b.a. students
- jakob becker (fu berlin mathematics b.a.'21) ein stochastischer ansatz zum beweis der reziprozität von dedekindsummen
- daniel blado, joseph crawford, taina jean-louis (msri-up'12, co-mentor: michael young) weak chromatic polynomials of mixed graphs (see also our joint paper)
- jordan clark, stefan klajbor, chelsie norton (msri-up'12, co-mentor: ana berrizbeitia) reciprocity formulae of dedekind-like sums
- alyssa cuyjet, gordon kirby, molly stubblefield (msri-up'12, co-mentor: michael young), nowehere-zero k-flows on graphs (see also our joint paper)
- michael dairyko, claudia rodriguez, schuyler veeneman (msri-up'12, co-mentors: ana berrizbeitia & amanda ruiz) a bijection from shi arrangement regions to parking functions via mixed graphs (see also our joint paper)
- jessica de silva, gabriel dorfsman-hopkins, joseph pruitt (msri-up'12, co-mentor: amanda ruiz) interval-vector polytopes (see also our joint paper)
- nikolaj gus (fu berlin mathematics b.a.'21) exponentielle erzeugendenfunktionen und ihre anwendungen in der graphentheorie
- jan heydebreck (fu berlin mathematics b.a.'21) erzeugendenfunktionen
von kompositionen mit teilen aus endlichen und unendlichen mengen: ein algebraisches zählverfahren
- julia klose (fu berlin mathematics b.a.'21) übergangsmatrizen der schriftlichen addition und der
satz von perron-frobenius
- florian kohl (uni würzburg mathematics b.a.'13) integer-point transforms of rational polygons and rademacher-carlitz polynomials (see also our joint paper)
- eun bee lee (fu berlin mathematics b.a.'21) parkfunktionen und ihre relevanten objekte
- sven marschalek (fu berlin mathematics b.a.'21) analyse
einer erzeugendenfunktion für das frobenius-münzproblem und ihrer nullstellen
- erika meza, bryan nevarez, alana shine (msri-up'12, co-mentor: michael young) computing the chromatic polynomials of the six signed petersen graphs (see also our joint paper)
- michael müller (fu berlin mathematics b.a.'20) farey-folgen & ford-kreise
- tablu othmann (fu berlin mathematics b.a.'20) quasipolinomiale
partitionsfunktionen
- pauline papenbrock (fu berlin mathematics b.a.'20) euler-zahlen,
euler-polynome und überträge in der schriftlichen addition
m.a. students
- juan auli (sfsu mathematics m.a.'15, co-advisor: federico ardila) the bettin-conrey reciprocity theorem and inflated eulerian polynomials
(see also our joint paper with abdelmejid
bayad)
- eleonore
bach (fu berlin mathematics m.s.'22) flow zonotopes and cographic hyperplane
arrangements
- leonardo bardomero (sfsu mathematics m.a.'18) generating functions for k-representable integers with two parameters
(see also our joint paper)
- andrew beyer (sfsu mathematics m.a.'10) enumeration of orthogonal latin squares
- anastasia chavez (sfsu mathematics m.a.'10) bernoulli-dedekind sums (see also our joint paper)
- steven collazos (sfsu mathematics m.a.'13) on the polyhedral geometry of t-designs
- aaron dall (sfsu mathematics m.a.'08) tension and flow complexes
(see also aaron's joint paper with felix breuer)
- brian davis (sfsu mathematics m.a.'14) unlabelling signed graph colorings and acyclic orientations (see also brian's paper)
- jessica delgado (sfsu mathematics m.a.'13, co-advisor: joseph gubeladze) higher-dimensional frobenius gaps (see also our joint paper with mateusz michalek)
- nick dowdall (sfsu mathematics m.a.'11) minimal-distance chromatic polynomials of signed graphs
- eric etu (sfsu computer science m.a.'07) computation of characteristic polynomials of hyperplane arrangements
- logan godkin (sfsu mathematics m.a.'12, co-advisor: felix breuer) aspheric orientations of simplicial complexes (see also our joint paper with jeremy martin)
- mary halloran (sfsu mathematics m.a.'07) finite trigonometric character sums via discrete fourier analysis (see also our joint paper)
- mela hardin (sfsu mathematics m.a.'11) a new two-variable generalization of the chromatic polynomials for signed graphs (see also our joint paper)
- andrew herrman (sfsu mathematics m.a.'10) ehrhart quasipolynomials of half-integral polygons
- mike jackanich (sfsu mathematics m.a.'11) anti-magic graphs
- ellinor janssen (fu berlin mathematics m.s.'21, co-advisor: katharina jochemko) ehrhart polynomials of lattice zonotopes (see also our joint paper)
- gina karunaratne (sfsu mathematics m.a.'17) decompositions of bivariate order polynomials
(see also our joint paper)
- curtis kifer (sfsu mathematics m.a.'10) extending the linear diophantine problem of frobenius (see also our joint paper)
- sampada kolhatkar (fu berlin mathematics m.s.'21) bivariate chromatic polynomials of mixed graphs (see also our joint paper)
- nguyen le (sfsu mathematics m.a.'10) a lattice point enumeration approach to partition identities (see also our joint paper with ben braun)
- asia matthews (sfsu mathematics m.a.'07) a geometric approach to carlitz-dedekind sums (see also our joint paper with christian haase)
- emily mccullough (sfsu mathematics m.a.'16, co-advisor: katharina jochemko) on delta-polynomials for lattice parallelepipeds (see also our joint paper)
- jodi mcwhirter (sfsu mathematics m.a.'19, co-advisor: federico ardila) ehrhart quasipolynomials of coxeter permutahedra
(see also our joint paper)
- claudia mitukiewicz (fu berlin mathematics)
- dorothy moorefield (sfsu mathematics m.a.'06) partition analysis and ehrhart theory
- louis ng (sfsu mathematics m.a.'18) magic counting with inside-out polytopes
- christina nguyen (sfsu mathematics)
- carlos osco huaricapcha (sfsu mathematics)
- tu pham (sfsu mathematics m.a.'11, co-advisor: tristram bogart) enumeration of golomb rulers (see also our joint paper)
- alex plotitsa (sfsu computer science m.a.'10) computation of counting functions of magic labellings
- kim seashore (sfsu mathematics m.a.'07, co-advisor: serkan hosten) growth series of root lattices (see also our joint paper with federico ardila and julian pfeifle)
- andrew van herick (sfsu mathematics m.a.'07) theoretical and computational methods for lattice point enumeration in inside-out polytopes (see also our joint paper)
- andres vindas melendez (sfsu mathematics m.a.'17, co-advisor: federico ardila) two problems on lattice point enumeration of rational polytopes
- hannah winkler (sfsu mathematics m.a.'14, co-advisor: federico ardila) triangulations of gale duals of root polytopes
- lok yam (sfsu mathematics)
- sandra zuniga ruiz (sfsu mathematics m.a.'16, co-advisor: federico ardila) bivariate order polynomials
(see also our joint paper)
ph.d. students
postdocs
future student research projects
If you're interested in working with me, click here.