let t ∈ Z>0. By

Brion’s theorem for open polytopes (Theorem 2.37),

Wλ

(
tQ◦,

1

q

)
=

∑
v a vertex of Q

q−tλ(v)σK̃◦
v
(q−λ1 , . . . , q−λd).

Applying Theorem 2.31 to the right-hand side yields

Wλ

(
tQ◦,

1

q

)
=

∑
v a vertex of Q

q−tλ(v)(−1)dσK̃v
(qλ1 , . . . , qλd).

From this, and recalling the proof of Theorem 3.1, we obtain

Wλ

(
tQ◦,

1

q

)
= (−1)dLQ,λ([−t]q),

as desired.

We now consider a more general class of polytopes: those with rational vertices. We

show a version of Theorem 3.1 for this kind of polytope.

Theorem 3.8. Let Q be a polytope with rational vertices having denominator p and let

λ be a linear form such that the positivity and genericity conditions hold for λ on Q.

Fix r ∈ {0, 1, . . . , p − 1}. Then there is a polynomial LQ,λ,r ∈ Q(q)[x] such that for any

nonnegative integer k,

LQ,λ,r([k]q) = Wλ((kp+ r)Q, q).
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Proof. If r = 0, we return to the case handled by Theorem 3.1, so suppose r > 0. Let Q be

a polytope with rational vertices having denominator p. Now,

Wλ((kp+ r)Q, q) =
∑

x∈(kp+r)Q∩Zd

qλ(x).

By Brion, we therefore have

Wλ((kp+ r)Q, q) =
∑

v a vertex of Q

σ(kp+r)Kv(q
λ1 , . . . , qλd). (3.3)

We write (kp + r)Kv = kpKv + rKv. Let kpKv = kpv + K̃, where K̃ has its apex at the

origin. We have K̃ + rKv = K̃ + rv + rK̃ = rKv, so (kp + r)Kv = kpv + rKv. We note

that kpv is an integer vector, so that

σ(kp+r)Kv(q
λ1 , . . . , qλd) = qλ(kpv)σrKv(q

λ1 , . . . , qλd). (3.4)

Applying Corollary 2.25, each summand on the right-hand side of (3.3) is the product of some

qλ(kpv) = qkλ(pv) with a fixed rational function independent of k. We proceed analogously as

in the proof of Theorem 3.1: applying Lemma 2.44, each qλ(kpv) is a polynomial in [k]q, as p

is fixed. Replacing each [k]q with the indeterminate x on the right-hand side thus yields a

polynomial in x. Therefore, Wλ((kp + r)Q, q) is the evaluation of a polynomial in Q(q)[x]

at [k]q.

Corollary 3.9. For a given polytope Q with rational vertices with denominator p and for

fixed r ∈ {0, 1, . . . , p− 1}, the degree of the polynomial LQ,λ,r in Theorem 3.8 is p ·maxQ(λ).

Proof. Noting that the polynomial in Theorem 3.8 is just the sum of terms involving qkλ(pv)’s,

the proof is analogous to that of Corollary 3.5.
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We state and prove a result akin to Theorem 3.6.

Theorem 3.10. Let Q be a d-polytope with rational vertices with denominator p, and let

λ be a linear form satisfying positivity and genericity on Q. For fixed r ∈ {1, . . . , p − 1},

any pole of a coefficient of LQ,λ,r is a |λ(g(p(w − v)))|th root of unity, where v and w are

adjacent vertices of Q and g(p(w− v)) is the primitive vector from v in the direction of w.

Proof. From the proof of Theorem 3.8, we have LQ,λ,r(t) =
∑

v q
λ(tpv)σrKv

(
qλ1 , . . . , qλd

)
.

We may take the generators of rKv to be integer vectors. By Corollary 2.21, each of the

σrKv ’s can be written as an inclusion-exclusion sum of integer-point transforms of simplicial

cones using no new generators. Applying Theorem 2.24 to these summands, the reduced

denominator of σrKv(q
λ1 , . . . , qλd) is of form

∏
w

(
1− qλ(w)

)
, where the product is taken over

primitive generators of rKv. We note that g(rw− rv) = g(w− v). Thus, this denominator

divides
∏

w:v,w adjacent

(
1− q|λ(g(p(w−v)))|) as an element of Q(q) for each v. (There may be

some cancellation when we express qλ(tpv) as a polynomial in [t]q.) Combining the summands

over one denominator gives the result.

We now prove a version of Theorem 3.7 for rational polytopes.

Theorem 3.11. Let Q be a polytope with rational vertices having denominator p and let λ

be a linear form such that the positivity and genericity conditions hold for λ on Q. Fix

r ∈ {0, 1, . . . , p− 1}. Then for every integer k ∈ Z>0,

LQ,λ,r([−k]q) = (−1)dWλ

(
(kp− r)Q◦,

1

q

)
,

where d is the dimension of Q.
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Proof. If r = 0, Theorem 3.7 suffices. Suppose r ̸= 0 and let Q be a polytope with rational

vertices. Let k ∈ Z>0. By Brion’s theorem for open polytopes,

Wλ

(
(kp− r)Q◦,

1

q

)
=

∑
v a vertex of Q

σ(kp−r)K◦
v
(q−λ1 , . . . , q−λd).

We write (kp − r)K◦
v = kpK◦

v − rK◦
v. Let kpK◦

v = kpv + K̃◦, where K̃◦ has its apex at the

origin. We rewrite −rK◦
v + K̃◦ as −rv + K̃◦

v, where K̃◦
v has apex at the origin. We note

that kpv is an integer vector, so that

σ(kp−r)K◦
v
(q−λ1 , . . . , q−λd) = q−λ(kpv)σ−rv+K̃◦

v
(q−λ1 , . . . , q−λd). (3.5)

Thus, we obtain

Wλ

(
(kp− r)Q◦,

1

q

)
=

∑
v a vertex of Q

q−λ(kpv)σ−rv+K̃◦
v
(q−λ1 , . . . , q−λd).

Applying Theorem 2.32 to the right-hand side yields

Wλ

(
(kp− r)Q◦,

1

q

)
=

∑
v a vertex of Q

q−λ(kpv)(−1)dσrv+K̃v
(qλ1 , . . . , qλd).

From this, we obtain

Wλ

(
(kp− r)Q◦,

1

q

)
= (−1)dLQ,λ,r([−k]q),

as desired.

We note that the above theorem is a statement about the constituents of the quasipoly-

nomial LQ,λ, since we fix r ∈ {0, 1, . . . , p − 1}, and our choice of r determines the residue

class of (kp+ r) mod p.
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