b.a. students
- jakob becker (fu berlin mathematics b.a.'21) ein stochastischer ansatz zum beweis der reziprozität von dedekindsummen
- daniel blado, joseph crawford, taina jean-louis (msri-up'12, co-mentor: michael young) weak chromatic polynomials of mixed graphs (see also our joint paper)
- jordan clark, stefan klajbor, chelsie norton (msri-up'12, co-mentor: ana berrizbeitia) reciprocity formulae of dedekind-like sums
- alyssa cuyjet, gordon kirby, molly stubblefield (msri-up'12, co-mentor: michael young), nowehere-zero k-flows on graphs (see also our joint paper)
- michael dairyko, claudia rodriguez, schuyler veeneman (msri-up'12, co-mentors: ana berrizbeitia & amanda ruiz) a bijection from shi arrangement regions to parking functions via mixed graphs (see also our joint paper)
- jessica de silva, gabriel dorfsman-hopkins, joseph pruitt (msri-up'12, co-mentor: amanda ruiz) interval-vector polytopes (see also our joint paper)
- nikolaj gus (fu berlin mathematics b.a.'21) exponentielle erzeugendenfunktionen und ihre anwendungen in der graphentheorie
- jan heydebreck (fu berlin mathematics b.a.'21) erzeugendenfunktionen
von kompositionen mit teilen aus endlichen und unendlichen mengen: ein algebraisches zählverfahren
- julia klose (fu berlin mathematics b.a.'21) übergangsmatrizen der schriftlichen addition und der
satz von perron-frobenius
- florian kohl (uni würzburg mathematics b.a.'13) integer-point transforms of rational polygons and rademacher-carlitz polynomials (see also our joint paper)
- eun bee lee (fu berlin mathematics b.a.'21) parkfunktionen und ihre relevanten objekte
- sven marschalek (fu berlin mathematics b.a.'21) analyse
einer erzeugendenfunktion für das frobenius-münzproblem und ihrer nullstellen
- erika meza, bryan nevarez, alana shine (msri-up'12, co-mentor: michael young) computing the chromatic polynomials of the six signed petersen graphs (see also our joint paper)
- michael müller (fu berlin mathematics b.a.'20) farey-folgen & ford-kreise
- tablu
othmann (fu berlin mathematics b.a.'20) quasipolinomiale
partitionsfunktionen
- pauline papenbrock (fu berlin mathematics b.a.'20) euler-zahlen,
euler-polynome und überträge in der schriftlichen addition
m.a. students
- juan auli (sfsu mathematics m.a.'15, co-advisor: federico ardila) the bettin-conrey reciprocity theorem and inflated eulerian polynomials
(see also our joint paper with abdelmejid
bayad)
- eleon bach (fu berlin mathematics m.s.'22) flow zonotopes and cographic hyperplane arrangements
(see also our joint paper with sophie rehberg)
- leonardo bardomero (sfsu mathematics m.a.'18) generating functions for k-representable integers with two parameters
(see also our joint paper)
- andrew beyer (sfsu mathematics m.a.'10) enumeration of orthogonal latin squares
- anastasia chavez (sfsu mathematics m.a.'10) bernoulli-dedekind sums (see also our joint paper)
- steven collazos (sfsu mathematics m.a.'13) on the polyhedral geometry of t-designs
- aaron dall (sfsu mathematics m.a.'08) tension and flow complexes
(see also aaron's joint paper with felix breuer)
- brian davis (sfsu mathematics m.a.'14) unlabelling signed graph colorings and acyclic orientations (see also brian's paper)
- jessica delgado (sfsu mathematics m.a.'13, co-advisor: joseph gubeladze) higher-dimensional frobenius gaps (see also our joint paper with mateusz michalek)
- nick dowdall (sfsu mathematics m.a.'11) minimal-distance chromatic polynomials of signed graphs
- eric etu (sfsu computer science m.a.'07) computation of characteristic polynomials of hyperplane arrangements
- logan godkin (sfsu mathematics m.a.'12, co-advisor: felix breuer) aspheric orientations of simplicial complexes (see also our joint paper with jeremy martin)
- mary halloran (sfsu mathematics m.a.'07) finite trigonometric character sums via discrete fourier analysis (see also our joint paper)
- mela hardin (sfsu mathematics m.a.'11) a new two-variable generalization of the chromatic polynomials for signed graphs (see also our joint paper)
- andrew herrman (sfsu mathematics m.a.'10) ehrhart quasipolynomials of half-integral polygons
- mike jackanich (sfsu mathematics m.a.'11) anti-magic graphs
- ellinor janssen (fu berlin mathematics m.s.'21, co-advisor: katharina jochemko) ehrhart polynomials of lattice zonotopes (see also our joint paper)
- gina karunaratne (sfsu mathematics m.a.'17) decompositions of bivariate order polynomials
(see also our joint paper with maryam
fahramand-asil and sandra zuniga ruiz)
- curtis kifer (sfsu mathematics m.a.'10) extending the linear diophantine problem of frobenius (see also our joint paper)
- sampada kolhatkar (fu berlin mathematics m.s.'21) bivariate chromatic polynomials of mixed graphs (see also our joint paper)
- thomas kunze (sfsu mathematics m.a.'25) extensions of chapoton's
q-ehrhart theory (see also our joint paper)
- florence lam (sfsu mathematics)
- nguyen le (sfsu mathematics m.a.'10) a lattice point enumeration approach to partition identities (see also our joint paper with ben braun)
- asia matthews (sfsu mathematics m.a.'07) a geometric approach to carlitz-dedekind sums (see also our joint paper with christian haase)
- emily mccullough (sfsu mathematics m.a.'16, co-advisor: katharina jochemko) on delta-polynomials for lattice parallelepipeds (see also our joint paper)
- jodi mcwhirter (sfsu mathematics m.a.'19, co-advisor: federico ardila) ehrhart quasipolynomials of coxeter permutahedra
(see also our joint paper)
- claudia mitukiewicz (fu berlin mathematics m.s.'24)) h*-polynomials of graphical zonotopes
- dorothy moorefield (sfsu mathematics m.a.'06) partition analysis and ehrhart theory
- louis ng (sfsu mathematics m.a.'18) magic counting with inside-out polytopes
- anika
o'donnell (sfsu mathematics m.a.'24) generalized
frobenius numbers: asymptotics and two product families
- tu pham (sfsu mathematics m.a.'11, co-advisor: tristram bogart) enumeration of golomb rulers (see also our joint paper)
- alex plotitsa (sfsu computer science m.a.'10) computation of counting functions of magic labellings
- kim seashore (sfsu mathematics m.a.'07, co-advisor: serkan hosten) growth series of root lattices (see also our joint paper with federico ardila and julian pfeifle)
- panya sukphranee (sfsu mathematics m.a.'25)
eulerian polynomials for bidirected
graphs
- andrew van herick (sfsu mathematics m.a.'07) theoretical and computational methods for lattice point enumeration in inside-out polytopes (see also our joint paper)
- andrés vindas-meléndez
(sfsu mathematics m.a.'17, co-advisor: federico
ardila) two problems on lattice point
enumeration of rational polytopes (see also our joint paper with ben braun)
- kobe wijesekera (sfsu mathematics m.a.'25)
d-fold partition diamonds through posets
(see also our joint paper)
- hannah winkler (sfsu mathematics m.a.'14, co-advisor: federico ardila) triangulations of gale duals of root polytopes
- sandra zuniga ruiz (sfsu mathematics m.a.'16, co-advisor: federico ardila) bivariate order polynomials
(see also our joint paper with maryam
fahramand-asil and gina karunaratne)
ph.d. students
- esme bajo (uc berkeley mathematics ph.d.'24)
the combinatorics of h*-polynomials of rational
polytopes
(see also our joint paper, our joint paper with andrés vindas-meléndez, and
esme's joint papers with rob davis, jesús de loera, alexey garber, sofía garzón mora, katharina jochemko & josephine yu and with ben braun, giulia codenotti, johannes hofscheier & andrés vindas-meléndez)
- jeff doker (uc berkeley mathematics ph.d.'11, co-advisor: federico ardila) geometry of generalized permutohedra
(see also federico & jeff's joint paper)
- maryam fahramand-asil (uc berkeley mathematics ph.d.'18) the arithmetic of graph polynomials
(see also our joint paper with gina
karunaratne and sandra zuniga ruiz)
- yvonne kemper (uc davis mathematics ph.d.'13, co-advisor: jesus de loera) problems of enumeration and realizability on matroids, simplicial complexes, and graphs
(see also our joint paper)
- max
hlavacek (uc berkeley mathematics ph.d.'23) ehrhart theory of combinatorially defined
polytopes (see also our joint
paper, our joint paper with danai
deligeorgaki & jerónimo valencia-porras, and max's joint paper with liam solus)
- sophie rehberg (fu berlin
mathematics ph.d.'25)
extensions of ehrhart theory and applications to combinatorial structures
(see also sophie's
paper, our joint
paper with sophia elia,
and our joint paper with eleon bach)
- zafeirakis zafeirakopoulos (uni linz ph.d.'12, co-advisor: peter paule) linear diophantine systems: partition analysis and polyhedral geometry
(see also zaf's joint paper with felix breuer)
postdocs
future student research projects
If you're interested in working with me, click here.