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Abstract

Consider all the different regions in three dimensions bounded by the planes
x1 = x2, x1 = x3 and x2 = x3. This is a three-dimensional braid arrangement.
More generally, in dimension n, Bn is the braid arrangement of hyperplanes
of the form xi = xj for 1 ≤ i < j ≤ n. A Shi arrangement, Shi(n) is an
expansion of Bn that includes the hyperplanes xi = xj + 1. Pak and Stanley
have shown that there exists a bijection between the regions of Shi(n) and a
combinatorial object called parking functions of length n where both objects
have the cardinality of (n+1)n−1. Our goal is to expand on the work of Pak and
Stanley and provide a different approach to this bijection. We will establish
our bijection by linking the regions of Shi(n) and parking functions to mixed
graphs, which are well known in the area of Graph Theory. This work provides
an exciting link among three areas of mathematics.

1 Introduction

Consider a one-way street that has n available parking spots, ordered 1, 2, . . . , n.
Imagine that there are n cars entering this street and want to park in one of
the n parking spots. Each car has a parking spot preference i ∈ {1, 2, . . . , n},
If a car’s preferred parking spot is filled, it must continue past the ith spot
until it finds an empty spot or reaches the end, unable to park. A sequence
of parking preferences in which every car can park is a parking function. We
define Pn to be the set of all parking functions of length n. For example, when
the number of cars is 3, the sequence (1, 3, 3) states that car 1 wants to park
in spot 1, car 2 wants to park in spot 3, and car 3 wants to park in spot 3.
However, car 3 cannot park because car 2 has filled the third parking spot.
Thus (1, 3, 3) is not a parking function because not all cars were able to park.
On the other hand, the sequence (1, 3, 2) is a parking function because each car
can successfully fill a spot. Notice that (3, 2, 1) is also a parking function. In
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fact, only the set of preferences matter, not the preference of each car. Stanley
defines a parking function of length n as a sequence P = (p1, p2, . . . , pn) such
that if (q1, q2, . . . , qn) is a permutation of P where q1 ≤ q2 ≤ · · · ≤ qn then for
all 1 ≤ i ≤ n, qi ≤ i [4]. It is known that the number of parking functions is
(n+ 1)n−1 [1].

A hyperplane arrangement in Rn is a finite set of hyperplanes in Rn [2].
Many hyperplane arrangements are connected to the symmetric group. One
such special arrangement, the braid arrangement Bn, is the arrangement of
hyperplanes of the form xi = xj for 1 ≤ i < j ≤ n [5]. An expansion of Bn is
the hyperplane arrangement of the form

xs − xt = 0, xs − xt = 1, for 1 ≤ s < t ≤ n.

This expansion is known as the Shi arrangement, denoted by Shi(n) [5]. The
set Rn contains the regions of Shi(n), which are the connected components of
Rn with the hyperplanes of Shi(n) removed. It has been shown that Shi(n)
partitions Rn into (n+ 1)n−1 regions [2].

Pak and Stanley have established a bijection between parking functions and
the regions of Shi(n), a result prompted by the fact that both objects have the
same size (n+1)n−1 [5]. Athanasiadis and Linusson have also found a bijection
between the two objects through a different method [1]. The purpose of this
paper is to establish a new bijective function

Υ : Rn −→ Pn

that links the regions of the Shi arrangement to the set of parking functions.
Let the set of labeled complete mixed graphs Mn be defined as the set of

graphs whose n vertices are labelled {1, 2, . . . , n} and have directed or undi-
rected edges between each pair of vertices. We will prove Υ is a bijection by
introducing an intermediary bijection involving a specific subset Bn of Mn.

We will begin this paper by considering Υ as being composed of two separate
bijections. We first (in section 2) consider the function ϕ : Rn −→ Bn that maps
the regions of Shi(n) to a subset of the labeled complete mixed graphs with n
vertices. We will later (in section 3) consider another bijection, Ω : Bn −→ Pn
that maps the same subset of labeled complete mixed graphs with n vertices
to the set of parking functions. It will follow that Υ = Ω ◦ ϕ is a bijection.

For the purpose of this paper, given two vertices s and t of a labeled mixed
graph, we will denote a directed edge from s to t as ~st, and an undirected edge
between s and t as st. Also, we denote E(G) as the edges and V (G) as the
vertices of the graph G .

2 A Bijection From Regions of Shi(n) to

Mixed Graphs

Consider R ∈ Rn. We denote I(R) as the set of inequalities which define R.
I(R) contains inequalities of the form xs−xt < 0, 0 < xs−xt < 1, or xs−xt > 1,
for each 1 ≤ s < t ≤ n.
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We want to construct a unique labeled mixed graph for each region of
Shi(n). We construct the labeled mixed graph, ϕ(R), as follows: Let s < t.
If xs − xt < 0 ∈ I(R), then ~st ∈ E(ϕ(R)). If 0 < xs − xt < 1 ∈ I(R), then
st ∈ E(ϕ(R)). If xs − xt > 1 ∈ I(R), then ~ts ∈ E(ϕ(R)). Since I(R) contains
an inequality relating xs and xt for all 1 ≤ s < t ≤ n, ϕ(R) is a complete
labeled mixed graph.

Figure 1: Shi(3) is composed of B3, the solid lines, together with the dotted lines.

Example 1. In Figure 1, Shi(3) is intersected with the hyperplane x1 + x2 +
x3 = 0, which shows the (3 + 1)(3−1) = 16 regions of Shi(3). Given the inequal-
ities 0 < x1 − x3 < 1, x1 − x2 < 0, x2 − x3 > 1 ∈ I(5) in Figure 1, the labeled
mixed graph ϕ(5) is

Using this method of construction, clearly ϕ is well defined. The following
lemma shows ϕ is injective.

Lemma 1. For every region R of Shi(n) there is a unique labeled mixed graph
representation ϕ(R).

Proof. Suppose that there exist two distinct regions R1 and R2 of Shi(n) that
give rise to the same labeled mixed graph M = ϕ(R1) = ϕ(R2). By definition,
I(R1) 6= I(R2). Since R1 6= R2 there exist s and t such that the inequality
relationship between xs and xt is different between R1 and R2. This produces a
different orientation on the edge between s and t. Thus R1 and R2 do not give
rise to the same labeled mixed graph. By contradiction, no two regions R1 and
R2 of Shi(n) can give rise to the same M.

Let ~M be the complete directed graph defined by directing the undirected
edges of M from t to s, where s < t. A directed graph is acyclic if it contains no
cycles [3]. The source of a graph G is a vertex with no edges directed towards
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it. Similarly, a sink of a graph G is the vertex with all edges directed towards
it. A labeled mixed graph M is acyclic if ~M is acyclic. The source of an acyclic
graph M, is the source of ~M. In addition the sink of M is the sink of ~M. The
in-degree, denoted #in(v), of a vertex v ∈ ~M is the number of edges directed
toward v. The in-degree of v ∈M is the in-degree of v ∈ ~M.

Example 2. How to orient a labeled mixed graph M.

⇒

We will show later that every complete acyclic graph has a unique source
and a unique sink, signifying that this is well defined. Let Bn be the set of
acyclic labeled mixed graphs with n vertices containing no subgraphs with an
undirected edge between the source and sink and a directed edge from t to s,
with s < t.

Theorem 1. The function ϕ : Rn −→ Bn is a bijection.

We have shown that ϕ is well defined and injective. However, it remains
to show that Im(ϕ) = Bn. In the next section, we call on the use of tri-colored
graphs to prove surjectivity.

2.1 Tri-Colored Graphs

We relabel the elements of Bn via the bijection f as follows: Let s < t. A
directed edge ~ts will be colored green (solid), and a directed edge ~st will be
colored orange (dashed). Lastly, an undirected edge st will be directed to form
~ts and also colored purple (dotted). This assignment relabels Bn into An where
An is the set of acyclic directed complete colored graphs containing no subgraph
with both a purple edge between the source and sink and a green edge. We call
this condition the purple-green condition. The following example shows how to
color a mixed graph:

Example 3.

The function f maps B ∈ Bn to an acyclic directed graph. We will now prove
that a directed graph with n vertices is acyclic if and only if it has a unique
vertex vi with in-degree i for each i ∈ {0, 1, . . . , n− 1}. This fact will allow us
to construct a bijection h : An −→ Rn.
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Lemma 2. Every directed acyclic complete graph G has a source.

Proof. Consider the directed acyclic complete graph with one vertex. Then
this vertex is a source. Suppose by induction, that all directed acyclic complete
graphs with n vertices contain a source. Consider a directed acyclic complete
graph G with n+ 1 vertices. Select v, a vertex of G with the lowest in-degree.
Let G′ be G without the vertex v. By our inductive hypothesis G′ has a source,
w. Hence, the number of edges directed toward w in G′ is zero. It follows that
the number of edges directed toward w in G is less than or equal to 1. In G
#in(v) ≤ #in(w) ≤ 1. Suppose #in(v) = 1, for G. This will result in one of
two cases: If ~wv ∈ E(G) then w is the source, meaning #in(w) = 0. Therefore
w has the smallest in-degree and cannot be in G′ which is a contradiction.
Furthermore, if ~vw ∈ E(G) then there exist x ∈ G such that ~xv ∈ E(G).
However, we also know that x ∈ G′. Since w is the source of G′, ~wx ∈ E(G′) ⊂
E(G). This results in a cycle created by ~vw, ~wx, and ~xv. Thus #in(v) 6= 1,
which implies that #in(v) = 0, and so v is a source.

Lemma 3. A directed graph with n vertices is acyclic if and only if it has a
unique vertex vi with #(in(vi)) = i, for each 0 ≤ i ≤ n− 1.

Proof. (⇒) Let G be a directed acyclic complete graph with 1 vertex, and
so there exists a unique source v0 ∈ V (G). Suppose by induction that the
lemma holds for all directed acyclic complete graphs with n vertices. Let G
be a complete directed acyclic graph with n + 1 vertices. Let G′ = G\v0 By
our inductive hypothesis, we know that for each 0 ≤ i ≤ n − 1 there exists a
unique vi ∈ V (G′) such that #(in(vi)) = i. Now add v0 to G′ and direct all
edges away from v0 to get back G, adding 1 to each in-degree of the vertex set
of G′. Therefore G has a vertex vi such that #(in(vi)) = i for all 0 ≤ i ≤ n.
(⇐) Let G be a complete directed graph with 1 vertex. Then G is acyclic.
Suppose by induction that the lemma holds for all complete directed graphs
with n vertices. Let G be a complete directed graph with n + 1 vertices such
that for each 0 ≤ i ≤ n there exists a vertex vi with #in(vi) = i. Let G′ be
G without the vertex v0. Then by the inductive hypothesis, G′ is acyclic. Now
add v0 to G′ and direct all edges away from v0 to get back to G. Since all edges
are directed away from v0 there is no cycle involving v0, and since G′ had no
cycles, there are no cycles in G.

Corollary 1. Any complete directed acyclic oriented graph G has a unique
source and a unique sink.

We are now ready to define the function h : An −→ Rn. For any graph
A ∈ An, h(A) is the region containing a point (x1, x2, . . . , xn) that satisfies the
following conditions: there exists a σ ∈ Sn such that xσ(1) < xσ(2) < · · · < xσ(n),

#in(i) = σ−1(i) − 1, and xσ(j) − xσ(i) is given by the color of
−−−−−→
σ(i)σ(j) ∈

E(A)asfollows. Let h be defined as the map that correlates E(An) to I(R).
More specifically, an orange directed edge ~st maps to the inequality xs−xt < 0,
the purple directed edge st corresponds to the inequality 0 < xs − xt < 1, and
the green directed edge ~ts maps to the inequality xs − xt > 1.

Lemma 4. The map h is well defined.
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Proof. Given a labeled mixed graph A ∈ An, by Lemma 3 there exists σ ∈ Sn
such that xσ(1) < xσ(2) < · · · < xσ(n), with #in(i) = σ−1(i)−1, i.e. we can order
the xi by their in-degree. Therefore, the only contradictory set of inequalities
that can occur are of the form 0 < xσ(i)−xσ(m) < 1 and xσ(j)−xσ(k) > 1, where
m ≤ k < j ≤ i. But these inequalities correspond to A having the purple-green
condition, which is forbidden. Therefore h(A) must map to a region R ∈ Rn.
The uniqueness follows by construction since h(A) is defined by one particular
set of inequalities.

Theorem 2. The map h : An −→ Rn is a bijection.

Proof. By Lemma 4, h is well defined. Next we will construct the inverse of h.
Define g : Rn −→ An as follows: Consider the region R of Shi(n) represented by
the point (x1, x2, . . . , xn). Now consider Kn with vertices labeled {1, 2, . . . , n}.
To each vertex k, assign the value xk. There exists some permutation σ ∈
Sn, such that xσ(1) < xσ(2) < · · · < xσ(n). Direct the edges of Kn such that
#in(k) = σ−1(k) − 1. Since σ−1(k) − 1 runs through {0, 1, . . . , n − 1} as k
runs through {1, 2, . . . , n} we get that Kn is acyclic by Lemma 3. Using our
coloring scheme, color the edges of Kn. Our resulting colored graph, A, does
not have the purple-green condition since it came from Rn. Therefore, g(A) is
well defined.

By construction, h ◦ g(R) = R for all R ∈ Rn and g ◦ h(A) = A for all
A ∈ An. Therefore, g = h−1, so h is a bijection.

Proof of Theorem 1. We have shown that ϕ is injective by Lemma 1, and
that the functions f and h are both bijections. What is left to show is that
(h ◦ f)−1 = ϕ. We know that for a region R ∈ Rn, ϕ(R) = B ∈ Bn and
h−1(R) = A ∈ An. However, we have precisely defined h so that

h−1(R) = f(B)⇒ h−1(R) = f(ϕ(R))⇒ ϕ(R) = f−1 ◦ h−1(R) = (h ◦ f(R))−1.

3 An Injection fromMixed Graphs to Park-

ing Functions

Recall the definition of a parking function as a sequence P = (p1, p2, . . . , pn)
such that if (q1, q2, . . . , qn) is a permutation of P where q1 ≤ q2 ≤ · · · ≤ qn then
for all 1 ≤ i ≤ n, qi ≤ i.

For any graph B ∈ Bn, let {1, 2, . . . , n} be the set of vertices of B. Define
τ(i) = #in(i) + 1. Then define Ω : Bn → Pn by Ω(B) = (τ(1), τ(2), . . . , τ(n)).

We first will prove that Ω is well defined and injective.

Lemma 5. Ω : Bn → Pn is well defined.

Proof. By Lemma 3, we know that for any complete directed acyclic graph
~B ∈ Bn the in-degree of each vertex is labeled from {0, 1, . . . , n− 1}. Let B be
any mixed graph in Bn such that the directed version of B is ~B. By construction,
Ω( ~B) yields a parking function that is a permutation of (1, 2, . . . , n). Since the
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set of in-degrees of the vertices of B is {i1, i2, . . . , in} where ik ≤ k − 1, then
Ω(B) is a permutation of (τ(1), τ(2), . . . , τ(n)) where τ(ik) ≤ k. Therefore Ω(B)
is a parking function, which indicates that Ω is well defined.

Theorem 3. Ω : Bn −→ Pn is an injection.

Proof. Consider the set B1. By construction, Ω : B1 → P1 is an injection.
Similarly, it is clear to see that Ω : B2 → P2 is also an injection. Depicted
below in Figure 2 are the regions of Shi(3) with their corresponding mixed
graphs given by ϕ and their corresponding parking functions given by Ω. This
figure gives an explicit bijection between the three objects for n = 3, and in
particular it shows Ω is an injection for n = 3. Now suppose that Ω : Bk → Pk
is an injection. For our induction step, we want to show that Ω : Bk+1 → Pk+1

is an injection.

Figure 2: Regions of Shi(3) with B3,P3.

Suppose towards a contradiction that Ω : Bk+1 → Pk+1 is not an injection.
This implies that there exist two distinct graphs B,C ∈ Bk+1 such that Ω(B) =
Ω(C). This means the in-degree of every vertex m of B must be the same as
the in-degree of vertex m in C. Some vertex k of B and C is the sink. We now
remove k from both B and C to create two new graphs denoted B′ and C ′.
By properties of the sink, the in-degree of the remaining vertices of B′ and C ′

remain unaffected. This implies that Ω(B′) = Ω(C ′), which by our inductive
hypothesis means that B′ = C ′. Next add vertex k to B′ and C ′ and direct all
edges accordingly to obtain B and C again. By our assumption that B 6= C, yet
B′ = C ′, there must be at least two edges connected to k that differ between B
and C. Since k is the sink, there are no connected edges directed away from k.
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Furthermore, if all edges were directed towards k, or no edges connected to k
were directed, then it would follow that B = C. Thus there must be at least one
undirected edge connected to k and at least one edge directed toward k that are
switched between B and C, i.e., there exists ak, ~bk ∈ E(B) and ~ak, bk ∈ E(C).

Consider the subgraphs abk = S1 ⊂ B and abk = S2 ⊂ C as elements of
B3. By construction, the vertices of S1 and the vertices of S2 have the same
in-degree. Therefore, Ω(S1) = Ω(S2) signifies that S1 = S2 since Ω for n = 3 is
injective, as seen in Figure 2. Since ak ∈ E(S1) and ~ak ∈ E(S2), S1 6= S2 which
is a contradiction. This indicates that B = C. Therefore Ω : Bk+1 → Pk+1 is
an injection.

Surjectivity follows from the fact that |Pn| = |Shi(n)| and that ϕ is a
bijection from Shi(n) to Bn. Therefore Ω is bijective.

4 Bijection from Regions of Shi to Parking

Functions

We define the bijection Υ : R −→ P as Υ = Ω ◦ ϕ(R). Since Ω is bijective
and ϕ is bijective, it follows that Υ is bijective. Hence we have established our
bijective function from regions of the Shi arrangement to parking functions via
mixed graphs.

5 Future Work

We would like to investigate defining Ω−1 explicitly instead of claiming surjec-
tivity solely based on cardinality. In addition, there are other Shi-type hyper-
plane arrangements that are in bijection with an object analogous to parking
functions. The method we used to construct this bijection might be useful in
proving other such bijections.
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