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Abstract

Modeling of metabolic pathways in biology and process management in operating
systems are applications of mixed graphs. A mixed graph is a graph with directed
edges, called arcs, and undirected edges. The weak (resp. strong) chromatic polynomial
of a mixed graph is a counting function that counts proper k-colorings, that is, assigning
colors to vertices such that colors are different on vertices connected by an edge, while
colors have to obey the≤ (resp. <) relation along an arc. We find a contraction-deletion
analogue for mixed graphs in which the weak chromatic polynomial of any mixed
graph can be reduced to a linear combination of weak chromatic polynomials of simpler
mixed graphs, such as trees. Following closely previous work on reciprocity theorems
for other types of chromatic polynomials, we also find a reciprocity theorem for weak
chromatic polynomials using partially ordered sets and order polynomials.

1 Introduction
Modeling of metabolic pathways in biology and process management in operating systems
are applications of mixed graphs. A mixed graph is a graph with both directed and undirected
edges. We represent this as G = (V,E,A), where V represents the vertices, E represents the
undirected edges, and A represents the directed edges. We will refer to the elements of E as
edges and the elements of A as arcs. Given two vertices a and b, an edge between a and b is
denoted by āb, and an arc from a to b is denoted by ~ab. We denote the set of edges of G as
EG and the set of arcs as AG.

Given a mixed graph G and a set of k colors, [k] = {1,2, ...,k}, we define a k-coloring
of G to be a map x : V → [k] where each vertex of G is assigned a color from [k]. A weak
(resp. strong) proper k-coloring of G is a k-coloring such that x(v) 6= x(w) for all ¯vw ∈ E
and x(v)≤ x(w) (resp. x(v)< x(w)) for all ~vw ∈ A.

Figure 1: A weak proper 2-coloring for a path with one arc and one edge
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The function that counts the number of proper k-colorings is a polynomial of k; this
weak (resp. strong) chromatic polynomial χG(k) (resp. χ̂G(k)) counts the number of weak
(resp. strong) proper k-colorings of G [1].

An orientation of G is obtained by maintaining the direction of arcs and orienting edges.
For any edge āb there are two possible orientations: a→ b and b→ a. A mixed cycle is
a mixed graph such that there exists an orientation of it that results in a directed cycle. A
mixed graph G is cyclic if it has a mixed cycle as a subgraph. A mixed graph is acyclic if it
is not cyclic. Finally, a coloring c and an orientation of G are compatible if for every u→ v
in the orientation, c(u)≤ c(v).

Stanley proved a reciprocity theorem stating that, for any graph G = (V,E, /0) and
positive integer k, (−1)|V |χG(−k) enumerates the pairs of k-colorings and compatible acyclic
orientations of G [2]. Beck, Bogart, and Pham proved the following analogue of Stanley’s
reciprocity theorem for mixed graphs that connects the strong chromatic polynomials of
mixed graphs to their acyclic orientations: for any G = (V,E,A), (−1)|V |χ̂G(−k) equals
the number of k-colorings of G, each counted with multiplicity equal to the number of
compatible acyclic orientations of G [3].

Figure 2: Using the reciprocity for strong chromatic polynomials for the above mixed
graph, χ̂G(−2) will equal 4. There are only four 3-colorings with one compatible acyclic
orientation: colorings (1, 1, 1), (2, 1, 1), (2, 1, 2), and (2, 2, 2) with orientation b→ a.

The goal of this paper is to develop an analogous reciprocity theorem for weak chromatic
polynomials χG(k) of mixed graphs. We first define a coloring c and an orientation of
G to be intercompatible if for every u→ v in the orientation, c(u) ≤ c(v) when ūv ∈ EG,
and c(u) < c(v) when ~uv ∈ AG. Theorem 1.1 is a generalization of Stanley’s chromatic
reciprocity theorem for weak chromatic polynomials of mixed graphs.

Theorem 1.1. Let G = (V,E,A) be an acyclic mixed graph and let χG(k) be the weak
chromatic polynomial of G. Then for any positive integer k, (−1)|V |χG(−k) is equal to
the number of k-colorings of G, each counted with multiplicity equal to the number of
intercompatible acyclic orientations of G.

2 A Poset Approach
Throughout the rest of this paper, a proper k-coloring will refer only to a weak proper
k-coloring, and a chromatic polynomial will refer only to a weak chromatic polynomial. For
a mixed graph G = (V,E,A), the chromatic polynomial χG(k) can be written as

χG(k) = #{(x1, . . . ,xn) ∈ [k]n : xi ≤ x j if ~i j ∈ AG, xi 6= x j if ī j ∈ EG}.
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Each proper k-coloring corresponds to an acyclic orientation of G since either xi < x j
or xi > x j for every ī j ∈ EG. A cyclic orientation of G cannot admit a proper k-coloring
since there would be a situation in which xi < x j < · · · < xi. On the other hand, given an
acyclic orientation of G, a proper k-coloring consistent with the acyclic orientation must
follow certain inequalities, that is, for all i→ j in the acyclic orientation, xi ≤ x j if ~i j ∈ AG,
and xi < x j if ī j ∈ EG.

A poset (partially ordered set) is a set P with a relation � such that for each a,b ∈ P,
a� a, a = b if a� b and b� a, and a� c if a� b and b� c. Each acyclic orientation of G
can be translated into a poset by the following construction: for each i→ j in the orientation,
i ≺ j. Such a relationship cannot occur in a cylic oriented graph since the occurence of
i≺ j≺ ·· · ≺ i is not allowed in a poset. An edge of the poset P is an ordered pair (a,b) such
that a,b ∈ P,a ≺ b, and there is no c ∈ P such that a ≺ c ≺ b. Denote the set of all edges
of P by EP. We define a bi-colored labeling of a poset P as a function β : EP→{U,D}. A
poset with such a bi-colored labeling is a bi-colored poset (BP). A BP of a mixed graph G is
any BP formed by taking an orientation of G, such that for all ~ab ∈ AG, β (a,b) =U , and
for all āb ∈ EG, β (a,b) = D. Note that this means there can be multiple BPs for a given G;
each such BP we call consistent with G.

The order polynomial for a BP with n elements is defined as

ΩBP(k) = #{(x1, . . . ,xn) ∈ [k]n : xi ≤ x j if β (i, j) =U , xi < x j if β (i, j) = D}.

Lemma 2.1. If the mixed graph G is acyclic, then χG(k) = ∑i ΩBPi(k), where we sum over
all BPs that are consistent with G.

Proof. If every orientation of G is acyclic, each orientation of G has a corresponding BP.
χG(k) counts the number of all possible proper k-colorings of G, while each ΩBP(k) counts
the number of proper k-colorings for a possible acyclic orientation of G. Thus, since the
colorings giving rise to different BPs are mutually exclusive, χG(k) = ∑i ΩBPi(k).

For a poset P with cardinality n, we call a bijection ω : P→ [n] an ω-labeling, while ω̄

is the complementary labeling to ω defined by ω̄(v) = n+1−ω(v). The order polynomial
[2] ΩP,ω is defined as

ΩP,ω(k)= #{(x1,x2, ...,xn)∈ [k]n : xi≤ x j if i� j and ω(i)<ω( j), xi < x j if i� j and ω(i)>ω( j)}.

Figure 3: A four element poset with an ω-labeling and ω̄-labeling, respectively.

A theorem by Stanley [4] gives the following reciprocity relation:
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Theorem 2.2 (Stanley). Let the poset P have an ω-labeling. Then ΩP,ω(−k)= (−1)|P|ΩP,ω̄(k).

This reciprocity theorem is useful for us because it accomodates the strong and weak
inequalities present in ΩBP(k). However, this reciprocity theorem does not apply to order
polynomials of all bi-colored posets. So, if P is the poset that BP came from, we want to
know when we can find a labeling ω such that ΩBP(k) = ΩP,ω(k). A bi-colored poset has a
natural ω-labeling if ω(a)< ω(b) when β (a,b) =U , and ω(a)> ω(b) when β (a,b) = D.
Thus, if a BP has a natural ω-labeling, ω , then ΩBP(k) = ΩP,ω(k), and so we wish to know
which BPs have a natural ω labeling.

Figure 4: A bi-colored poset with a natural ω-labeling. Edges b̄d and c̄d are labeled D,
while edges āb and āc are labeled U .

3 Proof of Theorem 1.1
The first step towards proving Theorem 1.1 requires knowing the conditions on a BP such
that there exists a natural ω-labeling. Define a bi-colored poset orientation (BPO) of a BP
as a directed graph, BPO = (V, /0,A), such that for every āb ∈ EP, ~ab ∈ ABPO if β (a,b) =U
and ~ba ∈ ABPO if β (a,b) = D.

Figure 5: A corresponding acyclicly oriented mixed graph, bi-colored poset, and bi-colored
poset orientation.

Lemma 3.1. A BP has a natural ω-labeling iff its corresponding BPO is acyclic.

Proof. If a BPO is cyclic, then there is a situation in which a natural ω-labeling must obey
ω(a)< ω(b)< · · ·< ω(n)< ω(a), which cannot happen, so there does not exist a natural
ω-labeling.

If a BPO is acyclic, then there exists at least one vertex such that all arcs connected to
that vertex are oriented away from it. Denote this vertex v. Assign v the lowest possible
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unused value (so, in the first iteration, ω(v) = 1). This is consistent with a natural ω-labeling
since the value of ω for all other vertices must be strictly greater than ω(v). Now remove
v and its adjacent arcs. Since the BPO is acyclic, then the remaining directed graph must
also be acyclic. This process can be repeated for each vertex in the directed graph until all
vertices are labeled; thus, a natural ω-labeling exists.

Next, we deduce the conditions on a mixed graph such that all of its corresponding BPs
have a natural ω-labeling.

Proposition 3.2. If ~ab ∈ AG, then for any BPO of G, ~ab ∈ ABPO.

Proof. Let ~ab ∈ AG. This means for all BPs that can be obtained from G, the relationship
between a and b is labeled with a U . So, for a given BP, its corresponding BPO has
~ab ∈ ABPO.

Given a mixed graph G, deorienting an arc ~ab ∈ AG means converting ~ab ∈ AG into
āb ∈ EG.

Corollary 3.3. Given that a BPO comes from G, G can be obtained by deorienting certain
arcs of the BPO.

Proof. Given a BPO that comes from G, for all c̄d ∈ EG, deorient arcs ~cd or ~dc ∈ ABPO.
From Proposition 3.2, if ~ab ∈ ABPO, then ~ab ∈ AG. Thus, the resulting graph G′ will be a
mixed graph such that ~ab ∈ AG′ for all ~ab ∈ AG and c̄d ∈ EG′ for all c̄d ∈ EG. So G′ = G,
which ends the proof.

Lemma 3.4. A mixed graph G is acyclic iff every BPO that can be obtained from G is
acyclic.

Proof. Given a cyclic BPO of G, any mixed graph obtained by deorienting arcs of the BPO
must be cyclic since there exists a way to orient its edges to obtain a cyclic subgraph. By
Corollary 3.3, we know that G can be obtained by deorienting certain arcs of the BPO. Thus,
G must be cyclic.

If G is cyclic, G has a mixed cycle. Denote this mixed cycle g. Consider the orientation
of G in which for all āb ∈ Eg, if orienting a→ b would create a directed cycle, instead orient
a and b as b→ a. In other words, take g and orient its edges opposite of what would give
a directed cycle. Denote this oriented subgraph of g as g′. Since g′ is a subgraph of an
orientation of G, all that must be shown is that the BPO of g′ is cyclic.

Recall that the arcs of g′ that correspond to the arcs of G will have β (a,b) =U in the
BP of g′, while the arcs of g′ that correspond to the edges of G will have β (a,b) = D in the
BP of g′. The arcs of g′ that correspond to the arcs of G will preserve direction in the BPO
of g′ by Proposition 3.2. If āb ∈ EG and b→ a in g′ then a→ b in the BPO of g′. By the
construction of g′, the BPO stemming from g′ is cyclic.

Proof of Theorem 1.1. Let G = (V,E,A) be an acyclic mixed graph. Since G is acyclic,
every orientation of G must also be acyclic. By Lemma 2.1, χG(k) = ∑i ΩBPi(k). By Lemma
3.4, every BPO that can be obtained from G must be acyclic. By Lemma 3.1, every BP
of G has a natural ω-labeling. Thus, for each BP of G that stemmed from a poset P,
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ΩBPi(k) = ΩPi,ω(k) for all i. This means that χG(k) = ∑i ΩBPi,ω(k) = ∑i ΩPi,ω(k). Since
χG(k) and ΩPi,ω(k) are polynomials in k, the relation between the two must be true for
all k, and so we have χG(−k) = ∑i ΩPi,ω(−k). Applying Stanley’s Theorem 2.2 for order
polynomials and noting that |Pi|= |V | for all i gives

χG(−k) = ∑i ΩPi,ω(−k) = ∑i(−1)|Pi|ΩPi,ω̄(k) = (−1)|V |∑i ΩPi,ω̄(k).

Recalling that ω is a natural ω-labeling, for each i,

ΩPi,ω̄ = #{(x1,x2, ...,xn) ∈ [k]n : xu < xv if u� v and ω(u)< ω(v), xu ≤ xv if u� v and ω(u)> ω(v)}
= #{(x1,x2, ...,xn) ∈ [k]n : xu < xv if β (u,v) =U , xu ≤ xv if β (u,v) = D}
= #{(x1,x2, ...,xn) ∈ [k]n : xu < xv if ~uv ∈ AG, xu ≤ xv if ūv ∈ EG}.

Thus, ΩPi,ω̄(k) counts the number of k-colorings that are intercompatible with the orientation
of G that gives rise to the BP that corresponds to Pi. And, for each possible k-coloring of
G, ∑i ΩPi,ω̄(k) counts the number of acyclic orientations of G that are intercompatible with
that k-coloring. So, the multiplicity of each k-coloring in ∑i ΩPi,ω̄(k) will be the number of
intercompatible acyclic orientations of G.

This proof is reminiscent of the inside-out polytope approach that Beck, Bogart, and
Pham use to prove a reciprocity theorem for strong chromatic polynomials [3]. Both
theorems also result in relating k-colorings of a mixed graph to the acyclic orientations of
that mixed graph; although the strong case involves compatible orientations, while the weak
case involves intercompatible orientations. The key difference is that the reciprocity theorem
for strong chromatic polynomials applies to all mixed graphs, whereas the reciprocity
theorem for weak chromatic polynomials has the necessary condition that G be an acyclic
mixed graph. This necessary condition for reciprocity shall be demonstrated in the examples
in Section 4.2.

4 Computing Weak Chromatic Polynomials

4.1 Deletion-Contraction for Mixed Graphs
The examples in the next section that demonstrate Theorem 1.1 will require a deletion-
contraction formula for mixed graphs. Let G = (V,E,A) be a mixed graph and consider an
edge e ∈ EG (resp. a ∈ AG). Denote G− e (resp. G−a) as the mixed graph G with e (resp.
a) deleted. Denote G/e (resp. G/a) as the mixed graph G with e (resp. a) removed and the
two endpoints of e (resp. a) are identified.

Proposition 4.1. Let χG(k) be the chromatic polynomial of G. Then χG−e(k) = χG(k)+
χG/e(k) .

Proof. Proof by counting. Let G be a graph such that e has vertices v and w, and let c(v)
be the color of vertex v. Since the relationship between v and w is not specified, χG−e(k)
on the left-hand side counts the number of proper k-colorings when either c(v) 6= c(w) or
c(v) = c(w). On the-right hand side, χG(k) counts the number of proper k-colorings when
c(v) 6= c(w), while χG/e(k) counts the number of proper k-colorings when c(v) = c(w).
Thus, each quantity on both sides count the same number of proper k-colorings.
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Denote GaR as the mixed graph G with arc a directed in the reverse direction, i.e., if
a = ~vw ∈ AG, then a = ~wv ∈ AGaR .

Proposition 4.2. Let χG(k) be the chromatic polynomial of G. Then χG−a(k) = χG(k)+
χGaR(k)−χG/a(k).

Proof. Proof by counting. Let G be a graph such that a has vertices v and w, and let c(v)
be the color of vertex v. Without loss of generality, let a = ~vw. Since the relationship
between v and w is not specified, χG−a(k) on the left-hand side counts the number of
proper k-colorings when either c(v) < c(w),c(v) > c(w), or c(v) = c(w). On the right-
hand side, χG(k) counts the number of proper k-colorings when either c(v) < c(w) or
c(v) = c(w), while χGaR(k) counts the number of proper k-colorings when either c(v)> c(w)
or c(v) = c(w). Since χG(k)+ χGaR(k) counts the number of proper k-colorings in which
c(v) = c(w) by a multiplicative factor of 2, subtracting χG/a(k) — which counts the number
of proper k-colorings in which c(v) = c(w) — from the sum will remove any overcounting
and result in having the same number of proper k-colorings on both sides of the equation.

So, for deletion-contraction of an arc, we get

χG−a(k) = χG(k)+χGaR(k)−χG/a(k)

⇒ χG(k) = χG−a(k)+χG/a(k)−χGaR(k).

The issue with this deletion-contraction formula, however, is that applying it does not result
in solving for a chromatic polynomial of a graph less complicated than the original. This
is because the right-hand side still has a chromatic polynomial for a graph that is equally
complicated, i.e., one that has the same number of edges, arcs, and vertices as the original.
To circumvent this issue, we need to introduce the following terms: A directed graph S is
connected if there exists a path between any two vertices and strongly connected if there
exists a directed path from any vertex to any other vertex, where a directed path is simply a
path consisting only of coherently oriented arcs.

Lemma 4.3. Let S be a strongly connected directed graph, and p the graph consisting of
only a single vertex. Then χS(k) = χp(k) = k.

Proof. By definition, there exists a directed path between v and any w ∈ S. So if v has color
i, w must have color i (recall that our definition of a proper k-coloring is of the weak case).
This is true for all vertices v,w ∈ G. Since there are k available colors to choose from, we
have CS =Cp = k.

Given a subgraph S of G, denote G/S as the mixed graph G with all edges and arcs of S
removed and all vertices of S identified.

Theorem 4.4. Let G = (V,E,A), S be a strongly connected directed subgraph of G. Then
χG(k) = χG/S(k).

Proof. Denote the vertex that S contracts to as v. It is sufficient to show that a bijection
exists between the set of proper k colorings of G and the set of proper k-colorings of G/S.
Take a proper k-coloring that is found in G. Since S is a subgraph of G, by Lemma 4.3,
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we can map the proper k-coloring of G in which all vertices of S are colored i ∈ [k] to the
proper k-coloring of G/S in which v is also colored i. So, any proper k-coloring for G can
be mapped to a proper k-coloring for G/S.

Without loss of generality, take a proper k-coloring that is found in G/S, and v has
color i for some i ∈ [k]. By Lemma 4.3, we can map this proper k-coloring of G/S to
the proper k-coloring of G in which every vertex of S is also colored i. So, any proper
k-coloring for G/S can be mapped to a proper k-coloring for G. This proves the existence of
a bijection.

The above theorem allows the deletion-contraction formulas for mixed graphs to have
wider applications, since they can now be used recursively to rewrite chromatic polynomials
of mixed graphs as chromatic polynomials of comparatively less complicated mixed graphs.
In other words, we can remove edges and flip orientations until we encounter a strongly
connected directed subgraph (such as a cycle, for instance), contract that subgraph to a point,
and compute chromatic polynomials for the resulting mixed graph instead.

4.2 Examples
We denote the total number of k-colorings of G each counted with multiplicity equal to the
number of intercompatible acyclic orientations of G as αk.

4.2.1 Path with 2 arcs separated by an edge

Let P be a path with 4 vertices a,b,c and d such that A = {~ab, ~cd} and E = {b̄c}. To find
the chromatic polynomial of P, we apply deletion-contraction. So delete b̄c = e to create
G− e, and contract b̄c to create a new vertex b′ for G/e. G− e results in two separate paths
with one arc each, i.e., A = {~ab, ~cd} and E = /0. G/e results in a path with two arcs, i.e.,
A = { ~ab′, ~b′d} and E = /0.

To calculate χG/e, let R be an arbitary path with n nodes and k colors with two arcs, ~ae
and ~ed. Let’s add two arbitary colors ∗1,∗2 to our colors such that if we choose the colors
(∗1,y,z) (where x,y,z ∈ [k] and the ordered triple represents the color of each respective
vertex), then a = e. If we choose the colors (x,∗2,z), then e = d, and if we choose the colors
(∗1,∗2,z), then a = e = d. Therefore, we have k+2 coloring choices. This gives us a total
of

(k+2
3

)
coloring choices for R. Therefore,

χP(k) =
(

k+2
3

)
=

k(k+1)(k+2)
6

is the chromatic polynomial for a path with one arc.
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Since the deletion of an edge results in two one arc’d paths, we just need to calculate the
chromatic polynomial of a path with one arc and then square it. To calculate χG−e(k), we
use a method similar to the above. Let Q be an arbitrary path with n nodes, k colors, and
one arc. Let a and b be arbitary vertices in Q such that ~ab. Introduce a new color ∗ such that
if we choose the colors (∗,y), then a = b. This gives us k+1 coloring choices. And as with
the above reasoning

χG(k) =
(

k+1
2

)
=

k(k+1)
2

.

Using the equation for deletion contraction, we get that

χG =

(
k(k+1)

2

)2

− k(k+1)(k+2)
6

=
k(k+1)(k−1)(3k+4)

12

is the chromatic polynomial for P.
Consider χG(−2) = 1. The only possible labeling is (1,2,1,2), so α2 = χG(−2) = 1.

At k = 3, χG(−3) = 10. For this case, our possible colorings are:

(1,2,1,2),(1,2,1,3),(1,2,2,3),(1,3,1,2),(1,3,1,3),
(1,3,2,3),(2,3,1,2),(2,3,2,3),(1,3,2,3).

The coloring (1,2,2,3) has a multiplicity of 2 as it is found in 2 orientations, so α3 =
χG(−3) = 10. Thus, Theorem 1.1 is consistent with this acyclic mixed graph.

4.2.2 Triangle with 2 arcs in the same direction

Let G be a triangle with vertices a,b, and c such that A = {~ab, ~bc} and E = {āc}. If we
give vertex b the color i ∈ [k], then we have i colors that we can choose for vertex a and
(k+1− i) colors that we can choose for vertex c. Since āc is an edge, they cannot have the
same color. This results in the loss of 1 color. The resulting chromatic polynomial is

χG(k) =
k

∑
i=1

[i(k+ i−1)−1] =
k(k+1)(k+2)

6
− k.

Consider χG(−2) = 2. Should Theorem 1.1 apply to this graph, there should be two
pairs of 2-colorings with intercompatible acyclic orientations of this graph. However, an
intercompatible coloring x would require that x(b)> x(a) and x(c)> x(b), so α2 = 0 6= 2.
Thus, the reciprocity theorem does not apply to this cyclic mixed graph, which illustrates
the necessity of the condition in Theorem 1.1 that G be acyclic.
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4.2.3 Square with two non-adjacent arcs

Consider a square G with two arcs and vertices a,b,c, and d such that A = {~ca, ~bd} and
E = {āb, c̄d}. We apply deletion-contraction to calculate the chromatic polynomial. Delete
and contract c̄d. When we contract c̄d, we get a triangle wtih two arcs going in the same
direction. When we delete an edge, we get a path with two arcs separated by an edge. Both
being chromatic polynomials we have already computed, we use the deletion-contraction
formula:

χG(k) = χG−e(k)−χG/e(k)

=

(
k(k+1)(k−1)(3k+4)

12

)
−
(

k(k+1)(k+2)
6

− k
)

=
k(k+1)(k−1)(3k+4)

12
− k(k+1)(k+2)

6
+ k.

For k =−3,χG(−3) = 8. In this case, our possible colorings with an intercompatible acyclic
orientation of the square are

(2,1,1,2),(2,1,1,3),(2,2,1,3),(3,1,1,2),(3,1,1,3),
(3,2,1,3),(3,1,2,2),(3,1,2,3),(3,2,2,3).

The colorings (2,2,1,3) and (3,1,2,2) have a multiplicity of 2, since (2,2,1,3) is inter-
compatible with the orientations that have A = {~ca, ~bd, ~cd, ~ab} or A = {~ca, ~bd, ~cd, ~ba},
while (3,1,2,2) is intercompatible with the orientations that have A = {~ca, ~bd, ~ba, ~cd} or
A = {~ca, ~bd, ~ba, ~dc}. This gives α3 = 11 6= 8, so Theorem 1.1 does not apply for this cyclic
mixed graph, which again illustrates the necessity of the condition that G be acyclic.

4.2.4 Square with two adjacent arcs - same direction

Consider a square G with two arcs and vertices a,b,c, and d such that A = {~bc, ~cd}
and E = {āb, ād}. As with the above example, we use deletion-contraction to calculate the
chromatic polynomial. Delete-contract ād. When we contract ād, we get a triangle with two
arcs going in the same direction. When we delete ād, we get a path with two arcs adjacent
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to each other and an edge. Since the chromatic polynomial for the triangle has already been
computed, only the chromatic polynomial of the path need be computed.

For the path, we have an edge āb extending off of two connected arcs. For a coloring
x, the only rule we have to follow is that x(b) 6= x(a). Since there are k colors for the mixed
graph, we have k−1 choices for b so that its color differs from a. So we just need to multiply
our previous χG for the path by k−1. Therefore, the chromatic polynomial for the square
using deletion and contraction is

χG(k) = χG−e(k)−χG\e(k)

=

(
k(k+1)(k−1)2(3k+4)

12

)
−
(

k(k+1)(k+2)
6

− k
)

=
k(k+1)(k−1)(3k+4)

12
− k(k+1)(k+2)

6
+ k.

Consider χG(−2) = 1. However, since there are two arcs with the same orientation adjacent
to each other, an intercompatible coloring for this square requires at least 3 colors. So
α2 = 0 6= 1, and again Theorem 1.1 does not apply, once more illustrating the necessity of
the condition in Theorem 1.1 that G be acyclic.
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